summaryrefslogtreecommitdiffstats
path: root/libfaad2/sbr_hfadj.c
diff options
context:
space:
mode:
authorarpi <arpi@b3059339-0415-0410-9bf9-f77b7e298cf2>2003-08-30 22:30:28 +0000
committerarpi <arpi@b3059339-0415-0410-9bf9-f77b7e298cf2>2003-08-30 22:30:28 +0000
commit32063c433915b8dddd143a951ad90ae901ac1b38 (patch)
tree88aaee983b0885b5bb22d870476f7afdaa8a7010 /libfaad2/sbr_hfadj.c
parent264633eec589baddfdcd79dde08fd7f1f47fba51 (diff)
downloadmpv-32063c433915b8dddd143a951ad90ae901ac1b38.tar.bz2
mpv-32063c433915b8dddd143a951ad90ae901ac1b38.tar.xz
libfaad2 v2.0rc1 imported
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@10726 b3059339-0415-0410-9bf9-f77b7e298cf2
Diffstat (limited to 'libfaad2/sbr_hfadj.c')
-rw-r--r--libfaad2/sbr_hfadj.c987
1 files changed, 987 insertions, 0 deletions
diff --git a/libfaad2/sbr_hfadj.c b/libfaad2/sbr_hfadj.c
new file mode 100644
index 0000000000..e85abb3de8
--- /dev/null
+++ b/libfaad2/sbr_hfadj.c
@@ -0,0 +1,987 @@
+/*
+** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
+** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
+**
+** This program is free software; you can redistribute it and/or modify
+** it under the terms of the GNU General Public License as published by
+** the Free Software Foundation; either version 2 of the License, or
+** (at your option) any later version.
+**
+** This program is distributed in the hope that it will be useful,
+** but WITHOUT ANY WARRANTY; without even the implied warranty of
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+** GNU General Public License for more details.
+**
+** You should have received a copy of the GNU General Public License
+** along with this program; if not, write to the Free Software
+** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+**
+** Any non-GPL usage of this software or parts of this software is strictly
+** forbidden.
+**
+** Commercial non-GPL licensing of this software is possible.
+** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
+**
+** $Id: sbr_hfadj.c,v 1.1 2003/07/29 08:20:13 menno Exp $
+**/
+
+/* High Frequency adjustment */
+
+#include "common.h"
+#include "structs.h"
+
+#ifdef SBR_DEC
+
+#include "sbr_syntax.h"
+#include "sbr_hfadj.h"
+
+#include "sbr_noise.h"
+
+void hf_adjustment(sbr_info *sbr, qmf_t *Xsbr
+#ifdef SBR_LOW_POWER
+ ,real_t *deg /* aliasing degree */
+#endif
+ ,uint8_t ch)
+{
+ sbr_hfadj_info adj;
+
+ memset(&adj, 0, sizeof(sbr_hfadj_info));
+
+ map_noise_data(sbr, &adj, ch);
+ map_sinusoids(sbr, &adj, ch);
+
+ estimate_current_envelope(sbr, &adj, Xsbr, ch);
+
+ calculate_gain(sbr, &adj, ch);
+
+#if 1
+
+#ifdef SBR_LOW_POWER
+ calc_gain_groups(sbr, &adj, deg, ch);
+ aliasing_reduction(sbr, &adj, deg, ch);
+#endif
+
+ hf_assembly(sbr, &adj, Xsbr, ch);
+
+#endif
+}
+
+static void map_noise_data(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
+{
+ uint8_t l, i;
+ uint32_t m;
+
+ for (l = 0; l < sbr->L_E[ch]; l++)
+ {
+ for (i = 0; i < sbr->N_Q; i++)
+ {
+ for (m = sbr->f_table_noise[i]; m < sbr->f_table_noise[i+1]; m++)
+ {
+ uint8_t k;
+
+ adj->Q_mapped[m - sbr->kx][l] = 0;
+
+ for (k = 0; k < 2; k++)
+ {
+ if ((sbr->t_E[ch][l] >= sbr->t_Q[ch][k]) &&
+ (sbr->t_E[ch][l+1] <= sbr->t_Q[ch][k+1]))
+ {
+ adj->Q_mapped[m - sbr->kx][l] =
+ sbr->Q_orig[ch][i][k];
+ }
+ }
+ }
+ }
+ }
+}
+
+static void map_sinusoids(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
+{
+ uint8_t l, i, m, k, k1, k2, delta_S, l_i, u_i;
+
+ if (sbr->bs_frame_class[ch] == FIXFIX)
+ {
+ sbr->l_A[ch] = -1;
+ } else if (sbr->bs_frame_class[ch] == VARFIX) {
+ if (sbr->bs_pointer[ch] > 1)
+ sbr->l_A[ch] = -1;
+ else
+ sbr->l_A[ch] = sbr->bs_pointer[ch] - 1;
+ } else {
+ if (sbr->bs_pointer[ch] == 0)
+ sbr->l_A[ch] = -1;
+ else
+ sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch];
+ }
+
+ for (l = 0; l < 5; l++)
+ {
+ for (i = 0; i < 64; i++)
+ {
+ adj->S_index_mapped[i][l] = 0;
+ adj->S_mapped[i][l] = 0;
+ }
+ }
+
+ for (l = 0; l < sbr->L_E[ch]; l++)
+ {
+ for (i = 0; i < sbr->N_high; i++)
+ {
+ for (m = sbr->f_table_res[HI_RES][i]; m < sbr->f_table_res[HI_RES][i+1]; m++)
+ {
+ uint8_t delta_step = 0;
+ if ((l >= sbr->l_A[ch]) || ((sbr->bs_add_harmonic_prev[ch][i]) &&
+ (sbr->bs_add_harmonic_flag_prev[ch])))
+ {
+ delta_step = 1;
+ }
+
+ if (m == (int32_t)((real_t)(sbr->f_table_res[HI_RES][i+1]+sbr->f_table_res[HI_RES][i])/2.))
+ {
+ adj->S_index_mapped[m - sbr->kx][l] =
+ delta_step * sbr->bs_add_harmonic[ch][i];
+ } else {
+ adj->S_index_mapped[m - sbr->kx][l] = 0;
+ }
+
+#if 0
+ if (sbr->frame == 95)
+ {
+ printf("%d %d %d %d %d\n", adj->S_index_mapped[m - sbr->kx][l],
+ sbr->bs_add_harmonic[ch][i], sbr->bs_add_harmonic_prev[ch][i],
+ l, sbr->l_A[ch]);
+ }
+#endif
+ }
+ }
+ }
+
+ for (l = 0; l < sbr->L_E[ch]; l++)
+ {
+ for (i = 0; i < sbr->N_high; i++)
+ {
+ if (sbr->f[ch][l] == 1)
+ {
+ k1 = i;
+ k2 = i + 1;
+ } else {
+ for (k1 = 0; k1 < sbr->N_low; k1++)
+ {
+ if ((sbr->f_table_res[HI_RES][i] >= sbr->f_table_res[LO_RES][k1]) &&
+ (sbr->f_table_res[HI_RES][i+1] <= sbr->f_table_res[LO_RES][k1+1]))
+ {
+ break;
+ }
+ }
+ for (k2 = 0; k2 < sbr->N_low; k2++)
+ {
+ if ((sbr->f_table_res[HI_RES][i+1] >= sbr->f_table_res[LO_RES][k2]) &&
+ (sbr->f_table_res[HI_RES][i+2] <= sbr->f_table_res[LO_RES][k2+1]))
+ {
+ break;
+ }
+ }
+ }
+
+ l_i = sbr->f_table_res[sbr->f[ch][l]][k1];
+ u_i = sbr->f_table_res[sbr->f[ch][l]][k2];
+
+ delta_S = 0;
+ for (k = l_i; k < u_i; k++)
+ {
+ if (adj->S_index_mapped[k - sbr->kx][l] == 1)
+ delta_S = 1;
+ }
+
+ for (m = l_i; m < u_i; m++)
+ {
+ adj->S_mapped[m - sbr->kx][l] = delta_S;
+ }
+ }
+ }
+}
+
+static void estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t *Xsbr,
+ uint8_t ch)
+{
+ uint8_t m, l, j, k, k_l, k_h, p;
+ real_t nrg, div;
+
+ if (sbr->bs_interpol_freq == 1)
+ {
+ for (l = 0; l < sbr->L_E[ch]; l++)
+ {
+ uint8_t i, l_i, u_i;
+
+ l_i = sbr->t_E[ch][l];
+ u_i = sbr->t_E[ch][l+1];
+
+ div = (real_t)(u_i - l_i);
+
+ for (m = 0; m < sbr->M; m++)
+ {
+ nrg = 0;
+
+ for (i = l_i + tHFAdj; i < u_i + tHFAdj; i++)
+ {
+#ifdef FIXED_POINT
+ nrg += ((QMF_RE(Xsbr[(i<<6) + m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[(i<<6) + m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS);
+#else
+ nrg += MUL(QMF_RE(Xsbr[(i<<6) + m + sbr->kx]), QMF_RE(Xsbr[(i<<6) + m + sbr->kx]))
+#ifndef SBR_LOW_POWER
+ + MUL(QMF_IM(Xsbr[(i<<6) + m + sbr->kx]), QMF_IM(Xsbr[(i<<6) + m + sbr->kx]))
+#endif
+ ;
+#endif
+ }
+
+ sbr->E_curr[ch][m][l] = nrg / div;
+#ifdef SBR_LOW_POWER
+#ifdef FIXED_POINT
+ sbr->E_curr[ch][m][l] <<= 1;
+#else
+ sbr->E_curr[ch][m][l] *= 2;
+#endif
+#endif
+ }
+ }
+ } else {
+ for (l = 0; l < sbr->L_E[ch]; l++)
+ {
+ for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
+ {
+ k_l = sbr->f_table_res[sbr->f[ch][l]][p];
+ k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];
+
+ for (k = k_l; k < k_h; k++)
+ {
+ uint8_t i, l_i, u_i;
+ nrg = 0.0;
+
+ l_i = sbr->t_E[ch][l];
+ u_i = sbr->t_E[ch][l+1];
+
+ div = (real_t)((u_i - l_i)*(k_h - k_l + 1));
+
+ for (i = l_i + tHFAdj; i < u_i + tHFAdj; i++)
+ {
+ for (j = k_l; j < k_h; j++)
+ {
+#ifdef FIXED_POINT
+ nrg += ((QMF_RE(Xsbr[(i<<6) + j])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[(i<<6) + j])+(1<<(REAL_BITS-1)))>>REAL_BITS);
+#else
+ nrg += MUL(QMF_RE(Xsbr[(i<<6) + j]), QMF_RE(Xsbr[(i<<6) + j]))
+#ifndef SBR_LOW_POWER
+ + MUL(QMF_IM(Xsbr[(i<<6) + j]), QMF_IM(Xsbr[(i<<6) + j]))
+#endif
+ ;
+#endif
+ }
+ }
+
+ sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
+#ifdef SBR_LOW_POWER
+#ifdef FIXED_POINT
+ sbr->E_curr[ch][k - sbr->kx][l] <<= 1;
+#else
+ sbr->E_curr[ch][k - sbr->kx][l] *= 2;
+#endif
+#endif
+ }
+ }
+ }
+ }
+}
+
+#ifdef FIXED_POINT
+#define step(shift) \
+ if ((0x40000000l >> shift) + root <= value) \
+ { \
+ value -= (0x40000000l >> shift) + root; \
+ root = (root >> 1) | (0x40000000l >> shift); \
+ } else { \
+ root = root >> 1; \
+ }
+
+/* fixed point square root approximation */
+real_t sbr_sqrt(real_t value)
+{
+ real_t root = 0;
+
+ step( 0); step( 2); step( 4); step( 6);
+ step( 8); step(10); step(12); step(14);
+ step(16); step(18); step(20); step(22);
+ step(24); step(26); step(28); step(30);
+
+ if (root < value)
+ ++root;
+
+ root <<= (REAL_BITS/2);
+
+ return root;
+}
+real_t sbr_sqrt_int(real_t value)
+{
+ real_t root = 0;
+
+ step( 0); step( 2); step( 4); step( 6);
+ step( 8); step(10); step(12); step(14);
+ step(16); step(18); step(20); step(22);
+ step(24); step(26); step(28); step(30);
+
+ if (root < value)
+ ++root;
+
+ return root;
+}
+#define SBR_SQRT_FIX(A) sbr_sqrt(A)
+#define SBR_SQRT_INT(A) sbr_sqrt_int(A)
+#endif
+
+#ifdef FIXED_POINT
+#define EPS (1) /* smallest number available in fixed point */
+#else
+#define EPS (1e-12)
+#endif
+
+#ifdef FIXED_POINT
+#define ONE (REAL_CONST(1)>>10)
+#else
+#define ONE (1)
+#endif
+
+
+#ifdef FIXED_POINT
+static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
+{
+ uint8_t m, l, k, i;
+
+ real_t Q_M_lim[64];
+ real_t G_lim[64];
+ real_t G_boost;
+ real_t S_M[64];
+ uint8_t table_map_res_to_m[64];
+
+
+ for (l = 0; l < sbr->L_E[ch]; l++)
+ {
+ real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
+
+ for (i = 0; i < sbr->n[sbr->f[ch][l]]; i++)
+ {
+ for (m = sbr->f_table_res[sbr->f[ch][l]][i]; m < sbr->f_table_res[sbr->f[ch][l]][i+1]; m++)
+ {
+ table_map_res_to_m[m - sbr->kx] = i;
+ }
+ }
+
+ for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
+ {
+ real_t G_max;
+ real_t den = 0;
+ real_t acc1 = 0;
+ real_t acc2 = 0;
+
+ for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
+ m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
+ {
+ /* E_orig: integer */
+ acc1 += sbr->E_orig[ch][table_map_res_to_m[m]][l];
+ /* E_curr: integer */
+ acc2 += sbr->E_curr[ch][m][l];
+ }
+
+ /* G_max: fixed point */
+ if (acc2 == 0)
+ {
+ G_max = 0xFFF;
+ } else {
+ G_max = (((int64_t)acc1)<<REAL_BITS) / acc2;
+ switch (sbr->bs_limiter_gains)
+ {
+ case 0: G_max >>= 1; break;
+ case 2: G_max <<= 1; break;
+ default: break;
+ }
+ }
+
+ //printf("%f %d %d\n", G_max /(float)(1<<REAL_BITS), acc1, acc2);
+
+ for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
+ m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
+ {
+ real_t d, Q_M, G;
+ real_t div2;
+
+ /* Q_mapped: fixed point */
+ /* div2: fixed point COEF */
+ real_t tmp2 = adj->Q_mapped[m][l] << (COEF_BITS-REAL_BITS);
+ real_t tmp = COEF_CONST(1) + tmp2;
+ if (tmp == 0)
+ div2 = COEF_CONST(1);
+ else
+ div2 = (((int64_t)tmp2 << COEF_BITS)/tmp);
+
+ //printf("%f\n", div2 / (float)(1<<COEF_BITS));
+
+ /* Q_M: integer */
+ Q_M = MUL_R_C(sbr->E_orig[ch][table_map_res_to_m[m]][l], div2);
+
+ //printf("%d\n", Q_M /* / (float)(1<<REAL_BITS)*/);
+
+ if (adj->S_mapped[m][l] == 0)
+ {
+ real_t tmp, tmp2;
+
+ S_M[m] = 0;
+
+ /* d: fixed point */
+ tmp2 = adj->Q_mapped[m][l] /* << (COEF_BITS-REAL_BITS)*/;
+ tmp = REAL_CONST(1) + delta*tmp2;
+ d = (((int64_t)REAL_CONST(1))<<REAL_BITS) / (tmp);
+
+ /* G: fixed point */
+ G = (((int64_t)sbr->E_orig[ch][table_map_res_to_m[m]][l])<<REAL_BITS) / (1 + sbr->E_curr[ch][m][l]);
+ G = MUL(G, d);
+
+ //printf("%f\n", G/(float)(1<<REAL_BITS));
+
+ } else {
+
+ real_t div;
+
+ /* div: fixed point COEF */
+ real_t tmp = COEF_CONST(1.0) + (adj->Q_mapped[m][l] << (COEF_BITS-REAL_BITS));
+ real_t tmp2 = COEF_CONST(adj->S_mapped[m][l]);
+ if (tmp == 0)
+ div = COEF_CONST(1);
+ else
+ div = (((int64_t)tmp2 << COEF_BITS)/tmp);
+
+ //printf("%f\n", div/(float)(1<<COEF_BITS));
+
+ /* S_M: integer */
+ S_M[m] = MUL_R_C(sbr->E_orig[ch][table_map_res_to_m[m]][l], div);
+
+ //printf("%d\n", S_M[m]);
+
+ /* G: fixed_point */
+ if ((ONE + sbr->E_curr[ch][m][l]) == 0)
+ G = 0xFFF; // uhm???
+ else {
+ real_t tmp = ONE + sbr->E_curr[ch][m][l];
+ /* tmp2: fixed point */
+ real_t tmp2 = (((int64_t)(sbr->E_orig[ch][table_map_res_to_m[m]][l]))<<REAL_BITS)/(tmp);
+ G = MUL_R_C(tmp2, div2);
+ }
+
+ //printf("%f\n", G/(float)(1<<REAL_BITS));
+ }
+
+ /* limit the additional noise energy level */
+ /* and apply the limiter */
+
+ /* G_lim: fixed point */
+ /* Q_M_lim: integer */
+ if (G_max > G)
+ {
+ Q_M_lim[m] = Q_M;
+ G_lim[m] = G;
+ } else {
+ real_t tmp;
+ if (G == 0)
+ tmp = 0xFFF;
+ else
+ tmp = SBR_DIV(G_max, G);
+ Q_M_lim[m] = MUL(Q_M, tmp);
+ G_lim[m] = G_max;
+ }
+
+ /* E_curr: integer, using MUL() is NOT OK */
+ den += MUL(sbr->E_curr[ch][m][l], G_lim[m]);
+ if (adj->S_index_mapped[m][l])
+ den += S_M[m];
+ else if (l != sbr->l_A[ch])
+ den += Q_M_lim[m];
+ }
+
+ //printf("%d\n", den);
+
+ /* G_boost: fixed point */
+ if ((den + EPS) == 0)
+ G_boost = REAL_CONST(2.51188643);
+ else
+ G_boost = (((int64_t)(acc1 + EPS))<<REAL_BITS)/(den + EPS);
+ G_boost = min(G_boost, REAL_CONST(2.51188643) /* 1.584893192 ^ 2 */);
+
+ for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
+ m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
+ {
+ /* apply compensation to gain, noise floor sf's and sinusoid levels */
+#ifndef SBR_LOW_POWER
+ /* G_lim_boost: fixed point */
+ adj->G_lim_boost[l][m] = SBR_SQRT_FIX(MUL(G_lim[m], G_boost));
+#else
+ /* sqrt() will be done after the aliasing reduction to save a
+ * few multiplies
+ */
+ /* G_lim_boost: fixed point */
+ adj->G_lim_boost[l][m] = MUL(G_lim[m], G_boost);
+#endif
+ /* Q_M_lim_boost: integer */
+ adj->Q_M_lim_boost[l][m] = SBR_SQRT_INT(MUL(Q_M_lim[m], G_boost));
+
+ /* S_M_boost: integer */
+ if (adj->S_index_mapped[m][l])
+ adj->S_M_boost[l][m] = SBR_SQRT_INT(MUL(S_M[m], G_boost));
+ else
+ adj->S_M_boost[l][m] = 0;
+ }
+ }
+ }
+}
+#else
+static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch)
+{
+ static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 };
+ uint8_t m, l, k, i;
+
+ real_t Q_M_lim[64];
+ real_t G_lim[64];
+ real_t G_boost;
+ real_t S_M[64];
+ uint8_t table_map_res_to_m[64];
+
+
+ for (l = 0; l < sbr->L_E[ch]; l++)
+ {
+ real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1;
+
+ for (i = 0; i < sbr->n[sbr->f[ch][l]]; i++)
+ {
+ for (m = sbr->f_table_res[sbr->f[ch][l]][i]; m < sbr->f_table_res[sbr->f[ch][l]][i+1]; m++)
+ {
+ table_map_res_to_m[m - sbr->kx] = i;
+ }
+ }
+
+ for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
+ {
+ real_t G_max;
+ real_t den = 0;
+ real_t acc1 = 0;
+ real_t acc2 = 0;
+
+ for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
+ m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
+ {
+ acc1 += sbr->E_orig[ch][table_map_res_to_m[m]][l];
+ acc2 += sbr->E_curr[ch][m][l];
+ }
+
+ G_max = ((EPS + acc1)/(EPS + acc2)) * limGain[sbr->bs_limiter_gains];
+ G_max = min(G_max, 1e10);
+
+ //printf("%f %d %d\n", G_max, (int)floor((acc1+EPS)/1024.), (int)floor((acc2+EPS)/1024.));
+
+ for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
+ m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
+ {
+ real_t d, Q_M, G;
+ real_t div2;
+
+ div2 = adj->Q_mapped[m][l] / (1 + adj->Q_mapped[m][l]);
+
+ //printf("%f\n", div2);
+
+ Q_M = sbr->E_orig[ch][table_map_res_to_m[m]][l] * div2;
+
+ //printf("%f\n", Q_M/1024.);
+
+ if (adj->S_mapped[m][l] == 0)
+ {
+ S_M[m] = 0;
+
+ /* fixed point: delta* can stay since it's either 1 or 0 */
+ d = (1 + sbr->E_curr[ch][m][l]) * (1 + delta*adj->Q_mapped[m][l]);
+
+ //printf("%f\n", d/1024.);
+
+ G = sbr->E_orig[ch][table_map_res_to_m[m]][l] / d;
+
+ //printf("%f\n", G);
+
+ } else {
+ real_t div;
+
+ div = adj->S_mapped[m][l] / (1. + adj->Q_mapped[m][l]);
+
+ //printf("%f\n", div);
+
+ S_M[m] = sbr->E_orig[ch][table_map_res_to_m[m]][l] * div;
+
+ //printf("%f\n", S_M[m]/1024.);
+
+ G = (sbr->E_orig[ch][table_map_res_to_m[m]][l] / (1. + sbr->E_curr[ch][m][l])) * div2;
+
+ //printf("%f\n", G);
+ }
+
+ /* limit the additional noise energy level */
+ /* and apply the limiter */
+ if (G_max > G)
+ {
+ Q_M_lim[m] = Q_M;
+ G_lim[m] = G;
+ } else {
+ Q_M_lim[m] = Q_M * G_max / G;
+ G_lim[m] = G_max;
+
+ //printf("%f\n", Q_M_lim[m] / 1024.);
+ }
+
+ den += sbr->E_curr[ch][m][l] * G_lim[m];
+ if (adj->S_index_mapped[m][l])
+ den += S_M[m];
+ else if (l != sbr->l_A[ch])
+ den += Q_M_lim[m];
+ }
+
+ //printf("%f\n", den/1024.);
+
+ G_boost = (acc1 + EPS) / (den + EPS);
+ G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */);
+
+ for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
+ m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
+ {
+ /* apply compensation to gain, noise floor sf's and sinusoid levels */
+#ifndef SBR_LOW_POWER
+ adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost);
+#else
+ /* sqrt() will be done after the aliasing reduction to save a
+ * few multiplies
+ */
+ adj->G_lim_boost[l][m] = G_lim[m] * G_boost;
+#endif
+ adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost);
+
+ if (adj->S_index_mapped[m][l])
+ adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost);
+ else
+ adj->S_M_boost[l][m] = 0;
+ }
+ }
+ }
+}
+#endif
+
+#ifdef SBR_LOW_POWER
+static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
+{
+ uint8_t l, k, i;
+ uint8_t grouping;
+
+ for (l = 0; l < sbr->L_E[ch]; l++)
+ {
+ i = 0;
+ grouping = 0;
+
+ for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++)
+ {
+ if (deg[k + 1] && adj->S_mapped[k-sbr->kx][l] == 0)
+ {
+ if (grouping == 0)
+ {
+ sbr->f_group[l][i] = k;
+ grouping = 1;
+ i++;
+ }
+ } else {
+ if (grouping)
+ {
+ if (adj->S_mapped[k-sbr->kx][l])
+ sbr->f_group[l][i] = k;
+ else
+ sbr->f_group[l][i] = k + 1;
+ grouping = 0;
+ i++;
+ }
+ }
+ }
+
+ if (grouping)
+ {
+ sbr->f_group[l][i] = sbr->kx + sbr->M;
+ i++;
+ }
+
+ sbr->N_G[l] = (uint8_t)(i >> 1);
+ }
+}
+
+static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
+{
+ uint8_t l, k, m;
+ real_t E_total, E_total_est, G_target, acc;
+
+ for (l = 0; l < sbr->L_E[ch]; l++)
+ {
+ for (k = 0; k < sbr->N_G[l]; k++)
+ {
+ E_total_est = E_total = 0;
+
+ for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
+ {
+ /* E_curr: integer */
+ /* G_lim_boost: fixed point */
+ /* E_total_est: integer */
+ /* E_total: integer */
+ E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
+ E_total += MUL(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
+ }
+
+ /* G_target: fixed point */
+ if ((E_total_est + EPS) == 0)
+ G_target = 0;
+ else
+#ifdef FIXED_POINT
+ G_target = (((int64_t)(E_total))<<REAL_BITS)/(E_total_est + EPS);
+#else
+ G_target = E_total / (E_total_est + EPS);
+#endif
+ acc = 0;
+
+ for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
+ {
+ real_t alpha;
+
+ /* alpha: fixed point */
+ if (m < sbr->kx + sbr->M - 1)
+ {
+ alpha = max(deg[m], deg[m + 1]);
+ } else {
+ alpha = deg[m];
+ }
+
+ adj->G_lim_boost[l][m-sbr->kx] = MUL(alpha, G_target) +
+ MUL((REAL_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);
+
+ /* acc: integer */
+ acc += MUL(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
+ }
+
+ /* acc: fixed point */
+ if (acc + EPS == 0)
+ acc = 0;
+ else
+#ifdef FIXED_POINT
+ acc = (((int64_t)(E_total))<<REAL_BITS)/(acc + EPS);
+#else
+ acc = E_total / (acc + EPS);
+#endif
+ for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
+ {
+ adj->G_lim_boost[l][m-sbr->kx] = MUL(acc, adj->G_lim_boost[l][m-sbr->kx]);
+ }
+ }
+ }
+
+ for (l = 0; l < sbr->L_E[ch]; l++)
+ {
+ for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
+ {
+ for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
+ m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
+ {
+#ifdef FIXED_POINT
+ adj->G_lim_boost[l][m] = SBR_SQRT_FIX(adj->G_lim_boost[l][m]);
+#else
+ adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
+#endif
+ }
+ }
+ }
+}
+#endif
+
+static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
+ qmf_t *Xsbr, uint8_t ch)
+{
+ static real_t h_smooth[] = {
+ COEF_CONST(0.03183050093751), COEF_CONST(0.11516383427084),
+ COEF_CONST(0.21816949906249), COEF_CONST(0.30150283239582),
+ COEF_CONST(0.33333333333333)
+ };
+ static int8_t phi_re[] = { 1, 0, -1, 0 };
+ static int8_t phi_im[] = { 0, 1, 0, -1 };
+
+ uint8_t m, l, i, n;
+ uint16_t fIndexNoise = 0;
+ uint8_t fIndexSine = 0;
+ uint8_t assembly_reset = 0;
+ real_t *temp;
+
+ real_t G_filt, Q_filt;
+
+ uint8_t h_SL;
+
+
+ if (sbr->Reset == 1)
+ {
+ assembly_reset = 1;
+ fIndexNoise = 0;
+ } else {
+ fIndexNoise = sbr->index_noise_prev[ch];
+ }
+ fIndexSine = sbr->psi_is_prev[ch];
+
+
+ for (l = 0; l < sbr->L_E[ch]; l++)
+ {
+ uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;
+
+#ifdef SBR_LOW_POWER
+ h_SL = 0;
+#else
+ h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
+ h_SL = (no_noise ? 0 : h_SL);
+#endif
+
+ if (assembly_reset)
+ {
+ for (n = 0; n < 4; n++)
+ {
+ memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
+ memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
+ }
+ assembly_reset = 0;
+ }
+
+
+ for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
+ {
+#ifdef SBR_LOW_POWER
+ uint8_t i_min1, i_plus1;
+ uint8_t sinusoids = 0;
+#endif
+
+ memcpy(sbr->G_temp_prev[ch][4], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
+ memcpy(sbr->Q_temp_prev[ch][4], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
+
+ for (m = 0; m < sbr->M; m++)
+ {
+ uint8_t j;
+ qmf_t psi;
+
+
+ G_filt = 0;
+ Q_filt = 0;
+ j = 0;
+
+ if (h_SL != 0)
+ {
+ for (n = 0; n <= 4; n++)
+ {
+ G_filt += MUL_R_C(sbr->G_temp_prev[ch][n][m], h_smooth[j]);
+ Q_filt += MUL_R_C(sbr->Q_temp_prev[ch][n][m], h_smooth[j]);
+ j++;
+ }
+ } else {
+ G_filt = sbr->G_temp_prev[ch][4][m];
+ Q_filt = sbr->Q_temp_prev[ch][4][m];
+ }
+
+ Q_filt = (adj->S_M_boost[l][m] != 0 || no_noise) ? 0 : Q_filt;
+
+#if 0
+ if (sbr->frame == 155)
+ {
+ printf("%f\n", G_filt);
+ }
+#endif
+
+ /* add noise to the output */
+ fIndexNoise = (fIndexNoise + 1) & 511;
+
+#if 0
+ printf("%d %f\n", Q_filt, RE(V[fIndexNoise])/(float)(1<<COEF_BITS));
+#endif
+
+ /* the smoothed gain values are applied to Xsbr */
+ /* V is defined, not calculated */
+#ifdef FIXED_POINT
+ QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) = MUL(G_filt, QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]))
+ + MUL_R_C((Q_filt<<REAL_BITS), RE(V[fIndexNoise]));
+#else
+ QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) = MUL(G_filt, QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]))
+ + MUL_R_C(Q_filt, RE(V[fIndexNoise]));
+#endif
+ if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
+ QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) = 16428320;
+#ifndef SBR_LOW_POWER
+ QMF_IM(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) = MUL(G_filt, QMF_IM(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]))
+ + MUL_R_C(Q_filt, IM(V[fIndexNoise]));
+#endif
+
+
+ if (adj->S_index_mapped[m][l])
+ {
+ int8_t rev = ((m + sbr->kx) & 1) ? -1 : 1;
+ QMF_RE(psi) = MUL(adj->S_M_boost[l][m], phi_re[fIndexSine]);
+ QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) += QMF_RE(psi);
+
+#ifndef SBR_LOW_POWER
+ QMF_IM(psi) = rev * MUL(adj->S_M_boost[l][m], phi_im[fIndexSine]);
+ QMF_IM(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) += QMF_IM(psi);
+#else
+ i_min1 = (fIndexSine - 1) & 3;
+ i_plus1 = (fIndexSine + 1) & 3;
+
+ if (m == 0)
+ {
+ QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx - 1]) -=
+ (rev * MUL_R_C(MUL(adj->S_M_boost[l][0], phi_re[i_plus1]), COEF_CONST(0.00815)));
+ QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) -=
+ (rev * MUL_R_C(MUL(adj->S_M_boost[l][1], phi_re[i_plus1]), COEF_CONST(0.00815)));
+ }
+ if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16))
+ {
+ QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) -=
+ (rev * MUL_R_C(MUL(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815)));
+ QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) -=
+ (rev * MUL_R_C(MUL(adj->S_M_boost[l][m + 1], phi_re[i_plus1]), COEF_CONST(0.00815)));
+ }
+ if ((m == sbr->M - 1) && (sinusoids < 16) && (m + sbr->kx + 1 < 63))
+ {
+ QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx]) -=
+ (rev * MUL_R_C(MUL(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815)));
+ QMF_RE(Xsbr[((i + tHFAdj)<<6) + m+sbr->kx + 1]) -=
+ (rev * MUL_R_C(MUL(adj->S_M_boost[l][m + 1], phi_re[i_min1]), COEF_CONST(0.00815)));
+ }
+
+ sinusoids++;
+#endif
+ }
+ }
+
+ fIndexSine = (fIndexSine + 1) & 3;
+
+
+ temp = sbr->G_temp_prev[ch][0];
+ for (n = 0; n < 4; n++)
+ sbr->G_temp_prev[ch][n] = sbr->G_temp_prev[ch][n+1];
+ sbr->G_temp_prev[ch][4] = temp;
+
+ temp = sbr->Q_temp_prev[ch][0];
+ for (n = 0; n < 4; n++)
+ sbr->Q_temp_prev[ch][n] = sbr->Q_temp_prev[ch][n+1];
+ sbr->Q_temp_prev[ch][4] = temp;
+ }
+ }
+
+ sbr->index_noise_prev[ch] = fIndexNoise;
+ sbr->psi_is_prev[ch] = fIndexSine;
+}
+
+#endif