summaryrefslogtreecommitdiffstats
path: root/audio/filter/af_hrtf.c
diff options
context:
space:
mode:
Diffstat (limited to 'audio/filter/af_hrtf.c')
-rw-r--r--audio/filter/af_hrtf.c452
1 files changed, 226 insertions, 226 deletions
diff --git a/audio/filter/af_hrtf.c b/audio/filter/af_hrtf.c
index e329b4e558..e8ab5fc72d 100644
--- a/audio/filter/af_hrtf.c
+++ b/audio/filter/af_hrtf.c
@@ -75,23 +75,23 @@ typedef struct af_hrtf_s {
} af_hrtf_t;
/* Convolution on a ring buffer
- * nx: length of the ring buffer
- * nk: length of the convolution kernel
- * sx: ring buffer
- * sk: convolution kernel
- * offset: offset on the ring buffer, can be
+ * nx: length of the ring buffer
+ * nk: length of the convolution kernel
+ * sx: ring buffer
+ * sk: convolution kernel
+ * offset: offset on the ring buffer, can be
*/
static float conv(const int nx, const int nk, const float *sx, const float *sk,
- const int offset)
+ const int offset)
{
/* k = reminder of offset / nx */
int k = offset >= 0 ? offset % nx : nx + (offset % nx);
if(nk + k <= nx)
- return af_filter_fir(nk, sx + k, sk);
+ return af_filter_fir(nk, sx + k, sk);
else
- return af_filter_fir(nk + k - nx, sx, sk + nx - k) +
- af_filter_fir(nx - k, sx + k, sk);
+ return af_filter_fir(nk + k - nx, sx, sk + nx - k) +
+ af_filter_fir(nx - k, sx + k, sk);
}
/* Detect when the impulse response starts (significantly) */
@@ -104,8 +104,8 @@ static int pulse_detect(const float *sx)
int i;
for(i = 0; i < nmax; i++)
- if(fabs(sx[i]) > thresh)
- return i;
+ if(fabs(sx[i]) > thresh)
+ return i;
return 0;
}
@@ -122,14 +122,14 @@ static inline float passive_lock(float x)
/* Unified active matrix decoder for 2 channel matrix encoded surround
sources */
static inline void matrix_decode(short *in, const int k, const int il,
- const int ir, const int decode_rear,
- const int dlbuflen,
- float l_fwr, float r_fwr,
- float lpr_fwr, float lmr_fwr,
- float *adapt_l_gain, float *adapt_r_gain,
- float *adapt_lpr_gain, float *adapt_lmr_gain,
- float *lf, float *rf, float *lr,
- float *rr, float *cf)
+ const int ir, const int decode_rear,
+ const int dlbuflen,
+ float l_fwr, float r_fwr,
+ float lpr_fwr, float lmr_fwr,
+ float *adapt_l_gain, float *adapt_r_gain,
+ float *adapt_lpr_gain, float *adapt_lmr_gain,
+ float *lf, float *rf, float *lr,
+ float *rr, float *cf)
{
const int kr = (k + MATREARDELAY) % dlbuflen;
float l_gain = (l_fwr + r_fwr) /
@@ -161,13 +161,13 @@ static inline void matrix_decode(short *in, const int k, const int il,
fp_out = fopen("af_hrtf.log", "w");
if(counter % 240 == 0)
fprintf(fp_out, "%g %g %g %g %g ", counter * (1.0 / 48000),
- l_gain, r_gain, lpr_gain, lmr_gain);
+ l_gain, r_gain, lpr_gain, lmr_gain);
#endif
/*** AXIS NO. 1: (Lt, Rt) -> (C, Ls, Rs) ***/
/* AGC adaption */
d_gain = (fabs(l_gain - *adapt_l_gain) +
- fabs(r_gain - *adapt_r_gain)) * 0.5;
+ fabs(r_gain - *adapt_r_gain)) * 0.5;
f = d_gain * (1.0 / MATAGCTRIG);
f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
*adapt_l_gain = (1 - f) * *adapt_l_gain + f * l_gain;
@@ -179,12 +179,12 @@ static inline void matrix_decode(short *in, const int k, const int il,
if(decode_rear) {
lr[kr] = rr[kr] = (l_agc - r_agc) * M_SQRT1_2;
/* Stereo rear channel is steered with the same AGC steering as
- the decoding matrix. Note this requires a fast updating AGC
- at the order of 20 ms (which is the case here). */
+ the decoding matrix. Note this requires a fast updating AGC
+ at the order of 20 ms (which is the case here). */
lr[kr] *= (l_fwr + l_fwr) /
- (1 + l_fwr + r_fwr);
+ (1 + l_fwr + r_fwr);
rr[kr] *= (r_fwr + r_fwr) /
- (1 + l_fwr + r_fwr);
+ (1 + l_fwr + r_fwr);
}
/*** AXIS NO. 2: (Lt + Rt, Lt - Rt) -> (L, R) ***/
@@ -221,9 +221,9 @@ static inline void matrix_decode(short *in, const int k, const int il,
#if 0
if(counter % 240 == 0)
fprintf(fp_out, "%g %g %g %g %g\n",
- *adapt_l_gain, *adapt_r_gain,
- *adapt_lpr_gain, *adapt_lmr_gain,
- c_gain);
+ *adapt_l_gain, *adapt_r_gain,
+ *adapt_lpr_gain, *adapt_lmr_gain,
+ c_gain);
counter++;
#endif
}
@@ -237,18 +237,18 @@ static inline void update_ch(af_hrtf_t *s, short *in, const int k)
s->l_fwr += abs(in[0]) - fabs(s->fwrbuf_l[fwr_pos]);
s->r_fwr += abs(in[1]) - fabs(s->fwrbuf_r[fwr_pos]);
s->lpr_fwr += abs(in[0] + in[1]) -
- fabs(s->fwrbuf_l[fwr_pos] + s->fwrbuf_r[fwr_pos]);
+ fabs(s->fwrbuf_l[fwr_pos] + s->fwrbuf_r[fwr_pos]);
s->lmr_fwr += abs(in[0] - in[1]) -
- fabs(s->fwrbuf_l[fwr_pos] - s->fwrbuf_r[fwr_pos]);
+ fabs(s->fwrbuf_l[fwr_pos] - s->fwrbuf_r[fwr_pos]);
}
/* Rear matrix decoder */
if(s->matrix_mode) {
s->lr_fwr += abs(in[2]) - fabs(s->fwrbuf_lr[fwr_pos]);
s->rr_fwr += abs(in[3]) - fabs(s->fwrbuf_rr[fwr_pos]);
s->lrprr_fwr += abs(in[2] + in[3]) -
- fabs(s->fwrbuf_lr[fwr_pos] + s->fwrbuf_rr[fwr_pos]);
+ fabs(s->fwrbuf_lr[fwr_pos] + s->fwrbuf_rr[fwr_pos]);
s->lrmrr_fwr += abs(in[2] - in[3]) -
- fabs(s->fwrbuf_lr[fwr_pos] - s->fwrbuf_rr[fwr_pos]);
+ fabs(s->fwrbuf_lr[fwr_pos] - s->fwrbuf_rr[fwr_pos]);
}
switch (s->decode_mode) {
@@ -265,11 +265,11 @@ static inline void update_ch(af_hrtf_t *s, short *in, const int k)
s->fwrbuf_l[k] = in[0];
s->fwrbuf_r[k] = in[1];
matrix_decode(in, k, 0, 1, 1, s->dlbuflen,
- s->l_fwr, s->r_fwr,
- s->lpr_fwr, s->lmr_fwr,
- &(s->adapt_l_gain), &(s->adapt_r_gain),
- &(s->adapt_lpr_gain), &(s->adapt_lmr_gain),
- s->lf, s->rf, s->lr, s->rr, s->cf);
+ s->l_fwr, s->r_fwr,
+ s->lpr_fwr, s->lmr_fwr,
+ &(s->adapt_l_gain), &(s->adapt_r_gain),
+ &(s->adapt_lpr_gain), &(s->adapt_lmr_gain),
+ s->lf, s->rf, s->lr, s->rr, s->cf);
break;
case HRTF_MIX_STEREO:
/* Stereo sources */
@@ -292,30 +292,30 @@ static int control(struct af_instance *af, int cmd, void* arg)
switch(cmd) {
case AF_CONTROL_REINIT:
- af->data->rate = ((struct mp_audio*)arg)->rate;
- if(af->data->rate != 48000) {
- // automatic samplerate adjustment in the filter chain
- // is not yet supported.
- MP_ERR(af, "ERROR: Sampling rate is not 48000 Hz (%d)!\n",
- af->data->rate);
- return AF_ERROR;
- }
- mp_audio_set_channels_old(af->data, ((struct mp_audio*)arg)->nch);
- if(af->data->nch == 2) {
- /* 2 channel input */
- if(s->decode_mode != HRTF_MIX_MATRIX2CH) {
- /* Default behavior is stereo mixing. */
- s->decode_mode = HRTF_MIX_STEREO;
- }
- }
- else if (af->data->nch < 5)
- mp_audio_set_channels_old(af->data, 5);
+ af->data->rate = ((struct mp_audio*)arg)->rate;
+ if(af->data->rate != 48000) {
+ // automatic samplerate adjustment in the filter chain
+ // is not yet supported.
+ MP_ERR(af, "ERROR: Sampling rate is not 48000 Hz (%d)!\n",
+ af->data->rate);
+ return AF_ERROR;
+ }
+ mp_audio_set_channels_old(af->data, ((struct mp_audio*)arg)->nch);
+ if(af->data->nch == 2) {
+ /* 2 channel input */
+ if(s->decode_mode != HRTF_MIX_MATRIX2CH) {
+ /* Default behavior is stereo mixing. */
+ s->decode_mode = HRTF_MIX_STEREO;
+ }
+ }
+ else if (af->data->nch < 5)
+ mp_audio_set_channels_old(af->data, 5);
mp_audio_set_format(af->data, AF_FORMAT_S16);
- test_output_res = af_test_output(af, (struct mp_audio*)arg);
- // after testing input set the real output format
+ test_output_res = af_test_output(af, (struct mp_audio*)arg);
+ // after testing input set the real output format
mp_audio_set_num_channels(af->data, 2);
- s->print_flag = 1;
- return test_output_res;
+ s->print_flag = 1;
+ return test_output_res;
}
return AF_UNKNOWN;
@@ -324,21 +324,21 @@ static int control(struct af_instance *af, int cmd, void* arg)
/* Deallocate memory */
static void uninit(struct af_instance *af)
{
- af_hrtf_t *s = af->priv;
-
- free(s->lf);
- free(s->rf);
- free(s->lr);
- free(s->rr);
- free(s->cf);
- free(s->cr);
- free(s->ba_l);
- free(s->ba_r);
- free(s->ba_ir);
- free(s->fwrbuf_l);
- free(s->fwrbuf_r);
- free(s->fwrbuf_lr);
- free(s->fwrbuf_rr);
+ af_hrtf_t *s = af->priv;
+
+ free(s->lf);
+ free(s->rf);
+ free(s->lr);
+ free(s->rr);
+ free(s->cf);
+ free(s->cr);
+ free(s->ba_l);
+ free(s->ba_r);
+ free(s->ba_ir);
+ free(s->fwrbuf_l);
+ free(s->fwrbuf_r);
+ free(s->fwrbuf_lr);
+ free(s->fwrbuf_rr);
}
/* Filter data through filter
@@ -364,29 +364,29 @@ static int filter(struct af_instance *af, struct mp_audio *data, int flags)
mp_audio_realloc_min(af->data, data->samples);
if(s->print_flag) {
- s->print_flag = 0;
- switch (s->decode_mode) {
- case HRTF_MIX_51:
- MP_INFO(af, "Using HRTF to mix %s discrete surround into "
- "L, R channels\n", s->matrix_mode ? "5+1" : "5");
- break;
- case HRTF_MIX_STEREO:
- MP_INFO(af, "Using HRTF to mix stereo into "
- "L, R channels\n");
- break;
- case HRTF_MIX_MATRIX2CH:
- MP_INFO(af, "Using active matrix to decode 2 channel "
- "input, HRTF to mix %s matrix surround into "
- "L, R channels\n", "3/2");
- break;
- default:
- MP_WARN(af, "bogus decode_mode: %d\n", s->decode_mode);
- break;
- }
+ s->print_flag = 0;
+ switch (s->decode_mode) {
+ case HRTF_MIX_51:
+ MP_INFO(af, "Using HRTF to mix %s discrete surround into "
+ "L, R channels\n", s->matrix_mode ? "5+1" : "5");
+ break;
+ case HRTF_MIX_STEREO:
+ MP_INFO(af, "Using HRTF to mix stereo into "
+ "L, R channels\n");
+ break;
+ case HRTF_MIX_MATRIX2CH:
+ MP_INFO(af, "Using active matrix to decode 2 channel "
+ "input, HRTF to mix %s matrix surround into "
+ "L, R channels\n", "3/2");
+ break;
+ default:
+ MP_WARN(af, "bogus decode_mode: %d\n", s->decode_mode);
+ break;
+ }
if(s->matrix_mode)
- MP_INFO(af, "Using active matrix to decode rear center "
- "channel\n");
+ MP_INFO(af, "Using active matrix to decode rear center "
+ "channel\n");
}
out = af->data->planes[0];
@@ -410,122 +410,122 @@ static int filter(struct af_instance *af, struct mp_audio *data, int flags)
*/
while(in < end) {
- const int k = s->cyc_pos;
-
- update_ch(s, in, k);
-
- /* Simulate a 7.5 ms -20 dB echo of the center channel in the
- front channels (like reflection from a room wall) - a kind of
- psycho-acoustically "cheating" to focus the center front
- channel, which is normally hard to be perceived as front */
- s->lf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];
- s->rf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];
-
- switch (s->decode_mode) {
- case HRTF_MIX_51:
- case HRTF_MIX_MATRIX2CH:
- /* Mixer filter matrix */
- common = conv(dblen, hlen, s->cf, s->cf_ir, k + s->cf_o);
- if(s->matrix_mode) {
- /* In matrix decoding mode, the rear channel gain must be
- renormalized, as there is an additional channel. */
- matrix_decode(in, k, 2, 3, 0, s->dlbuflen,
- s->lr_fwr, s->rr_fwr,
- s->lrprr_fwr, s->lrmrr_fwr,
- &(s->adapt_lr_gain), &(s->adapt_rr_gain),
- &(s->adapt_lrprr_gain), &(s->adapt_lrmrr_gain),
- s->lr, s->rr, NULL, NULL, s->cr);
- common +=
- conv(dblen, hlen, s->cr, s->cr_ir, k + s->cr_o) *
- M1_76DB;
- left =
- ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
- conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
- (conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
- conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o)) *
- M1_76DB + common);
- right =
- ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
- conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
- (conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
- conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o)) *
- M1_76DB + common);
- } else {
- left =
- ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
- conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
- conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
- conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o) +
- common);
- right =
- ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
- conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
- conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
- conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o) +
- common);
- }
- break;
- case HRTF_MIX_STEREO:
- left =
- ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
- conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o));
- right =
- ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
- conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o));
- break;
- default:
- /* make gcc happy */
- left = 0.0;
- right = 0.0;
- break;
- }
-
- /* Bass compensation for the lower frequency cut of the HRTF. A
- cross talk of the left and right channel is introduced to
- match the directional characteristics of higher frequencies.
- The bass will not have any real 3D perception, but that is
- OK (note at 180 Hz, the wavelength is about 2 m, and any
- spatial perception is impossible). */
- left_b = conv(dblen, blen, s->ba_l, s->ba_ir, k);
- right_b = conv(dblen, blen, s->ba_r, s->ba_ir, k);
- left += (1 - BASSCROSS) * left_b + BASSCROSS * right_b;
- right += (1 - BASSCROSS) * right_b + BASSCROSS * left_b;
- /* Also mix the LFE channel (if available) */
- if(data->nch >= 6) {
- left += in[5] * M3_01DB;
- right += in[5] * M3_01DB;
- }
-
- /* Amplitude renormalization. */
- left *= AMPLNORM;
- right *= AMPLNORM;
-
- switch (s->decode_mode) {
- case HRTF_MIX_51:
- case HRTF_MIX_STEREO:
- /* "Cheating": linear stereo expansion to amplify the 3D
- perception. Note: Too much will destroy the acoustic space
- and may even result in headaches. */
- diff = STEXPAND2 * (left - right);
- out[0] = av_clip_int16(left + diff);
- out[1] = av_clip_int16(right - diff);
- break;
- case HRTF_MIX_MATRIX2CH:
- /* Do attempt any stereo expansion with matrix encoded
- sources. The L, R channels are already stereo expanded
- by the steering, any further stereo expansion will sound
- very unnatural. */
- out[0] = av_clip_int16(left);
- out[1] = av_clip_int16(right);
- break;
- }
-
- /* Next sample... */
- in = &in[data->nch];
- out = &out[af->data->nch];
- (s->cyc_pos)--;
- if(s->cyc_pos < 0)
- s->cyc_pos += dblen;
+ const int k = s->cyc_pos;
+
+ update_ch(s, in, k);
+
+ /* Simulate a 7.5 ms -20 dB echo of the center channel in the
+ front channels (like reflection from a room wall) - a kind of
+ psycho-acoustically "cheating" to focus the center front
+ channel, which is normally hard to be perceived as front */
+ s->lf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];
+ s->rf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];
+
+ switch (s->decode_mode) {
+ case HRTF_MIX_51:
+ case HRTF_MIX_MATRIX2CH:
+ /* Mixer filter matrix */
+ common = conv(dblen, hlen, s->cf, s->cf_ir, k + s->cf_o);
+ if(s->matrix_mode) {
+ /* In matrix decoding mode, the rear channel gain must be
+ renormalized, as there is an additional channel. */
+ matrix_decode(in, k, 2, 3, 0, s->dlbuflen,
+ s->lr_fwr, s->rr_fwr,
+ s->lrprr_fwr, s->lrmrr_fwr,
+ &(s->adapt_lr_gain), &(s->adapt_rr_gain),
+ &(s->adapt_lrprr_gain), &(s->adapt_lrmrr_gain),
+ s->lr, s->rr, NULL, NULL, s->cr);
+ common +=
+ conv(dblen, hlen, s->cr, s->cr_ir, k + s->cr_o) *
+ M1_76DB;
+ left =
+ ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
+ (conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
+ conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o)) *
+ M1_76DB + common);
+ right =
+ ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
+ (conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
+ conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o)) *
+ M1_76DB + common);
+ } else {
+ left =
+ ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
+ conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
+ conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o) +
+ common);
+ right =
+ ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
+ conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
+ conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o) +
+ common);
+ }
+ break;
+ case HRTF_MIX_STEREO:
+ left =
+ ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o));
+ right =
+ ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o));
+ break;
+ default:
+ /* make gcc happy */
+ left = 0.0;
+ right = 0.0;
+ break;
+ }
+
+ /* Bass compensation for the lower frequency cut of the HRTF. A
+ cross talk of the left and right channel is introduced to
+ match the directional characteristics of higher frequencies.
+ The bass will not have any real 3D perception, but that is
+ OK (note at 180 Hz, the wavelength is about 2 m, and any
+ spatial perception is impossible). */
+ left_b = conv(dblen, blen, s->ba_l, s->ba_ir, k);
+ right_b = conv(dblen, blen, s->ba_r, s->ba_ir, k);
+ left += (1 - BASSCROSS) * left_b + BASSCROSS * right_b;
+ right += (1 - BASSCROSS) * right_b + BASSCROSS * left_b;
+ /* Also mix the LFE channel (if available) */
+ if(data->nch >= 6) {
+ left += in[5] * M3_01DB;
+ right += in[5] * M3_01DB;
+ }
+
+ /* Amplitude renormalization. */
+ left *= AMPLNORM;
+ right *= AMPLNORM;
+
+ switch (s->decode_mode) {
+ case HRTF_MIX_51:
+ case HRTF_MIX_STEREO:
+ /* "Cheating": linear stereo expansion to amplify the 3D
+ perception. Note: Too much will destroy the acoustic space
+ and may even result in headaches. */
+ diff = STEXPAND2 * (left - right);
+ out[0] = av_clip_int16(left + diff);
+ out[1] = av_clip_int16(right - diff);
+ break;
+ case HRTF_MIX_MATRIX2CH:
+ /* Do attempt any stereo expansion with matrix encoded
+ sources. The L, R channels are already stereo expanded
+ by the steering, any further stereo expansion will sound
+ very unnatural. */
+ out[0] = av_clip_int16(left);
+ out[1] = av_clip_int16(right);
+ break;
+ }
+
+ /* Next sample... */
+ in = &in[data->nch];
+ out = &out[af->data->nch];
+ (s->cyc_pos)--;
+ if(s->cyc_pos < 0)
+ s->cyc_pos += dblen;
}
/* Set output data */
@@ -546,13 +546,13 @@ static int allocate(af_hrtf_t *s)
if ((s->ba_l = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
if ((s->ba_r = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
if ((s->fwrbuf_l =
- malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
if ((s->fwrbuf_r =
- malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
if ((s->fwrbuf_lr =
- malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
if ((s->fwrbuf_rr =
- malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
return 0;
}
@@ -595,16 +595,16 @@ static int af_open(struct af_instance* af)
s->print_flag = 1;
if (allocate(s) != 0) {
- MP_ERR(af, "Memory allocation error.\n");
- return AF_ERROR;
+ MP_ERR(af, "Memory allocation error.\n");
+ return AF_ERROR;
}
for(i = 0; i < s->dlbuflen; i++)
- s->lf[i] = s->rf[i] = s->lr[i] = s->rr[i] = s->cf[i] =
- s->cr[i] = 0;
+ s->lf[i] = s->rf[i] = s->lr[i] = s->rr[i] = s->cf[i] =
+ s->cr[i] = 0;
s->lr_fwr =
- s->rr_fwr = 0;
+ s->rr_fwr = 0;
s->cf_ir = cf_filt + (s->cf_o = pulse_detect(cf_filt));
s->af_ir = af_filt + (s->af_o = pulse_detect(af_filt));
@@ -614,18 +614,18 @@ static int af_open(struct af_instance* af)
s->cr_ir = cr_filt + (s->cr_o = pulse_detect(cr_filt));
if((s->ba_ir = malloc(s->basslen * sizeof(float))) == NULL) {
- MP_ERR(af, "Memory allocation error.\n");
- return AF_ERROR;
+ MP_ERR(af, "Memory allocation error.\n");
+ return AF_ERROR;
}
fc = 2.0 * BASSFILTFREQ / (float)af->data->rate;
if(af_filter_design_fir(s->basslen, s->ba_ir, &fc, LP | KAISER, 4 * M_PI) ==
-1) {
- MP_ERR(af, "Unable to design low-pass "
- "filter.\n");
- return AF_ERROR;
+ MP_ERR(af, "Unable to design low-pass "
+ "filter.\n");
+ return AF_ERROR;
}
for(i = 0; i < s->basslen; i++)
- s->ba_ir[i] *= BASSGAIN;
+ s->ba_ir[i] *= BASSGAIN;
return AF_OK;
}