summaryrefslogtreecommitdiffstats
path: root/libaf/af_resample.c
diff options
context:
space:
mode:
Diffstat (limited to 'libaf/af_resample.c')
-rw-r--r--libaf/af_resample.c340
1 files changed, 340 insertions, 0 deletions
diff --git a/libaf/af_resample.c b/libaf/af_resample.c
new file mode 100644
index 0000000000..ea9919ecdf
--- /dev/null
+++ b/libaf/af_resample.c
@@ -0,0 +1,340 @@
+/*=============================================================================
+//
+// This software has been released under the terms of the GNU Public
+// license. See http://www.gnu.org/copyleft/gpl.html for details.
+//
+// Copyright 2002 Anders Johansson ajh@atri.curtin.edu.au
+//
+//=============================================================================
+*/
+
+/* This audio filter changes the sample rate. */
+
+#define PLUGIN
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include <inttypes.h>
+
+#include "../config.h"
+#include "../mp_msg.h"
+#include "../libao2/afmt.h"
+
+#include "af.h"
+#include "dsp.h"
+
+/* Below definition selects the length of each poly phase component.
+ Valid definitions are L8 and L16, where the number denotes the
+ length of the filter. This definition affects the computational
+ complexity (see play()), the performance (see filter.h) and the
+ memory usage. The filterlenght is choosen to 8 if the machine is
+ slow and to 16 if the machine is fast and has MMX.
+*/
+
+#if defined(HAVE_SSE) && !defined(HAVE_3DNOW) // This machine is slow
+
+#define L 8 // Filter length
+// Unrolled loop to speed up execution
+#define FIR(x,w,y){ \
+ int16_t a = (w[0]*x[0]+w[1]*x[1]+w[2]*x[2]+w[3]*x[3]) >> 16; \
+ int16_t b = (w[4]*x[4]+w[5]*x[5]+w[6]*x[6]+w[7]*x[7]) >> 16; \
+ (y[0]) = a+b; \
+}
+
+#else /* Fast machine */
+
+#define L 16
+// Unrolled loop to speed up execution
+#define FIR(x,w,y){ \
+ int16_t a = (w[0] *x[0] +w[1] *x[1] +w[2] *x[2] +w[3] *x[3] ) >> 16; \
+ int16_t b = (w[4] *x[4] +w[5] *x[5] +w[6] *x[6] +w[7] *x[7] ) >> 16; \
+ int16_t c = (w[8] *x[8] +w[9] *x[9] +w[10]*x[10]+w[11]*x[11]) >> 16; \
+ int16_t d = (w[12]*x[12]+w[13]*x[13]+w[14]*x[14]+w[15]*x[15]) >> 16; \
+ y[0] = (a+b+c+d) >> 1; \
+}
+
+#endif /* Fast machine */
+
+// Macro to add data to circular que
+#define ADDQUE(xi,xq,in)\
+ xq[xi]=xq[xi+L]=(*in);\
+ xi=(--xi)&(L-1);
+
+
+
+// local data
+typedef struct af_resample_s
+{
+ int16_t* w; // Current filter weights
+ int16_t** xq; // Circular buffers
+ int16_t xi; // Index for circular buffers
+ int16_t wi; // Index for w
+ uint16_t i; // Number of new samples to put in x queue
+ uint16_t dn; // Down sampling factor
+ uint16_t up; // Up sampling factor
+} af_resample_t;
+
+// Euclids algorithm for calculating Greatest Common Divisor GCD(a,b)
+inline int gcd(register int a, register int b)
+{
+ register int r = min(a,b);
+ a=max(a,b);
+ b=r;
+
+ r=a%b;
+ while(r!=0){
+ a=b;
+ b=r;
+ r=a%b;
+ }
+ return b;
+}
+
+static int upsample(af_data_t* c,af_data_t* l, af_resample_t* s)
+{
+ uint16_t ci = l->nch; // Index for channels
+ uint16_t len = 0; // Number of input samples
+ uint16_t nch = l->nch; // Number of channels
+ uint16_t inc = s->up/s->dn;
+ uint16_t level = s->up%s->dn;
+ uint16_t up = s->up;
+ uint16_t dn = s->dn;
+
+ register int16_t* w = s->w;
+ register uint16_t wi = 0;
+ register uint16_t xi = 0;
+
+ // Index current channel
+ while(ci--){
+ // Temporary pointers
+ register int16_t* x = s->xq[ci];
+ register int16_t* in = ((int16_t*)c->audio)+ci;
+ register int16_t* out = ((int16_t*)l->audio)+ci;
+ int16_t* end = in+c->len/2; // Block loop end
+ wi = s->wi; xi = s->xi;
+
+ while(in < end){
+ register uint16_t i = inc;
+ if(wi<level) i++;
+
+ ADDQUE(xi,x,in);
+ in+=nch;
+ while(i--){
+ // Run the FIR filter
+ FIR((&x[xi]),(&w[wi*L]),out);
+ len++; out+=nch;
+ // Update wi to point at the correct polyphase component
+ wi=(wi+dn)%up;
+ }
+ }
+ }
+ // Save values that needs to be kept for next time
+ s->wi = wi;
+ s->xi = xi;
+ return len;
+}
+
+static int downsample(af_data_t* c,af_data_t* l, af_resample_t* s)
+{
+ uint16_t ci = l->nch; // Index for channels
+ uint16_t len = 0; // Number of output samples
+ uint16_t nch = l->nch; // Number of channels
+ uint16_t inc = s->dn/s->up;
+ uint16_t level = s->dn%s->up;
+ uint16_t up = s->up;
+ uint16_t dn = s->dn;
+
+ register uint16_t i = 0;
+ register uint16_t wi = 0;
+ register uint16_t xi = 0;
+
+ // Index current channel
+ while(ci--){
+ // Temporary pointers
+ register int16_t* x = s->xq[ci];
+ register int16_t* in = ((int16_t*)c->audio)+ci;
+ register int16_t* out = ((int16_t*)l->audio)+ci;
+ register int16_t* end = in+c->len/2; // Block loop end
+ i = s->i; wi = s->wi; xi = s->xi;
+
+ while(in < end){
+
+ ADDQUE(xi,x,in);
+ in+=nch;
+ if(!--i){
+ // Run the FIR filter
+ FIR((&x[xi]),(&s->w[wi*L]),out);
+ len++; out+=nch;
+
+ // Update wi to point at the correct polyphase component
+ wi=(wi+dn)%up;
+
+ // Insert i number of new samples in queue
+ i = inc;
+ if(wi<level) i++;
+ }
+ }
+ }
+ // Save values that needs to be kept for next time
+ s->wi = wi;
+ s->xi = xi;
+ s->i = i;
+
+ return len;
+}
+
+// Initialization and runtime control
+static int control(struct af_instance_s* af, int cmd, void* arg)
+{
+ switch(cmd){
+ case AF_CONTROL_REINIT:{
+ af_resample_t* s = (af_resample_t*)af->setup;
+ af_data_t* n = (af_data_t*)arg; // New configureation
+ int i,d = 0;
+ int rv = AF_OK;
+
+ // Make sure this filter isn't redundant
+ if(af->data->rate == n->rate)
+ return AF_DETACH;
+
+ // Create space for circular bufers (if nesessary)
+ if(af->data->nch != n->nch){
+ // First free the old ones
+ if(s->xq){
+ for(i=1;i<af->data->nch;i++)
+ if(s->xq[i])
+ free(s->xq[i]);
+ free(s->xq);
+ }
+ // ... then create new
+ s->xq = malloc(n->nch*sizeof(int16_t*));
+ for(i=0;i<n->nch;i++)
+ s->xq[i] = malloc(2*L*sizeof(int16_t));
+ s->xi = 0;
+ }
+
+ // Set parameters
+ af->data->nch = n->nch;
+ af->data->format = AFMT_S16_LE;
+ af->data->bps = 2;
+ if(af->data->format != n->format || af->data->bps != n->bps)
+ rv = AF_FALSE;
+ n->format = AFMT_S16_LE;
+ n->bps = 2;
+
+ // Calculate up and down sampling factors
+ d=gcd(af->data->rate,n->rate);
+
+ // Check if the the design needs to be redone
+ if(s->up != af->data->rate/d || s->dn != n->rate/d){
+ float* w;
+ float* wt;
+ float fc;
+ int j;
+ s->up = af->data->rate/d;
+ s->dn = n->rate/d;
+
+ // Calculate cuttof frequency for filter
+ fc = 1/(float)(max(s->up,s->dn));
+ // Allocate space for polyphase filter bank and protptype filter
+ w = malloc(sizeof(float) * s->up *L);
+ if(NULL != s->w)
+ free(s->w);
+ s->w = malloc(L*s->up*sizeof(int16_t));
+
+ // Design prototype filter type using Kaiser window with beta = 10
+ if(NULL == w || NULL == s->w ||
+ -1 == design_fir(s->up*L, w, &fc, LP|KAISER , 10.0)){
+ mp_msg(MSGT_AFILTER,MSGL_ERR,"[resample] Unable to design prototype filter.\n");
+ return AF_ERROR;
+ }
+ // Copy data from prototype to polyphase filter
+ wt=w;
+ for(j=0;j<L;j++){//Columns
+ for(i=0;i<s->up;i++){//Rows
+ float t=(float)s->up*32767.0*(*wt);
+ s->w[i*L+j] = (int16_t)((t>=0.0)?(t+0.5):(t-0.5));
+ wt++;
+ }
+ }
+ free(w);
+ mp_msg(MSGT_AFILTER,MSGL_V,"[resample] New filter designed up: %i down: %i\n", s->up, s->dn);
+ }
+
+ // Set multiplier
+ af->mul.n = s->up;
+ af->mul.d = s->dn;
+ return rv;
+ }
+ case AF_CONTROL_RESAMPLE:
+ // Reinit must be called after this function has been called
+
+ // Sanity check
+ if(((int*)arg)[0] <= 8000 || ((int*)arg)[0] > 192000){
+ mp_msg(MSGT_AFILTER,MSGL_ERR,"[resample] The output sample frequency must be between 8kHz and 192kHz. Current value is %i \n",((int*)arg)[0]);
+ return AF_ERROR;
+ }
+
+ af->data->rate=((int*)arg)[0];
+ mp_msg(MSGT_AFILTER,MSGL_STATUS,"[resample] Changing sample rate to %iHz\n",af->data->rate);
+ return AF_OK;
+ }
+ return AF_UNKNOWN;
+}
+
+// Deallocate memory
+static void uninit(struct af_instance_s* af)
+{
+ if(af->data)
+ free(af->data);
+}
+
+// Filter data through filter
+static af_data_t* play(struct af_instance_s* af, af_data_t* data)
+{
+ int len = 0; // Length of output data
+ af_data_t* c = data; // Current working data
+ af_data_t* l = af->data; // Local data
+ af_resample_t* s = (af_resample_t*)af->setup;
+
+ if(AF_OK != RESIZE_LOCAL_BUFFER(af,data))
+ return NULL;
+
+ // Run resampling
+ if(s->up>s->dn)
+ len = upsample(c,l,s);
+ else
+ len = downsample(c,l,s);
+
+ // Set output data
+ c->audio = l->audio;
+ c->len = len*2;
+ c->rate = l->rate;
+
+ return c;
+}
+
+// Allocate memory and set function pointers
+static int open(af_instance_t* af){
+ af->control=control;
+ af->uninit=uninit;
+ af->play=play;
+ af->mul.n=1;
+ af->mul.d=1;
+ af->data=calloc(1,sizeof(af_data_t));
+ af->setup=calloc(1,sizeof(af_resample_t));
+ if(af->data == NULL || af->setup == NULL)
+ return AF_ERROR;
+ return AF_OK;
+}
+
+// Description of this plugin
+af_info_t af_info_resample = {
+ "Sample frequency conversion",
+ "resample",
+ "Anders",
+ "",
+ open
+};
+