summaryrefslogtreecommitdiffstats
path: root/libfaad2/mdct.c
diff options
context:
space:
mode:
Diffstat (limited to 'libfaad2/mdct.c')
-rw-r--r--libfaad2/mdct.c284
1 files changed, 284 insertions, 0 deletions
diff --git a/libfaad2/mdct.c b/libfaad2/mdct.c
new file mode 100644
index 0000000000..6f18d38659
--- /dev/null
+++ b/libfaad2/mdct.c
@@ -0,0 +1,284 @@
+/*
+** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
+** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
+**
+** This program is free software; you can redistribute it and/or modify
+** it under the terms of the GNU General Public License as published by
+** the Free Software Foundation; either version 2 of the License, or
+** (at your option) any later version.
+**
+** This program is distributed in the hope that it will be useful,
+** but WITHOUT ANY WARRANTY; without even the implied warranty of
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+** GNU General Public License for more details.
+**
+** You should have received a copy of the GNU General Public License
+** along with this program; if not, write to the Free Software
+** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+**
+** Any non-GPL usage of this software or parts of this software is strictly
+** forbidden.
+**
+** Commercial non-GPL licensing of this software is possible.
+** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
+**
+** $Id: mdct.c,v 1.26 2003/07/29 08:20:12 menno Exp $
+**/
+
+/*
+ * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform)
+ * and consists of three steps: pre-(I)FFT complex multiplication, complex
+ * (I)FFT, post-(I)FFT complex multiplication,
+ *
+ * As described in:
+ * P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the
+ * Implementation of Filter Banks Based on 'Time Domain Aliasing
+ * Cancellation’," IEEE Proc. on ICASSP‘91, 1991, pp. 2209-2212.
+ *
+ *
+ * As of April 6th 2002 completely rewritten.
+ * This (I)MDCT can now be used for any data size n, where n is divisible by 8.
+ *
+ */
+
+#include "common.h"
+#include "structs.h"
+
+#include <stdlib.h>
+#ifdef _WIN32_WCE
+#define assert(x)
+#else
+#include <assert.h>
+#endif
+
+#include "cfft.h"
+#include "mdct.h"
+
+/* const_tab[]:
+ 0: sqrt(2 / N)
+ 1: cos(2 * PI / N)
+ 2: sin(2 * PI / N)
+ 3: cos(2 * PI * (1/8) / N)
+ 4: sin(2 * PI * (1/8) / N)
+ */
+#ifndef FIXED_POINT
+#ifdef _MSC_VER
+#pragma warning(disable:4305)
+#pragma warning(disable:4244)
+#endif
+real_t const_tab[][5] =
+{
+ { COEF_CONST(0.0312500000), COEF_CONST(0.9999952938), COEF_CONST(0.0030679568),
+ COEF_CONST(0.9999999265), COEF_CONST(0.0003834952) }, /* 2048 */
+ { COEF_CONST(0.0322748612), COEF_CONST(0.9999946356), COEF_CONST(0.0032724866),
+ COEF_CONST(0.9999999404), COEF_CONST(0.0004090615) }, /* 1920 */
+ { COEF_CONST(0.0441941738), COEF_CONST(0.9999811649), COEF_CONST(0.0061358847),
+ COEF_CONST(0.9999997020), COEF_CONST(0.0007669903) }, /* 1024 */
+ { COEF_CONST(0.0456435465), COEF_CONST(0.9999786019), COEF_CONST(0.0065449383),
+ COEF_CONST(0.9999996424), COEF_CONST(0.0008181230) }, /* 960 */
+ { COEF_CONST(0.0883883476), COEF_CONST(0.9996988177), COEF_CONST(0.0245412290),
+ COEF_CONST(0.9999952912), COEF_CONST(0.0030679568) }, /* 256 */
+ { COEF_CONST(0.0912870929), COEF_CONST(0.9996573329), COEF_CONST(0.0261769500),
+ COEF_CONST(0.9999946356), COEF_CONST(0.0032724866) } /* 240 */
+#ifdef SSR_DEC
+ ,{ COEF_CONST(0.062500000), COEF_CONST(0.999924702), COEF_CONST(0.012271538),
+ COEF_CONST(0.999998823), COEF_CONST(0.00153398) }, /* 512 */
+ { COEF_CONST(0.176776695), COEF_CONST(0.995184727), COEF_CONST(0.09801714),
+ COEF_CONST(0.999924702), COEF_CONST(0.012271538) } /* 64 */
+#endif
+};
+#else
+real_t const_tab[][5] =
+{
+ { COEF_CONST(1), COEF_CONST(0.9999952938), COEF_CONST(0.0030679568),
+ COEF_CONST(0.9999999265), COEF_CONST(0.0003834952) }, /* 2048 */
+ { COEF_CONST(/* sqrt(1024/960) */ 1.03279556), COEF_CONST(0.9999946356), COEF_CONST(0.0032724866),
+ COEF_CONST(0), COEF_CONST(0.0004090615) }, /* 1920 */
+ { COEF_CONST(1), COEF_CONST(0.9999811649), COEF_CONST(0.0061358847),
+ COEF_CONST(0.9999997020), COEF_CONST(0.0007669903) }, /* 1024 */
+ { COEF_CONST(/* sqrt(512/480) */ 1.03279556), COEF_CONST(0.9999786019), COEF_CONST(0.0065449383),
+ COEF_CONST(0.9999996424), COEF_CONST(0.0008181230) }, /* 960 */
+ { COEF_CONST(1), COEF_CONST(0.9996988177), COEF_CONST(0.0245412290),
+ COEF_CONST(0.9999952912), COEF_CONST(0.0030679568) }, /* 256 */
+ { COEF_CONST(/* sqrt(256/240) */ 1.03279556), COEF_CONST(0.9996573329), COEF_CONST(0.0261769500),
+ COEF_CONST(0.9999946356), COEF_CONST(0.0032724866) } /* 240 */
+#ifdef SSR_DEC
+ ,{ COEF_CONST(0), COEF_CONST(0.999924702), COEF_CONST(0.012271538),
+ COEF_CONST(0.999998823), COEF_CONST(0.00153398) }, /* 512 */
+ { COEF_CONST(0), COEF_CONST(0.995184727), COEF_CONST(0.09801714),
+ COEF_CONST(0.999924702), COEF_CONST(0.012271538) } /* 64 */
+#endif
+};
+#endif
+
+uint8_t map_N_to_idx(uint16_t N)
+{
+ switch(N)
+ {
+ case 2048: return 0;
+ case 1920: return 1;
+ case 1024: return 2;
+ case 960: return 3;
+ case 256: return 4;
+ case 240: return 5;
+#ifdef SSR_DEC
+ case 512: return 6;
+ case 64: return 7;
+#endif
+ }
+ return 0;
+}
+
+mdct_info *faad_mdct_init(uint16_t N)
+{
+ uint16_t k, N_idx;
+ real_t cangle, sangle, c, s, cold;
+ real_t scale;
+
+ mdct_info *mdct = (mdct_info*)malloc(sizeof(mdct_info));
+
+ assert(N % 8 == 0);
+
+ mdct->N = N;
+ mdct->sincos = (complex_t*)malloc(N/4*sizeof(complex_t));
+ mdct->Z1 = (complex_t*)malloc(N/4*sizeof(complex_t));
+
+ N_idx = map_N_to_idx(N);
+
+ scale = const_tab[N_idx][0];
+ cangle = const_tab[N_idx][1];
+ sangle = const_tab[N_idx][2];
+ c = const_tab[N_idx][3];
+ s = const_tab[N_idx][4];
+
+ for (k = 0; k < N/4; k++)
+ {
+ RE(mdct->sincos[k]) = -1*MUL_C_C(c,scale);
+ IM(mdct->sincos[k]) = -1*MUL_C_C(s,scale);
+
+ cold = c;
+ c = MUL_C_C(c,cangle) - MUL_C_C(s,sangle);
+ s = MUL_C_C(s,cangle) + MUL_C_C(cold,sangle);
+ }
+
+ /* initialise fft */
+ mdct->cfft = cffti(N/4);
+
+ return mdct;
+}
+
+void faad_mdct_end(mdct_info *mdct)
+{
+ if (mdct != NULL)
+ {
+ cfftu(mdct->cfft);
+
+ if (mdct->Z1) free(mdct->Z1);
+ if (mdct->sincos) free(mdct->sincos);
+
+ free(mdct);
+ }
+}
+
+void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
+{
+ uint16_t k;
+
+ complex_t x;
+ complex_t *Z1 = mdct->Z1;
+ complex_t *sincos = mdct->sincos;
+
+ uint16_t N = mdct->N;
+ uint16_t N2 = N >> 1;
+ uint16_t N4 = N >> 2;
+ uint16_t N8 = N >> 3;
+
+ /* pre-IFFT complex multiplication */
+ for (k = 0; k < N4; k++)
+ {
+ uint16_t n = k << 1;
+ RE(x) = X_in[ n];
+ IM(x) = X_in[N2 - 1 - n];
+ RE(Z1[k]) = MUL_R_C(IM(x), RE(sincos[k])) - MUL_R_C(RE(x), IM(sincos[k]));
+ IM(Z1[k]) = MUL_R_C(RE(x), RE(sincos[k])) + MUL_R_C(IM(x), IM(sincos[k]));
+ }
+
+ /* complex IFFT */
+ cfftb(mdct->cfft, Z1);
+
+ /* post-IFFT complex multiplication */
+ for (k = 0; k < N4; k++)
+ {
+ uint16_t n = k << 1;
+ RE(x) = RE(Z1[k]);
+ IM(x) = IM(Z1[k]);
+
+ RE(Z1[k]) = MUL_R_C(RE(x), RE(sincos[k])) - MUL_R_C(IM(x), IM(sincos[k]));
+ IM(Z1[k]) = MUL_R_C(IM(x), RE(sincos[k])) + MUL_R_C(RE(x), IM(sincos[k]));
+ }
+
+ /* reordering */
+ for (k = 0; k < N8; k++)
+ {
+ uint16_t n = k << 1;
+ X_out[ n] = IM(Z1[N8 + k]);
+ X_out[ 1 + n] = -RE(Z1[N8 - 1 - k]);
+ X_out[N4 + n] = RE(Z1[ k]);
+ X_out[N4 + 1 + n] = -IM(Z1[N4 - 1 - k]);
+ X_out[N2 + n] = RE(Z1[N8 + k]);
+ X_out[N2 + 1 + n] = -IM(Z1[N8 - 1 - k]);
+ X_out[N2 + N4 + n] = -IM(Z1[ k]);
+ X_out[N2 + N4 + 1 + n] = RE(Z1[N4 - 1 - k]);
+ }
+}
+
+#ifdef LTP_DEC
+void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
+{
+ uint16_t k;
+
+ complex_t x;
+ complex_t *Z1 = mdct->Z1;
+ complex_t *sincos = mdct->sincos;
+
+ uint16_t N = mdct->N;
+ uint16_t N2 = N >> 1;
+ uint16_t N4 = N >> 2;
+ uint16_t N8 = N >> 3;
+
+ real_t scale = REAL_CONST(N);
+
+ /* pre-FFT complex multiplication */
+ for (k = 0; k < N8; k++)
+ {
+ uint16_t n = k << 1;
+ RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 + n];
+ IM(x) = X_in[ N4 + n] - X_in[ N4 - 1 - n];
+
+ RE(Z1[k]) = -MUL_R_C(RE(x), RE(sincos[k])) - MUL_R_C(IM(x), IM(sincos[k]));
+ IM(Z1[k]) = -MUL_R_C(IM(x), RE(sincos[k])) + MUL_R_C(RE(x), IM(sincos[k]));
+
+ RE(x) = X_in[N2 - 1 - n] - X_in[ n];
+ IM(x) = X_in[N2 + n] + X_in[N - 1 - n];
+
+ RE(Z1[k + N8]) = -MUL_R_C(RE(x), RE(sincos[k + N8])) - MUL_R_C(IM(x), IM(sincos[k + N8]));
+ IM(Z1[k + N8]) = -MUL_R_C(IM(x), RE(sincos[k + N8])) + MUL_R_C(RE(x), IM(sincos[k + N8]));
+ }
+
+ /* complex FFT */
+ cfftf(mdct->cfft, Z1);
+
+ /* post-FFT complex multiplication */
+ for (k = 0; k < N4; k++)
+ {
+ uint16_t n = k << 1;
+ RE(x) = MUL(MUL_R_C(RE(Z1[k]), RE(sincos[k])) + MUL_R_C(IM(Z1[k]), IM(sincos[k])), scale);
+ IM(x) = MUL(MUL_R_C(IM(Z1[k]), RE(sincos[k])) - MUL_R_C(RE(Z1[k]), IM(sincos[k])), scale);
+
+ X_out[ n] = RE(x);
+ X_out[N2 - 1 - n] = -IM(x);
+ X_out[N2 + n] = IM(x);
+ X_out[N - 1 - n] = -RE(x);
+ }
+}
+#endif