summaryrefslogtreecommitdiffstats
path: root/video/csputils.c
blob: 555f0c045e262ab8219ca7998c189bff46214098 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
/*
 * Common code related to colorspaces and conversion
 *
 * Copyleft (C) 2009 Reimar Döffinger <Reimar.Doeffinger@gmx.de>
 *
 * This file is part of mpv.
 *
 * mpv is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * mpv is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with mpv.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <stdint.h>
#include <math.h>
#include <assert.h>
#include <libavutil/common.h>
#include <libavcodec/avcodec.h>

#include "mp_image.h"
#include "csputils.h"
#include "options/m_config.h"
#include "options/m_option.h"

const struct m_opt_choice_alternatives pl_csp_names[] = {
    {"auto",        PL_COLOR_SYSTEM_UNKNOWN},
    {"bt.601",      PL_COLOR_SYSTEM_BT_601},
    {"bt.709",      PL_COLOR_SYSTEM_BT_709},
    {"smpte-240m",  PL_COLOR_SYSTEM_SMPTE_240M},
    {"bt.2020-ncl", PL_COLOR_SYSTEM_BT_2020_NC},
    {"bt.2020-cl",  PL_COLOR_SYSTEM_BT_2020_C},
    {"bt.2100-pq",  PL_COLOR_SYSTEM_BT_2100_PQ},
    {"bt.2100-hlg", PL_COLOR_SYSTEM_BT_2100_HLG},
    {"dolbyvision", PL_COLOR_SYSTEM_DOLBYVISION},
    {"rgb",         PL_COLOR_SYSTEM_RGB},
    {"xyz",         PL_COLOR_SYSTEM_XYZ},
    {"ycgco",       PL_COLOR_SYSTEM_YCGCO},
    {0}
};

const struct m_opt_choice_alternatives pl_csp_levels_names[] = {
    {"auto",        PL_COLOR_LEVELS_UNKNOWN},
    {"limited",     PL_COLOR_LEVELS_LIMITED},
    {"full",        PL_COLOR_LEVELS_FULL},
    {0}
};

const struct m_opt_choice_alternatives pl_csp_prim_names[] = {
    {"auto",        PL_COLOR_PRIM_UNKNOWN},
    {"bt.601-525",  PL_COLOR_PRIM_BT_601_525},
    {"bt.601-625",  PL_COLOR_PRIM_BT_601_625},
    {"bt.709",      PL_COLOR_PRIM_BT_709},
    {"bt.2020",     PL_COLOR_PRIM_BT_2020},
    {"bt.470m",     PL_COLOR_PRIM_BT_470M},
    {"apple",       PL_COLOR_PRIM_APPLE},
    {"adobe",       PL_COLOR_PRIM_ADOBE},
    {"prophoto",    PL_COLOR_PRIM_PRO_PHOTO},
    {"cie1931",     PL_COLOR_PRIM_CIE_1931},
    {"dci-p3",      PL_COLOR_PRIM_DCI_P3},
    {"display-p3",  PL_COLOR_PRIM_DISPLAY_P3},
    {"v-gamut",     PL_COLOR_PRIM_V_GAMUT},
    {"s-gamut",     PL_COLOR_PRIM_S_GAMUT},
    {"ebu3213",     PL_COLOR_PRIM_EBU_3213},
    {"film-c",      PL_COLOR_PRIM_FILM_C},
    {"aces-ap0",    PL_COLOR_PRIM_ACES_AP0},
    {"aces-ap1",    PL_COLOR_PRIM_ACES_AP1},
    {0}
};

const struct m_opt_choice_alternatives pl_csp_trc_names[] = {
    {"auto",        PL_COLOR_TRC_UNKNOWN},
    {"bt.1886",     PL_COLOR_TRC_BT_1886},
    {"srgb",        PL_COLOR_TRC_SRGB},
    {"linear",      PL_COLOR_TRC_LINEAR},
    {"gamma1.8",    PL_COLOR_TRC_GAMMA18},
    {"gamma2.0",    PL_COLOR_TRC_GAMMA20},
    {"gamma2.2",    PL_COLOR_TRC_GAMMA22},
    {"gamma2.4",    PL_COLOR_TRC_GAMMA24},
    {"gamma2.6",    PL_COLOR_TRC_GAMMA26},
    {"gamma2.8",    PL_COLOR_TRC_GAMMA28},
    {"prophoto",    PL_COLOR_TRC_PRO_PHOTO},
    {"pq",          PL_COLOR_TRC_PQ},
    {"hlg",         PL_COLOR_TRC_HLG},
    {"v-log",       PL_COLOR_TRC_V_LOG},
    {"s-log1",      PL_COLOR_TRC_S_LOG1},
    {"s-log2",      PL_COLOR_TRC_S_LOG2},
    {"st428",       PL_COLOR_TRC_ST428},
    {0}
};

const struct m_opt_choice_alternatives mp_csp_light_names[] = {
    {"auto",        MP_CSP_LIGHT_AUTO},
    {"display",     MP_CSP_LIGHT_DISPLAY},
    {"hlg",         MP_CSP_LIGHT_SCENE_HLG},
    {"709-1886",    MP_CSP_LIGHT_SCENE_709_1886},
    {"gamma1.2",    MP_CSP_LIGHT_SCENE_1_2},
    {0}
};

const struct m_opt_choice_alternatives pl_chroma_names[] = {
    {"unknown",     PL_CHROMA_UNKNOWN},
    {"uhd",         PL_CHROMA_TOP_LEFT},
    {"mpeg2/4/h264",PL_CHROMA_LEFT},
    {"mpeg1/jpeg",  PL_CHROMA_CENTER},
    {"top",         PL_CHROMA_TOP_CENTER},
    {"bottom left", PL_CHROMA_BOTTOM_LEFT},
    {"bottom",      PL_CHROMA_BOTTOM_CENTER},
    {0}
};

const struct m_opt_choice_alternatives pl_alpha_names[] = {
    {"auto",        PL_ALPHA_UNKNOWN},
    {"straight",    PL_ALPHA_INDEPENDENT},
    {"premul",      PL_ALPHA_PREMULTIPLIED},
    {0}
};

// The short name _must_ match with what vf_stereo3d accepts (if supported).
// The long name in comments is closer to the Matroska spec (StereoMode element).
// The numeric index matches the Matroska StereoMode value. If you add entries
// that don't match Matroska, make sure demux_mkv.c rejects them properly.
const struct m_opt_choice_alternatives mp_stereo3d_names[] = {
    {"no",     -1}, // disable/invalid
    {"mono",    0},
    {"sbs2l",   1}, // "side_by_side_left"
    {"ab2r",    2}, // "top_bottom_right"
    {"ab2l",    3}, // "top_bottom_left"
    {"checkr",  4}, // "checkboard_right" (unsupported by vf_stereo3d)
    {"checkl",  5}, // "checkboard_left"  (unsupported by vf_stereo3d)
    {"irr",     6}, // "row_interleaved_right"
    {"irl",     7}, // "row_interleaved_left"
    {"icr",     8}, // "column_interleaved_right" (unsupported by vf_stereo3d)
    {"icl",     9}, // "column_interleaved_left" (unsupported by vf_stereo3d)
    {"arcc",   10}, // "anaglyph_cyan_red" (Matroska: unclear which mode)
    {"sbs2r",  11}, // "side_by_side_right"
    {"agmc",   12}, // "anaglyph_green_magenta" (Matroska: unclear which mode)
    {"al",     13}, // "alternating frames left first"
    {"ar",     14}, // "alternating frames right first"
    {0}
};

enum pl_color_system mp_csp_guess_colorspace(int width, int height)
{
    return width >= 1280 || height > 576 ? PL_COLOR_SYSTEM_BT_709 : PL_COLOR_SYSTEM_BT_601;
}

enum pl_color_primaries mp_csp_guess_primaries(int width, int height)
{
    // HD content
    if (width >= 1280 || height > 576)
        return PL_COLOR_PRIM_BT_709;

    switch (height) {
    case 576: // Typical PAL content, including anamorphic/squared
        return PL_COLOR_PRIM_BT_601_625;

    case 480: // Typical NTSC content, including squared
    case 486: // NTSC Pro or anamorphic NTSC
        return PL_COLOR_PRIM_BT_601_525;

    default: // No good metric, just pick BT.709 to minimize damage
        return PL_COLOR_PRIM_BT_709;
    }
}

// LMS<-XYZ revised matrix from CIECAM97, based on a linear transform and
// normalized for equal energy on monochrome inputs
static const pl_matrix3x3 m_cat97 = {{
    {  0.8562,  0.3372, -0.1934 },
    { -0.8360,  1.8327,  0.0033 },
    {  0.0357, -0.0469,  1.0112 },
}};

// M := M * XYZd<-XYZs
static void apply_chromatic_adaptation(struct pl_cie_xy src,
                                       struct pl_cie_xy dest, pl_matrix3x3 *mat)
{
    // If the white points are nearly identical, this is a wasteful identity
    // operation.
    if (fabs(src.x - dest.x) < 1e-6 && fabs(src.y - dest.y) < 1e-6)
        return;

    // XYZd<-XYZs = Ma^-1 * (I*[Cd/Cs]) * Ma
    // http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html
    // For Ma, we use the CIECAM97 revised (linear) matrix
    float C[3][2];

    for (int i = 0; i < 3; i++) {
        // source cone
        C[i][0] = m_cat97.m[i][0] * pl_cie_X(src)
                + m_cat97.m[i][1] * 1
                + m_cat97.m[i][2] * pl_cie_Z(src);

        // dest cone
        C[i][1] = m_cat97.m[i][0] * pl_cie_X(dest)
                + m_cat97.m[i][1] * 1
                + m_cat97.m[i][2] * pl_cie_Z(dest);
    }

    // tmp := I * [Cd/Cs] * Ma
    pl_matrix3x3 tmp = {0};
    for (int i = 0; i < 3; i++)
        tmp.m[i][i] = C[i][1] / C[i][0];

    pl_matrix3x3_mul(&tmp, &m_cat97);

    // M := M * Ma^-1 * tmp
    pl_matrix3x3 ma_inv = m_cat97;
    pl_matrix3x3_invert(&ma_inv);
    pl_matrix3x3_mul(mat, &ma_inv);
    pl_matrix3x3_mul(mat, &tmp);
}

// Get multiplication factor required if image data is fit within the LSBs of a
// higher smaller bit depth fixed-point texture data.
// This is broken. Use mp_get_csp_uint_mul().
double mp_get_csp_mul(enum pl_color_system csp, int input_bits, int texture_bits)
{
    assert(texture_bits >= input_bits);

    // Convenience for some irrelevant cases, e.g. rgb565 or disabling expansion.
    if (!input_bits)
        return 1;

    // RGB always uses the full range available.
    if (csp == PL_COLOR_SYSTEM_RGB)
        return ((1LL << input_bits) - 1.) / ((1LL << texture_bits) - 1.);

    if (csp == PL_COLOR_SYSTEM_XYZ)
        return 1;

    // High bit depth YUV uses a range shifted from 8 bit.
    return (1LL << input_bits) / ((1LL << texture_bits) - 1.) * 255 / 256;
}

// Return information about color fixed point representation.his is needed for
// converting color from integer formats to or from float. Use as follows:
//      float_val = uint_val * m + o
//      uint_val = clamp(round((float_val - o) / m))
// See H.264/5 Annex E.
//  csp: colorspace
//  levels: full range flag
//  component: ID of the channel, as in mp_regular_imgfmt:
//             1 is red/luminance/gray, 2 is green/Cb, 3 is blue/Cr, 4 is alpha.
//  bits: number of significant bits, e.g. 10 for yuv420p10, 16 for p010
//  out_m: returns factor to multiply the uint number with
//  out_o: returns offset to add after multiplication
void mp_get_csp_uint_mul(enum pl_color_system csp, enum pl_color_levels levels,
                         int bits, int component, double *out_m, double *out_o)
{
    uint16_t i_min = 0;
    uint16_t i_max = (1u << bits) - 1;
    double f_min = 0; // min. float value

    if (csp != PL_COLOR_SYSTEM_RGB && component != 4) {
        if (component == 2 || component == 3) {
            f_min = (1u << (bits - 1)) / -(double)i_max; // force center => 0

            if (levels != PL_COLOR_LEVELS_FULL && bits >= 8) {
                i_min = 16  << (bits - 8); // => -0.5
                i_max = 240 << (bits - 8); // =>  0.5
                f_min = -0.5;
            }
        } else {
            if (levels != PL_COLOR_LEVELS_FULL && bits >= 8) {
                i_min = 16  << (bits - 8); // => 0
                i_max = 235 << (bits - 8); // => 1
            }
        }
    }

    *out_m = 1.0 / (i_max - i_min);
    *out_o = (1 + f_min) - i_max * *out_m;
}

/* Fill in the Y, U, V vectors of a yuv-to-rgb conversion matrix
 * based on the given luma weights of the R, G and B components (lr, lg, lb).
 * lr+lg+lb is assumed to equal 1.
 * This function is meant for colorspaces satisfying the following
 * conditions (which are true for common YUV colorspaces):
 * - The mapping from input [Y, U, V] to output [R, G, B] is linear.
 * - Y is the vector [1, 1, 1].  (meaning input Y component maps to 1R+1G+1B)
 * - U maps to a value with zero R and positive B ([0, x, y], y > 0;
 *   i.e. blue and green only).
 * - V maps to a value with zero B and positive R ([x, y, 0], x > 0;
 *   i.e. red and green only).
 * - U and V are orthogonal to the luma vector [lr, lg, lb].
 * - The magnitudes of the vectors U and V are the minimal ones for which
 *   the image of the set Y=[0...1],U=[-0.5...0.5],V=[-0.5...0.5] under the
 *   conversion function will cover the set R=[0...1],G=[0...1],B=[0...1]
 *   (the resulting matrix can be converted for other input/output ranges
 *   outside this function).
 * Under these conditions the given parameters lr, lg, lb uniquely
 * determine the mapping of Y, U, V to R, G, B.
 */
static void luma_coeffs(struct pl_transform3x3 *mat, float lr, float lg, float lb)
{
    assert(fabs(lr+lg+lb - 1) < 1e-6);
    *mat = (struct pl_transform3x3) {
        { {{1, 0,                    2 * (1-lr)          },
           {1, -2 * (1-lb) * lb/lg, -2 * (1-lr) * lr/lg  },
           {1,  2 * (1-lb),          0                   }} },
        // Constant coefficients (mat->c) not set here
    };
}

// get the coefficients of the yuv -> rgb conversion matrix
void mp_get_csp_matrix(struct mp_csp_params *params, struct pl_transform3x3 *m)
{
    enum pl_color_system colorspace = params->repr.sys;
    if (colorspace <= PL_COLOR_SYSTEM_UNKNOWN || colorspace >= PL_COLOR_SYSTEM_COUNT)
        colorspace = PL_COLOR_SYSTEM_BT_601;
    // Not supported. TODO: replace with pl_color_repr_decode
    if (colorspace == PL_COLOR_SYSTEM_BT_2100_PQ ||
        colorspace == PL_COLOR_SYSTEM_BT_2100_HLG ||
        colorspace == PL_COLOR_SYSTEM_DOLBYVISION) {
        colorspace = PL_COLOR_SYSTEM_BT_2020_NC;
    }
    enum pl_color_levels levels_in = params->repr.levels;
    if (levels_in <= PL_COLOR_LEVELS_UNKNOWN || levels_in >= PL_COLOR_LEVELS_COUNT)
        levels_in = PL_COLOR_LEVELS_LIMITED;

    switch (colorspace) {
    case PL_COLOR_SYSTEM_BT_601:     luma_coeffs(m, 0.299,  0.587,  0.114 ); break;
    case PL_COLOR_SYSTEM_BT_709:     luma_coeffs(m, 0.2126, 0.7152, 0.0722); break;
    case PL_COLOR_SYSTEM_SMPTE_240M: luma_coeffs(m, 0.2122, 0.7013, 0.0865); break;
    case PL_COLOR_SYSTEM_BT_2020_NC: luma_coeffs(m, 0.2627, 0.6780, 0.0593); break;
    case PL_COLOR_SYSTEM_BT_2020_C: {
        // Note: This outputs into the [-0.5,0.5] range for chroma information.
        // If this clips on any VO, a constant 0.5 coefficient can be added
        // to the chroma channels to normalize them into [0,1]. This is not
        // currently needed by anything, though.
        *m = (struct pl_transform3x3){{{{0, 0, 1}, {1, 0, 0}, {0, 1, 0}}}};
        break;
    }
    case PL_COLOR_SYSTEM_RGB: {
        *m = (struct pl_transform3x3){{{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}}};
        levels_in = -1;
        break;
    }
    case PL_COLOR_SYSTEM_XYZ: {
        // For lack of anything saner to do, just assume the caller wants
        // DCI-P3 primaries, which is a reasonable assumption.
        const struct pl_raw_primaries *dst = pl_raw_primaries_get(PL_COLOR_PRIM_DCI_P3);
        pl_matrix3x3 mat = pl_get_xyz2rgb_matrix(dst);
        // DCDM X'Y'Z' is expected to have equal energy white point (EG 432-1 Annex H)
        apply_chromatic_adaptation((struct pl_cie_xy){1.0/3.0, 1.0/3.0}, dst->white, &mat);
        *m = (struct pl_transform3x3) { .mat = mat };
        levels_in = -1;
        break;
    }
    case PL_COLOR_SYSTEM_YCGCO: {
        *m = (struct pl_transform3x3) {
            {{{1,  -1,  1},
              {1,   1,  0},
              {1,  -1, -1}}},
        };
        break;
    }
    default:
        MP_ASSERT_UNREACHABLE();
    };

    if (params->is_float)
        levels_in = -1;

    if ((colorspace == PL_COLOR_SYSTEM_BT_601 || colorspace == PL_COLOR_SYSTEM_BT_709 ||
         colorspace == PL_COLOR_SYSTEM_SMPTE_240M || colorspace == PL_COLOR_SYSTEM_BT_2020_NC))
    {
        // Hue is equivalent to rotating input [U, V] subvector around the origin.
        // Saturation scales [U, V].
        float huecos = params->gray ? 0 : params->saturation * cos(params->hue);
        float huesin = params->gray ? 0 : params->saturation * sin(params->hue);
        for (int i = 0; i < 3; i++) {
            float u = m->mat.m[i][1], v = m->mat.m[i][2];
            m->mat.m[i][1] = huecos * u - huesin * v;
            m->mat.m[i][2] = huesin * u + huecos * v;
        }
    }

    // The values below are written in 0-255 scale - thus bring s into range.
    double s =
        mp_get_csp_mul(colorspace, params->input_bits, params->texture_bits) / 255;
    // NOTE: The yuvfull ranges as presented here are arguably ambiguous,
    // and conflict with at least the full-range YCbCr/ICtCp values as defined
    // by ITU-R BT.2100. If somebody ever complains about full-range YUV looking
    // different from their reference display, this comment is probably why.
    struct yuvlevels { double ymin, ymax, cmax, cmid; }
        yuvlim =  { 16*s, 235*s, 240*s, 128*s },
        yuvfull = {  0*s, 255*s, 255*s, 128*s },
        anyfull = {  0*s, 255*s, 255*s/2, 0 }, // cmax picked to make cmul=ymul
        yuvlev;
    switch (levels_in) {
    case PL_COLOR_LEVELS_LIMITED: yuvlev = yuvlim; break;
    case PL_COLOR_LEVELS_FULL: yuvlev = yuvfull; break;
    case -1: yuvlev = anyfull; break;
    default:
        MP_ASSERT_UNREACHABLE();
    }

    int levels_out = params->levels_out;
    if (levels_out <= PL_COLOR_LEVELS_UNKNOWN || levels_out >= PL_COLOR_LEVELS_COUNT)
        levels_out = PL_COLOR_LEVELS_FULL;
    struct rgblevels { double min, max; }
        rgblim =  { 16/255., 235/255. },
        rgbfull = {      0,        1  },
        rgblev;
    switch (levels_out) {
    case PL_COLOR_LEVELS_LIMITED: rgblev = rgblim; break;
    case PL_COLOR_LEVELS_FULL: rgblev = rgbfull; break;
    default:
        MP_ASSERT_UNREACHABLE();
    }

    double ymul = (rgblev.max - rgblev.min) / (yuvlev.ymax - yuvlev.ymin);
    double cmul = (rgblev.max - rgblev.min) / (yuvlev.cmax - yuvlev.cmid) / 2;

    // Contrast scales the output value range (gain)
    ymul *= params->contrast;
    cmul *= params->contrast;

    for (int i = 0; i < 3; i++) {
        m->mat.m[i][0] *= ymul;
        m->mat.m[i][1] *= cmul;
        m->mat.m[i][2] *= cmul;
        // Set c so that Y=umin,UV=cmid maps to RGB=min (black to black),
        // also add brightness offset (black lift)
        m->c[i] = rgblev.min - m->mat.m[i][0] * yuvlev.ymin
                  - (m->mat.m[i][1] + m->mat.m[i][2]) * yuvlev.cmid
                  + params->brightness;
    }
}

// Set colorspace related fields in p from f. Don't touch other fields.
void mp_csp_set_image_params(struct mp_csp_params *params,
                             const struct mp_image_params *imgparams)
{
    struct mp_image_params p = *imgparams;
    mp_image_params_guess_csp(&p); // ensure consistency
    params->repr = p.repr;
    params->color = p.color;
}

enum mp_csp_equalizer_param {
    MP_CSP_EQ_BRIGHTNESS,
    MP_CSP_EQ_CONTRAST,
    MP_CSP_EQ_HUE,
    MP_CSP_EQ_SATURATION,
    MP_CSP_EQ_GAMMA,
    MP_CSP_EQ_COUNT,
};

// Default initialization with 0 is enough, except for the capabilities field
struct mp_csp_equalizer_opts {
    // Value for each property is in the range [-100.0, 100.0].
    // 0.0 is default, meaning neutral or no change.
    float values[MP_CSP_EQ_COUNT];
    int output_levels;
};

#define OPT_BASE_STRUCT struct mp_csp_equalizer_opts

const struct m_sub_options mp_csp_equalizer_conf = {
    .opts = (const m_option_t[]) {
        {"brightness", OPT_FLOAT(values[MP_CSP_EQ_BRIGHTNESS]),
            M_RANGE(-100, 100)},
        {"saturation", OPT_FLOAT(values[MP_CSP_EQ_SATURATION]),
            M_RANGE(-100, 100)},
        {"contrast", OPT_FLOAT(values[MP_CSP_EQ_CONTRAST]),
            M_RANGE(-100, 100)},
        {"hue", OPT_FLOAT(values[MP_CSP_EQ_HUE]),
            M_RANGE(-100, 100)},
        {"gamma", OPT_FLOAT(values[MP_CSP_EQ_GAMMA]),
            M_RANGE(-100, 100)},
        {"video-output-levels",
            OPT_CHOICE_C(output_levels, pl_csp_levels_names)},
        {0}
    },
    .size = sizeof(struct mp_csp_equalizer_opts),
    .change_flags = UPDATE_VIDEO,
};

// Copy settings from eq into params.
static void mp_csp_copy_equalizer_values(struct mp_csp_params *params,
                                         const struct mp_csp_equalizer_opts *eq)
{
    params->brightness = eq->values[MP_CSP_EQ_BRIGHTNESS] / 100.0;
    params->contrast = (eq->values[MP_CSP_EQ_CONTRAST] + 100) / 100.0;
    params->hue = eq->values[MP_CSP_EQ_HUE] / 100.0 * M_PI;
    params->saturation = (eq->values[MP_CSP_EQ_SATURATION] + 100) / 100.0;
    params->gamma = exp(log(8.0) * eq->values[MP_CSP_EQ_GAMMA] / 100.0);
    params->levels_out = eq->output_levels;
}

struct mp_csp_equalizer_state *mp_csp_equalizer_create(void *ta_parent,
                                                    struct mpv_global *global)
{
    struct m_config_cache *c = m_config_cache_alloc(ta_parent, global,
                                                    &mp_csp_equalizer_conf);
    // The terrible, terrible truth.
    return (struct mp_csp_equalizer_state *)c;
}

bool mp_csp_equalizer_state_changed(struct mp_csp_equalizer_state *state)
{
    struct m_config_cache *c = (struct m_config_cache *)state;
    return m_config_cache_update(c);
}

void mp_csp_equalizer_state_get(struct mp_csp_equalizer_state *state,
                                struct mp_csp_params *params)
{
    struct m_config_cache *c = (struct m_config_cache *)state;
    m_config_cache_update(c);
    struct mp_csp_equalizer_opts *opts = c->opts;
    mp_csp_copy_equalizer_values(params, opts);
}

// Multiply the color in c with the given matrix.
// i/o is {R, G, B} or {Y, U, V} (depending on input/output and matrix), using
// a fixed point representation with the given number of bits (so for bits==8,
// [0,255] maps to [0,1]). The output is clipped to the range as needed.
void mp_map_fixp_color(struct pl_transform3x3 *matrix, int ibits, int in[3],
                                               int obits, int out[3])
{
    for (int i = 0; i < 3; i++) {
        double val = matrix->c[i];
        for (int x = 0; x < 3; x++)
            val += matrix->mat.m[i][x] * in[x] / ((1 << ibits) - 1);
        int ival = lrint(val * ((1 << obits) - 1));
        out[i] = av_clip(ival, 0, (1 << obits) - 1);
    }
}