summaryrefslogtreecommitdiffstats
path: root/libaf/filter.c
diff options
context:
space:
mode:
authoranders <anders@b3059339-0415-0410-9bf9-f77b7e298cf2>2003-01-07 10:33:30 +0000
committeranders <anders@b3059339-0415-0410-9bf9-f77b7e298cf2>2003-01-07 10:33:30 +0000
commit4477f1232a19ef0ed1c3944b39a2f0aaca45fddc (patch)
treedbc25d1ac2429e821279cdd916eb356f639b845f /libaf/filter.c
parent850c82cf304928017b5c70f909fb6c226b997572 (diff)
downloadmpv-4477f1232a19ef0ed1c3944b39a2f0aaca45fddc.tar.bz2
mpv-4477f1232a19ef0ed1c3944b39a2f0aaca45fddc.tar.xz
Adding sub-woofer filter, use this filter to add a sub channel to the audio stream
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@8833 b3059339-0415-0410-9bf9-f77b7e298cf2
Diffstat (limited to 'libaf/filter.c')
-rw-r--r--libaf/filter.c176
1 files changed, 176 insertions, 0 deletions
diff --git a/libaf/filter.c b/libaf/filter.c
index 8d677f1e6d..526b00b244 100644
--- a/libaf/filter.c
+++ b/libaf/filter.c
@@ -14,6 +14,10 @@
#include <math.h>
#include "dsp.h"
+/******************************************************************************
+* FIR filter implementations
+******************************************************************************/
+
/* C implementation of FIR filter y=w*x
n number of filter taps, where mod(n,4)==0
@@ -73,6 +77,9 @@ inline int updatepq(unsigned int n, unsigned int d, unsigned int xi, _ftype_t**
return (++xi)&(n-1);
}
+/******************************************************************************
+* FIR filter design
+******************************************************************************/
/* Design FIR filter using the Window method
@@ -255,3 +262,172 @@ int design_pfir(unsigned int n, unsigned int k, _ftype_t* w, _ftype_t** pw, _fty
}
return -1;
}
+
+/******************************************************************************
+* IIR filter design
+******************************************************************************/
+
+/* Helper functions for the bilinear transform */
+
+/* Pre-warp the coefficients of a numerator or denominator.
+ Note that a0 is assumed to be 1, so there is no wrapping
+ of it.
+*/
+void prewarp(_ftype_t* a, _ftype_t fc, _ftype_t fs)
+{
+ _ftype_t wp;
+ wp = 2.0 * fs * tan(M_PI * fc / fs);
+ a[2] = a[2]/(wp * wp);
+ a[1] = a[1]/wp;
+}
+
+/* Transform the numerator and denominator coefficients of s-domain
+ biquad section into corresponding z-domain coefficients.
+
+ The transfer function for z-domain is:
+
+ 1 + alpha1 * z^(-1) + alpha2 * z^(-2)
+ H(z) = -------------------------------------
+ 1 + beta1 * z^(-1) + beta2 * z^(-2)
+
+ Store the 4 IIR coefficients in array pointed by coef in following
+ order:
+ beta1, beta2 (denominator)
+ alpha1, alpha2 (numerator)
+
+ Arguments:
+ a - s-domain numerator coefficients
+ b - s-domain denominator coefficients
+ k - filter gain factor. Initially set to 1 and modified by each
+ biquad section in such a way, as to make it the
+ coefficient by which to multiply the overall filter gain
+ in order to achieve a desired overall filter gain,
+ specified in initial value of k.
+ fs - sampling rate (Hz)
+ coef - array of z-domain coefficients to be filled in.
+
+ Return: On return, set coef z-domain coefficients and k to the gain
+ required to maintain overall gain = 1.0;
+*/
+void bilinear(_ftype_t* a, _ftype_t* b, _ftype_t* k, _ftype_t fs, _ftype_t *coef)
+{
+ _ftype_t ad, bd;
+
+ /* alpha (Numerator in s-domain) */
+ ad = 4. * a[2] * fs * fs + 2. * a[1] * fs + a[0];
+ /* beta (Denominator in s-domain) */
+ bd = 4. * b[2] * fs * fs + 2. * b[1] * fs + b[0];
+
+ /* Update gain constant for this section */
+ *k *= ad/bd;
+
+ /* Denominator */
+ *coef++ = (2. * b[0] - 8. * b[2] * fs * fs)/bd; /* beta1 */
+ *coef++ = (4. * b[2] * fs * fs - 2. * b[1] * fs + b[0])/bd; /* beta2 */
+
+ /* Numerator */
+ *coef++ = (2. * a[0] - 8. * a[2] * fs * fs)/ad; /* alpha1 */
+ *coef = (4. * a[2] * fs * fs - 2. * a[1] * fs + a[0])/ad; /* alpha2 */
+}
+
+
+
+/* IIR filter design using bilinear transform and prewarp. Transforms
+ 2nd order s domain analog filter into a digital IIR biquad link. To
+ create a filter fill in a, b, Q and fs and make space for coef and k.
+
+
+ Example Butterworth design:
+
+ Below are Butterworth polynomials, arranged as a series of 2nd
+ order sections:
+
+ Note: n is filter order.
+
+ n Polynomials
+ -------------------------------------------------------------------
+ 2 s^2 + 1.4142s + 1
+ 4 (s^2 + 0.765367s + 1) * (s^2 + 1.847759s + 1)
+ 6 (s^2 + 0.5176387s + 1) * (s^2 + 1.414214 + 1) * (s^2 + 1.931852s + 1)
+
+ For n=4 we have following equation for the filter transfer function:
+ 1 1
+ T(s) = --------------------------- * ----------------------------
+ s^2 + (1/Q) * 0.765367s + 1 s^2 + (1/Q) * 1.847759s + 1
+
+ The filter consists of two 2nd order sections since highest s power
+ is 2. Now we can take the coefficients, or the numbers by which s
+ is multiplied and plug them into a standard formula to be used by
+ bilinear transform.
+
+ Our standard form for each 2nd order section is:
+
+ a2 * s^2 + a1 * s + a0
+ H(s) = ----------------------
+ b2 * s^2 + b1 * s + b0
+
+ Note that Butterworth numerator is 1 for all filter sections, which
+ means s^2 = 0 and s^1 = 0
+
+ Lets convert standard Butterworth polynomials into this form:
+
+ 0 + 0 + 1 0 + 0 + 1
+ --------------------------- * --------------------------
+ 1 + ((1/Q) * 0.765367) + 1 1 + ((1/Q) * 1.847759) + 1
+
+ Section 1:
+ a2 = 0; a1 = 0; a0 = 1;
+ b2 = 1; b1 = 0.765367; b0 = 1;
+
+ Section 2:
+ a2 = 0; a1 = 0; a0 = 1;
+ b2 = 1; b1 = 1.847759; b0 = 1;
+
+ Q is filter quality factor or resonance, in the range of 1 to
+ 1000. The overall filter Q is a product of all 2nd order stages.
+ For example, the 6th order filter (3 stages, or biquads) with
+ individual Q of 2 will have filter Q = 2 * 2 * 2 = 8.
+
+
+ Arguments:
+ a - s-domain numerator coefficients, a[1] is always assumed to be 1.0
+ b - s-domain denominator coefficients
+ Q - Q value for the filter
+ k - filter gain factor. Initially set to 1 and modified by each
+ biquad section in such a way, as to make it the
+ coefficient by which to multiply the overall filter gain
+ in order to achieve a desired overall filter gain,
+ specified in initial value of k.
+ fs - sampling rate (Hz)
+ coef - array of z-domain coefficients to be filled in.
+
+ Note: Upon return from each call, the k argument will be set to a
+ value, by which to multiply our actual signal in order for the gain
+ to be one. On second call to szxform() we provide k that was
+ changed by the previous section. During actual audio filtering
+ k can be used for gain compensation.
+
+ return -1 if fail 0 if success.
+*/
+int szxform(_ftype_t* a, _ftype_t* b, _ftype_t Q, _ftype_t fc, _ftype_t fs, _ftype_t *k, _ftype_t *coef)
+{
+ _ftype_t at[3];
+ _ftype_t bt[3];
+
+ if(!a || !b || !k || !coef || (Q>1000.0 || Q< 1.0))
+ return -1;
+
+ memcpy(at,a,3*sizeof(_ftype_t));
+ memcpy(bt,b,3*sizeof(_ftype_t));
+
+ bt[1]/=Q;
+
+ /* Calculate a and b and overwrite the original values */
+ prewarp(at, fc, fs);
+ prewarp(bt, fc, fs);
+ /* Execute bilinear transform */
+ bilinear(at, bt, k, fs, coef);
+
+ return 0;
+}
+