summaryrefslogtreecommitdiffstats
path: root/libaf/filter.c
diff options
context:
space:
mode:
authoranders <anders@b3059339-0415-0410-9bf9-f77b7e298cf2>2002-10-01 06:45:08 +0000
committeranders <anders@b3059339-0415-0410-9bf9-f77b7e298cf2>2002-10-01 06:45:08 +0000
commit1f6c494641c4ca99eec7a9f47818526c72789439 (patch)
tree17bf220c1c1ac1144dfa8212f09444e51c248a26 /libaf/filter.c
parentc0091278d8f15580eecebfc8c454fba250cf4b94 (diff)
downloadmpv-1f6c494641c4ca99eec7a9f47818526c72789439.tar.bz2
mpv-1f6c494641c4ca99eec7a9f47818526c72789439.tar.xz
Adding new audio output filter layer libaf
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@7569 b3059339-0415-0410-9bf9-f77b7e298cf2
Diffstat (limited to 'libaf/filter.c')
-rw-r--r--libaf/filter.c257
1 files changed, 257 insertions, 0 deletions
diff --git a/libaf/filter.c b/libaf/filter.c
new file mode 100644
index 0000000000..8d677f1e6d
--- /dev/null
+++ b/libaf/filter.c
@@ -0,0 +1,257 @@
+/*=============================================================================
+//
+// This software has been released under the terms of the GNU Public
+// license. See http://www.gnu.org/copyleft/gpl.html for details.
+//
+// Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
+//
+//=============================================================================
+*/
+
+/* Design and implementation of different types of digital filters
+
+*/
+#include <math.h>
+#include "dsp.h"
+
+/* C implementation of FIR filter y=w*x
+
+ n number of filter taps, where mod(n,4)==0
+ w filter taps
+ x input signal must be a circular buffer which is indexed backwards
+*/
+inline _ftype_t fir(register unsigned int n, _ftype_t* w, _ftype_t* x)
+{
+ register _ftype_t y; // Output
+ y = 0.0;
+ do{
+ n--;
+ y+=w[n]*x[n];
+ }while(n != 0);
+ return y;
+}
+
+/* C implementation of parallel FIR filter y(k)=w(k) * x(k) (where * denotes convolution)
+
+ n number of filter taps, where mod(n,4)==0
+ d number of filters
+ xi current index in xq
+ w filter taps k by n big
+ x input signal must be a circular buffers which are indexed backwards
+ y output buffer
+ s output buffer stride
+*/
+inline _ftype_t* pfir(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** w, _ftype_t** x, _ftype_t* y, unsigned int s)
+{
+ register _ftype_t* xt = *x + xi;
+ register _ftype_t* wt = *w;
+ register int nt = 2*n;
+ while(d-- > 0){
+ *y = fir(n,wt,xt);
+ wt+=n;
+ xt+=nt;
+ y+=s;
+ }
+ return y;
+}
+
+/* Add new data to circular queue designed to be used with a parallel
+ FIR filter, with d filters. xq is the circular queue, in pointing
+ at the new samples, xi current index in xq and n the length of the
+ filter. xq must be n*2 by k big, s is the index for in.
+*/
+inline int updatepq(unsigned int n, unsigned int d, unsigned int xi, _ftype_t** xq, _ftype_t* in, unsigned int s)
+{
+ register _ftype_t* txq = *xq + xi;
+ register int nt = n*2;
+
+ while(d-- >0){
+ *txq= *(txq+n) = *in;
+ txq+=nt;
+ in+=s;
+ }
+ return (++xi)&(n-1);
+}
+
+
+/* Design FIR filter using the Window method
+
+ n filter length must be odd for HP and BS filters
+ w buffer for the filter taps (must be n long)
+ fc cutoff frequencies (1 for LP and HP, 2 for BP and BS)
+ 0 < fc < 1 where 1 <=> Fs/2
+ flags window and filter type as defined in filter.h
+ variables are ored together: i.e. LP|HAMMING will give a
+ low pass filter designed using a hamming window
+ opt beta constant used only when designing using kaiser windows
+
+ returns 0 if OK, -1 if fail
+*/
+int design_fir(unsigned int n, _ftype_t* w, _ftype_t* fc, unsigned int flags, _ftype_t opt)
+{
+ unsigned int o = n & 1; // Indicator for odd filter length
+ unsigned int end = ((n + 1) >> 1) - o; // Loop end
+ unsigned int i; // Loop index
+
+ _ftype_t k1 = 2 * M_PI; // 2*pi*fc1
+ _ftype_t k2 = 0.5 * (_ftype_t)(1 - o);// Constant used if the filter has even length
+ _ftype_t k3; // 2*pi*fc2 Constant used in BP and BS design
+ _ftype_t g = 0.0; // Gain
+ _ftype_t t1,t2,t3; // Temporary variables
+ _ftype_t fc1,fc2; // Cutoff frequencies
+
+ // Sanity check
+ if(!w || (n == 0)) return -1;
+
+ // Get window coefficients
+ switch(flags & WINDOW_MASK){
+ case(BOXCAR):
+ boxcar(n,w); break;
+ case(TRIANG):
+ triang(n,w); break;
+ case(HAMMING):
+ hamming(n,w); break;
+ case(HANNING):
+ hanning(n,w); break;
+ case(BLACKMAN):
+ blackman(n,w); break;
+ case(FLATTOP):
+ flattop(n,w); break;
+ case(KAISER):
+ kaiser(n,w,opt); break;
+ default:
+ return -1;
+ }
+
+ if(flags & (LP | HP)){
+ fc1=*fc;
+ // Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2
+ fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25;
+ k1 *= fc1;
+
+ if(flags & LP){ // Low pass filter
+
+ // If the filter length is odd, there is one point which is exactly
+ // in the middle. The value at this point is 2*fCutoff*sin(x)/x,
+ // where x is zero. To make sure nothing strange happens, we set this
+ // value separately.
+ if (o){
+ w[end] = fc1 * w[end] * 2.0;
+ g=w[end];
+ }
+
+ // Create filter
+ for (i=0 ; i<end ; i++){
+ t1 = (_ftype_t)(i+1) - k2;
+ w[end-i-1] = w[n-end+i] = w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc
+ g += 2*w[end-i-1]; // Total gain in filter
+ }
+ }
+ else{ // High pass filter
+ if (!o) // High pass filters must have odd length
+ return -1;
+ w[end] = 1.0 - (fc1 * w[end] * 2.0);
+ g= w[end];
+
+ // Create filter
+ for (i=0 ; i<end ; i++){
+ t1 = (_ftype_t)(i+1);
+ w[end-i-1] = w[n-end+i] = -1 * w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc
+ g += ((i&1) ? (2*w[end-i-1]) : (-2*w[end-i-1])); // Total gain in filter
+ }
+ }
+ }
+
+ if(flags & (BP | BS)){
+ fc1=fc[0];
+ fc2=fc[1];
+ // Cutoff frequencies must be < 1.0 where 1.0 <=> Fs/2
+ fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25;
+ fc2 = ((fc2 <= 1.0) && (fc2 > 0.0)) ? fc2/2 : 0.25;
+ k3 = k1 * fc2; // 2*pi*fc2
+ k1 *= fc1; // 2*pi*fc1
+
+ if(flags & BP){ // Band pass
+ // Calculate center tap
+ if (o){
+ g=w[end]*(fc1+fc2);
+ w[end] = (fc2 - fc1) * w[end] * 2.0;
+ }
+
+ // Create filter
+ for (i=0 ; i<end ; i++){
+ t1 = (_ftype_t)(i+1) - k2;
+ t2 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2
+ t3 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1
+ g += w[end-i-1] * (t3 + t2); // Total gain in filter
+ w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3);
+ }
+ }
+ else{ // Band stop
+ if (!o) // Band stop filters must have odd length
+ return -1;
+ w[end] = 1.0 - (fc2 - fc1) * w[end] * 2.0;
+ g= w[end];
+
+ // Create filter
+ for (i=0 ; i<end ; i++){
+ t1 = (_ftype_t)(i+1);
+ t2 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1
+ t3 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2
+ w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3);
+ g += 2*w[end-i-1]; // Total gain in filter
+ }
+ }
+ }
+
+ // Normalize gain
+ g=1/g;
+ for (i=0; i<n; i++)
+ w[i] *= g;
+
+ return 0;
+}
+
+/* Design polyphase FIR filter from prototype filter
+
+ n length of prototype filter
+ k number of polyphase components
+ w prototype filter taps
+ pw Parallel FIR filter
+ g Filter gain
+ flags FWD forward indexing
+ REW reverse indexing
+ ODD multiply every 2nd filter tap by -1 => HP filter
+
+ returns 0 if OK, -1 if fail
+*/
+int design_pfir(unsigned int n, unsigned int k, _ftype_t* w, _ftype_t** pw, _ftype_t g, unsigned int flags)
+{
+ int l = (int)n/k; // Length of individual FIR filters
+ int i; // Counters
+ int j;
+ _ftype_t t; // g * w[i]
+
+ // Sanity check
+ if(l<1 || k<1 || !w || !pw)
+ return -1;
+
+ // Do the stuff
+ if(flags&REW){
+ for(j=l-1;j>-1;j--){//Columns
+ for(i=0;i<(int)k;i++){//Rows
+ t=g * *w++;
+ pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? -1 : 1) : 1);
+ }
+ }
+ }
+ else{
+ for(j=0;j<l;j++){//Columns
+ for(i=0;i<(int)k;i++){//Rows
+ t=g * *w++;
+ pw[i][j]=t * ((flags & ODD) ? ((j & 1) ? 1 : -1) : 1);
+ }
+ }
+ }
+ return -1;
+}