summaryrefslogtreecommitdiffstats
path: root/video/zimg.c
blob: 1ed5ca41da790f68248f4b4c942e816f633063fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
/*
 * This file is part of mpv.
 *
 * mpv is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * mpv is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with mpv.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <math.h>

#include "common/common.h"
#include "common/msg.h"
#include "csputils.h"
#include "options/m_config.h"
#include "options/m_option.h"
#include "video/img_format.h"
#include "zimg.h"

static_assert(MP_IMAGE_BYTE_ALIGN >= ZIMG_ALIGN, "");

#define HAVE_ZIMG_ALPHA (ZIMG_API_VERSION >= ZIMG_MAKE_API_VERSION(2, 4))

static const struct m_opt_choice_alternatives mp_zimg_scalers[] = {
    {"point",           ZIMG_RESIZE_POINT},
    {"bilinear",        ZIMG_RESIZE_BILINEAR},
    {"bicubic",         ZIMG_RESIZE_BICUBIC},
    {"spline16",        ZIMG_RESIZE_SPLINE16},
    {"spline36",        ZIMG_RESIZE_SPLINE36},
    {"lanczos",         ZIMG_RESIZE_LANCZOS},
    {0}
};

#define OPT_PARAM(name, var, flags) \
    OPT_DOUBLE(name, var, (flags) | M_OPT_DEFAULT_NAN)

#define OPT_BASE_STRUCT struct zimg_opts
const struct m_sub_options zimg_conf = {
    .opts = (struct m_option[]) {
        OPT_CHOICE_C("scaler", scaler, 0, mp_zimg_scalers),
        OPT_PARAM("scaler-param-a", scaler_params[0], 0),
        OPT_PARAM("scaler-param-b", scaler_params[1], 0),
        OPT_CHOICE_C("scaler-chroma", scaler_chroma, 0, mp_zimg_scalers),
        OPT_PARAM("scaler-chroma-param-a", scaler_chroma_params[0], 0),
        OPT_PARAM("scaler-chroma-param-b", scaler_chroma_params[1], 0),
        OPT_CHOICE("dither", dither, 0,
                   ({"no",              ZIMG_DITHER_NONE},
                    {"ordered",         ZIMG_DITHER_ORDERED},
                    {"random",          ZIMG_DITHER_RANDOM},
                    {"error-diffusion", ZIMG_DITHER_ERROR_DIFFUSION})),
        OPT_FLAG("fast", fast, 0),
        {0}
    },
    .size = sizeof(struct zimg_opts),
    .defaults = &(const struct zimg_opts){
        .scaler = ZIMG_RESIZE_LANCZOS,
        .scaler_params = {NAN, NAN},
        .scaler_chroma_params = {NAN, NAN},
        .scaler_chroma = ZIMG_RESIZE_BILINEAR,
        .dither = ZIMG_DITHER_RANDOM,
        .fast = 1,
    },
};

struct mp_zimg_repack {
    bool pack;                  // if false, this is for unpacking
    struct mp_image_params fmt; // original mp format (possibly packed format)
    int zimgfmt;                // zimg equivalent unpacked format
    int zplanes;                // number of planes (zimgfmt)
    unsigned zmask[4];          // zmask[mp_index] = zimg mask (using mp index!)
    int z_planes[4];            // z_planes[zimg_index] = mp_index (or -1)
    bool pass_through_y;        // luma plane optimization for e.g. nv12

    // If set, the pack/unpack callback to pass to zimg.
    // Called with user==mp_zimg_repack.
    zimg_filter_graph_callback repack;

    // For packed_repack.
    int components[4];          // p2[n] = mp_image.planes[components[n]]
    //  pack:   p1 is dst, p2 is src
    //  unpack: p1 is src, p2 is dst
    void (*packed_repack_scanline)(void *p1, void *p2[], int x0, int x1);

    // Temporary memory for slice-wise repacking. This may be set even if repack
    // is not set (then it may be used to avoid alignment issues). This has
    // about one slice worth of data.
    struct mp_image *tmp;

    // Temporary, per-call source/target frame. (Regrettably a mutable field,
    // but it's not the only one, and makes the callbacks much less of a mess
    // by avoiding another "closure" indirection.)
    // To be used by the repack callback.
    struct mp_image *mpi;

    // Also temporary, per-call. use_buf[n] == plane n uses tmp (and not mpi).
    bool use_buf[4];
};

static void mp_zimg_update_from_cmdline(struct mp_zimg_context *ctx)
{
    m_config_cache_update(ctx->opts_cache);

    struct zimg_opts *opts = ctx->opts_cache->opts;
    ctx->opts = *opts;
}

static zimg_chroma_location_e mp_to_z_chroma(enum mp_chroma_location cl)
{
    switch (cl) {
    case MP_CHROMA_LEFT:        return ZIMG_CHROMA_LEFT;
    case MP_CHROMA_CENTER:      return ZIMG_CHROMA_CENTER;
    default:                    return ZIMG_CHROMA_LEFT;
    }
}

static zimg_matrix_coefficients_e mp_to_z_matrix(enum mp_csp csp)
{
    switch (csp) {
    case MP_CSP_BT_601:         return ZIMG_MATRIX_BT470_BG;
    case MP_CSP_BT_709:         return ZIMG_MATRIX_BT709;
    case MP_CSP_SMPTE_240M:     return ZIMG_MATRIX_ST240_M;
    case MP_CSP_BT_2020_NC:     return ZIMG_MATRIX_BT2020_NCL;
    case MP_CSP_BT_2020_C:      return ZIMG_MATRIX_BT2020_CL;
    case MP_CSP_RGB:            return ZIMG_MATRIX_RGB;
    case MP_CSP_XYZ:            return ZIMG_MATRIX_RGB;
    case MP_CSP_YCGCO:          return ZIMG_MATRIX_YCGCO;
    default:                    return ZIMG_MATRIX_BT709;
    }
}

static zimg_transfer_characteristics_e mp_to_z_trc(enum mp_csp_trc trc)
{
    switch (trc) {
    case MP_CSP_TRC_BT_1886:    return ZIMG_TRANSFER_BT709;
    case MP_CSP_TRC_SRGB:       return ZIMG_TRANSFER_IEC_61966_2_1;
    case MP_CSP_TRC_LINEAR:     return ZIMG_TRANSFER_LINEAR;
    case MP_CSP_TRC_GAMMA22:    return ZIMG_TRANSFER_BT470_M;
    case MP_CSP_TRC_GAMMA28:    return ZIMG_TRANSFER_BT470_BG;
    case MP_CSP_TRC_PQ:         return ZIMG_TRANSFER_ST2084;
    case MP_CSP_TRC_HLG:        return ZIMG_TRANSFER_ARIB_B67;
    case MP_CSP_TRC_GAMMA18:    // ?
    case MP_CSP_TRC_GAMMA20:
    case MP_CSP_TRC_GAMMA24:
    case MP_CSP_TRC_GAMMA26:
    case MP_CSP_TRC_PRO_PHOTO:
    case MP_CSP_TRC_V_LOG:
    case MP_CSP_TRC_S_LOG1:
    case MP_CSP_TRC_S_LOG2:     // ?
    default:                    return ZIMG_TRANSFER_BT709;
    }
}

static zimg_color_primaries_e mp_to_z_prim(enum mp_csp_prim prim)
{
    switch (prim) {
    case MP_CSP_PRIM_BT_601_525:return ZIMG_PRIMARIES_ST170_M;
    case MP_CSP_PRIM_BT_601_625:return ZIMG_PRIMARIES_BT470_BG;
    case MP_CSP_PRIM_BT_709:    return ZIMG_PRIMARIES_BT709;
    case MP_CSP_PRIM_BT_2020:   return ZIMG_PRIMARIES_BT2020;
    case MP_CSP_PRIM_BT_470M:   return ZIMG_PRIMARIES_BT470_M;
    case MP_CSP_PRIM_CIE_1931:  return ZIMG_PRIMARIES_ST428;
    case MP_CSP_PRIM_DCI_P3:    return ZIMG_PRIMARIES_ST431_2;
    case MP_CSP_PRIM_DISPLAY_P3:return ZIMG_PRIMARIES_ST432_1;
    case MP_CSP_PRIM_APPLE:     // ?
    case MP_CSP_PRIM_ADOBE:
    case MP_CSP_PRIM_PRO_PHOTO:
    case MP_CSP_PRIM_V_GAMUT:
    case MP_CSP_PRIM_S_GAMUT:   // ?
    default:                    return ZIMG_PRIMARIES_BT709;
    }
}

static void destroy_zimg(struct mp_zimg_context *ctx)
{
    free(ctx->zimg_tmp);
    ctx->zimg_tmp = NULL;
    zimg_filter_graph_free(ctx->zimg_graph);
    ctx->zimg_graph = NULL;
    TA_FREEP(&ctx->zimg_src);
    TA_FREEP(&ctx->zimg_dst);
}

static void free_mp_zimg(void *p)
{
    struct mp_zimg_context *ctx = p;

    destroy_zimg(ctx);
}

struct mp_zimg_context *mp_zimg_alloc(void)
{
    struct mp_zimg_context *ctx = talloc_ptrtype(NULL, ctx);
    *ctx = (struct mp_zimg_context) {
        .log = mp_null_log,
    };
    ctx->opts = *(struct zimg_opts *)zimg_conf.defaults;
    talloc_set_destructor(ctx, free_mp_zimg);
    return ctx;
}

void mp_zimg_enable_cmdline_opts(struct mp_zimg_context *ctx,
                                 struct mpv_global *g)
{
    if (ctx->opts_cache)
        return;

    ctx->opts_cache = m_config_cache_alloc(ctx, g, &zimg_conf);
    destroy_zimg(ctx); // force update
    mp_zimg_update_from_cmdline(ctx); // first update
}

static int repack_align(void *user, unsigned i, unsigned x0, unsigned x1)
{
    struct mp_zimg_repack *r = user;

    for (int p = 0; p < r->mpi->fmt.num_planes; p++) {
        if (!r->use_buf[p])
            continue;

        int bpp = r->mpi->fmt.bytes[p];
        int xs = r->mpi->fmt.xs[p];
        int ys = r->mpi->fmt.ys[p];
        // Number of lines on this plane.
        int h = (1 << r->mpi->fmt.chroma_ys) - (1 << ys) + 1;

        for (int y = i; y < i + h; y++) {
            void *a = r->mpi->planes[p] +
                      r->mpi->stride[p] * (ptrdiff_t)(y >> ys) +
                      bpp * (x0 >> xs);
            void *b = r->tmp->planes[p] +
                      r->tmp->stride[p] * (ptrdiff_t)((y >> ys) & r->zmask[p]) +
                      bpp * (x0 >> xs);
            size_t size = ((x1 - x0) >> xs) * bpp;
            if (r->pack) {
                memcpy(a, b, size);
            } else {
                memcpy(b, a, size);
            }
        }
    }

    return 0;
}

// PA = PAck, copy planar input to single packed array
// UN = UNpack, copy packed input to planar output
// Naming convention:
//  pa_/un_ prefix to identify conversion direction.
//  Left (LSB, lowest byte address) -> Right (MSB, highest byte address).
//      (This is unusual; MSG to LSB is more commonly used to describe formats,
//       but our convention makes more sense for byte access in little endian.)
//  "c" identifies a color component.
//  "z" identifies known zero padding.
//  "o" identifies opaque alpha (unused/unsupported yet).
//  "x" identifies uninitialized padding.
//  A component is followed by its size in bits.
//  Size can be omitted for multiple uniform components (c8c8c8 == ccc8).
// Unpackers will often use "x" for padding, because they ignore it, while
// packets will use "z" because they write zero.

#define PA_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3)      \
    static void name(void *dst, void *src[], int x0, int x1) {              \
        for (int x = x0; x < x1; x++) {                                     \
            ((packed_t *)dst)[x] =                                          \
                ((packed_t)((plane_t *)src[0])[x] << (sh_c0)) |             \
                ((packed_t)((plane_t *)src[1])[x] << (sh_c1)) |             \
                ((packed_t)((plane_t *)src[2])[x] << (sh_c2)) |             \
                ((packed_t)((plane_t *)src[3])[x] << (sh_c3));              \
        }                                                                   \
    }

#define UN_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3, mask)\
    static void name(void *src, void *dst[], int x0, int x1) {              \
        for (int x = x0; x < x1; x++) {                                     \
            packed_t c = ((packed_t *)src)[x];                              \
            ((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask);               \
            ((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask);               \
            ((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask);               \
            ((plane_t *)dst[3])[x] = (c >> (sh_c3)) & (mask);               \
        }                                                                   \
    }


#define PA_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, pad)        \
    static void name(void *dst, void *src[], int x0, int x1) {              \
        for (int x = x0; x < x1; x++) {                                     \
            ((packed_t *)dst)[x] = (pad) |                                  \
                ((packed_t)((plane_t *)src[0])[x] << (sh_c0)) |             \
                ((packed_t)((plane_t *)src[1])[x] << (sh_c1)) |             \
                ((packed_t)((plane_t *)src[2])[x] << (sh_c2));              \
        }                                                                   \
    }

UN_WORD_4(un_cccc8,  uint32_t, uint8_t,  0, 8,  16, 24, 0xFFu)
PA_WORD_4(pa_cccc8,  uint32_t, uint8_t,  0, 8,  16, 24)
// Not sure if this is a good idea; there may be no alignment guarantee.
UN_WORD_4(un_cccc16,  uint64_t, uint16_t,  0, 16,  32, 48, 0xFFFFu)
PA_WORD_4(pa_cccc16,  uint64_t, uint16_t,  0, 16,  32, 48)

#define UN_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, mask)       \
    static void name(void *src, void *dst[], int x0, int x1) {              \
        for (int x = x0; x < x1; x++) {                                     \
            packed_t c = ((packed_t *)src)[x];                              \
            ((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask);               \
            ((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask);               \
            ((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask);               \
        }                                                                   \
    }

UN_WORD_3(un_ccc8x8,  uint32_t, uint8_t,  0, 8,  16, 0xFFu)
PA_WORD_3(pa_ccc8z8,  uint32_t, uint8_t,  0, 8,  16, 0)
UN_WORD_3(un_x8ccc8,  uint32_t, uint8_t,  8, 16, 24, 0xFFu)
PA_WORD_3(pa_z8ccc8,  uint32_t, uint8_t,  8, 16, 24, 0)
UN_WORD_3(un_ccc10x2, uint32_t, uint16_t, 0, 10, 20, 0x3FFu)
PA_WORD_3(pa_ccc10z2, uint32_t, uint16_t, 20, 10, 0, 0)

#define PA_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, pad)               \
    static void name(void *dst, void *src[], int x0, int x1) {              \
        for (int x = x0; x < x1; x++) {                                     \
            ((packed_t *)dst)[x] = (pad) |                                  \
                ((packed_t)((plane_t *)src[0])[x] << (sh_c0)) |             \
                ((packed_t)((plane_t *)src[1])[x] << (sh_c1));              \
        }                                                                   \
    }

#define UN_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, mask)              \
    static void name(void *src, void *dst[], int x0, int x1) {              \
        for (int x = x0; x < x1; x++) {                                     \
            packed_t c = ((packed_t *)src)[x];                              \
            ((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask);               \
            ((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask);               \
        }                                                                   \
    }

UN_WORD_2(un_cc8,  uint16_t, uint8_t,  0, 8,  0xFFu)
PA_WORD_2(pa_cc8,  uint16_t, uint8_t,  0, 8,  0)
UN_WORD_2(un_cc16, uint32_t, uint16_t, 0, 16, 0xFFFFu)
PA_WORD_2(pa_cc16, uint32_t, uint16_t, 0, 16, 0)

#define PA_SEQ_3(name, comp_t)                                              \
    static void name(void *dst, void *src[], int x0, int x1) {              \
        comp_t *r = dst;                                                    \
        for (int x = x0; x < x1; x++) {                                     \
            *r++ = ((comp_t *)src[0])[x];                                   \
            *r++ = ((comp_t *)src[1])[x];                                   \
            *r++ = ((comp_t *)src[2])[x];                                   \
        }                                                                   \
    }

#define UN_SEQ_3(name, comp_t)                                              \
    static void name(void *src, void *dst[], int x0, int x1) {              \
        comp_t *r = src;                                                    \
        for (int x = x0; x < x1; x++) {                                     \
            ((comp_t *)dst[0])[x] = *r++;                                   \
            ((comp_t *)dst[1])[x] = *r++;                                   \
            ((comp_t *)dst[2])[x] = *r++;                                   \
        }                                                                   \
    }

UN_SEQ_3(un_ccc8,  uint8_t)
PA_SEQ_3(pa_ccc8,  uint8_t)
UN_SEQ_3(un_ccc16, uint16_t)
PA_SEQ_3(pa_ccc16, uint16_t)

// "regular": single packed plane, all components have same width (except padding)
struct regular_repacker {
    int packed_width;       // number of bits of the packed pixel
    int component_width;    // number of bits for a single component
    int prepadding;         // number of bits of LSB padding
    int num_components;     // number of components that can be accessed
    void (*pa_scanline)(void *p1, void *p2[], int x0, int x1);
    void (*un_scanline)(void *p1, void *p2[], int x0, int x1);
};

static const struct regular_repacker regular_repackers[] = {
    {32, 8,  0, 3, pa_ccc8z8,  un_ccc8x8},
    {32, 8,  8, 3, pa_z8ccc8,  un_x8ccc8},
    {32, 8,  0, 4, pa_cccc8,   un_cccc8},
    {64, 16, 0, 4, pa_cccc16,  un_cccc16},
    {24, 8,  0, 3, pa_ccc8,    un_ccc8},
    {48, 16, 0, 3, pa_ccc16,   un_ccc16},
    {16, 8,  0, 2, pa_cc8,     un_cc8},
    {32, 16, 0, 2, pa_cc16,    un_cc16},
    {32, 10, 0, 3, pa_ccc10z2, un_ccc10x2},
};

static int packed_repack(void *user, unsigned i, unsigned x0, unsigned x1)
{
    struct mp_zimg_repack *r = user;

    uint32_t *p1 =
        (void *)(r->mpi->planes[0] + r->mpi->stride[0] * (ptrdiff_t)i);

    void *p2[4] = {0};
    for (int p = 0; p < r->zplanes; p++) {
        int s = r->components[p];
        p2[p] = r->tmp->planes[s] +
                r->tmp->stride[s] * (ptrdiff_t)(i & r->zmask[s]);
    }

    r->packed_repack_scanline(p1, p2, x0, x1);

    return 0;
}

static int repack_nv(void *user, unsigned i, unsigned x0, unsigned x1)
{
    struct mp_zimg_repack *r = user;

    int xs = r->mpi->fmt.chroma_xs;
    int ys = r->mpi->fmt.chroma_ys;

    if (r->use_buf[0]) {
        // Copy Y.
        int l_h = 1 << ys;
        for (int y = i; y < i + l_h; y++) {
            ptrdiff_t bpp = r->mpi->fmt.bytes[0];
            void *a = r->mpi->planes[0] +
                    r->mpi->stride[0] * (ptrdiff_t)y + bpp * x0;
            void *b = r->tmp->planes[0] +
                    r->tmp->stride[0] * (ptrdiff_t)(y & r->zmask[0]) + bpp * x0;
            size_t size = (x1 - x0) * bpp;
            if (r->pack) {
                memcpy(a, b, size);
            } else {
                memcpy(b, a, size);
            }
        }
    }

    uint32_t *p1 =
        (void *)(r->mpi->planes[1] + r->mpi->stride[1] * (ptrdiff_t)(i >> ys));

    void *p2[2];
    for (int p = 0; p < 2; p++) {
        int s = r->components[p];
        p2[p] = r->tmp->planes[s] +
                r->tmp->stride[s] * (ptrdiff_t)((i >> ys) & r->zmask[s]);
    }

    r->packed_repack_scanline(p1, p2, x0 >> xs, x1 >> xs);

    return 0;
}

static void wrap_buffer(struct mp_zimg_repack *r,
                        zimg_image_buffer *buf,
                        zimg_filter_graph_callback *cb,
                        struct mp_image *mpi)
{
    *buf = (zimg_image_buffer){ZIMG_API_VERSION};

    bool plane_aligned[4] = {0};
    for (int n = 0; n < r->zplanes; n++) {
        plane_aligned[n] = !((uintptr_t)mpi->planes[n] % ZIMG_ALIGN) &&
                           !(mpi->stride[n] % ZIMG_ALIGN);
    }

    for (int n = 0; n < r->zplanes; n++) {
        // Note: this is really the only place we have to care about plane
        // permutation (zimg_image_buffer may have a different plane order
        // than the shadow mpi like r->tmp). We never use the zimg indexes
        // in other places.
        int mplane = r->z_planes[n];

        r->use_buf[mplane] = !plane_aligned[mplane];
        if (!(r->pass_through_y && mplane == 0))
            r->use_buf[mplane] |= !!r->repack;

        struct mp_image *tmpi = r->use_buf[mplane] ? r->tmp : mpi;
        buf->plane[n].data = tmpi->planes[mplane];
        buf->plane[n].stride = tmpi->stride[mplane];
        buf->plane[n].mask = r->use_buf[mplane] ? r->zmask[mplane]
                                                : ZIMG_BUFFER_MAX;
    }

    *cb = r->repack ? r->repack : repack_align;

    r->mpi = mpi;
}

static void setup_nv_packer(struct mp_zimg_repack *r)
{
    struct mp_regular_imgfmt desc;
    if (!mp_get_regular_imgfmt(&desc, r->zimgfmt))
        return;

    // Check for NV.
    if (desc.num_planes != 2)
        return;
    if (desc.planes[0].num_components != 1 || desc.planes[0].components[0] != 1)
        return;
    if (desc.planes[1].num_components != 2)
        return;
    int cr0 = desc.planes[1].components[0];
    int cr1 = desc.planes[1].components[1];
    if (cr0 > cr1)
        MPSWAP(int, cr0, cr1);
    if (cr0 != 2 || cr1 != 3)
        return;

    // Construct equivalent planar format.
    struct mp_regular_imgfmt desc2 = desc;
    desc2.num_planes = 3;
    desc2.planes[1].num_components = 1;
    desc2.planes[1].components[0] = 2;
    desc2.planes[2].num_components = 1;
    desc2.planes[2].components[0] = 3;
    // For P010. Strangely this concept exists only for the NV format.
    if (desc2.component_pad > 0)
        desc2.component_pad = 0;

    int planar_fmt = mp_find_regular_imgfmt(&desc2);
    if (!planar_fmt)
        return;

    for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
        const struct regular_repacker *pa = &regular_repackers[i];

        void (*repack_cb)(void *p1, void *p2[], int x0, int x1) =
            r->pack ? pa->pa_scanline : pa->un_scanline;

        if (pa->packed_width != desc.component_size * 2 * 8 ||
            pa->component_width != desc.component_size * 8 ||
            pa->num_components != 2 ||
            pa->prepadding != 0 ||
            !repack_cb)
            continue;

        r->repack = repack_nv;
        r->pass_through_y = true;
        r->packed_repack_scanline = repack_cb;
        r->zimgfmt = planar_fmt;
        r->components[0] = desc.planes[1].components[0] - 1;
        r->components[1] = desc.planes[1].components[1] - 1;
        return;
    }
}

static void setup_misc_packer(struct mp_zimg_repack *r)
{
    // Although it's in regular_repackers[], the generic mpv imgfmt metadata
    // can't handle it yet.
    if (r->zimgfmt == IMGFMT_RGB30) {
        struct mp_regular_imgfmt planar10 = {
            .component_type = MP_COMPONENT_TYPE_UINT,
            .component_size = 2,
            .component_pad = -6,
            .num_planes = 3,
            .planes = {
                {1, {1}},
                {1, {2}},
                {1, {3}},
            },
            .chroma_w = 1,
            .chroma_h = 1,
        };
        int planar_fmt = mp_find_regular_imgfmt(&planar10);
        if (!planar_fmt)
            return;
        r->zimgfmt = planar_fmt;
        r->repack = packed_repack;
        r->packed_repack_scanline = r->pack ? pa_ccc10z2 : un_ccc10x2;
        static int c_order[] = {3, 2, 1};
        for (int n = 0; n < 3; n++)
            r->components[n] = c_order[n] - 1;
    }
}

// Tries to set a packer/unpacker for component-wise byte aligned RGB formats.
static void setup_regular_rgb_packer(struct mp_zimg_repack *r)
{
    struct mp_regular_imgfmt desc;
    if (!mp_get_regular_imgfmt(&desc, r->zimgfmt))
        return;

    if (desc.num_planes != 1 || desc.planes[0].num_components < 3)
        return;
    struct mp_regular_imgfmt_plane *p = &desc.planes[0];

    int num_real_components = 0;
    for (int n = 0; n < p->num_components; n++) {
        if (p->components[n]) {
            num_real_components += 1;
        } else {
            // padding must be in MSB or LSB
            if (n != 0 && n != p->num_components - 1)
                return;
        }
    }

    int depth = desc.component_size * 8 + MPMIN(0, desc.component_pad);

    // Find a physically compatible planar format (typically IMGFMT_420P).
    struct mp_regular_imgfmt desc2 = desc;
    desc2.forced_csp = 0;
    if (desc2.component_pad > 0)
        desc2.component_pad = 0;
    desc2.num_planes = num_real_components;
    for (int n = 0; n < desc2.num_planes; n++) {
        desc2.planes[n].num_components = 1;
        desc2.planes[n].components[0] = n + 1;
    }
    int planar_fmt = mp_find_regular_imgfmt(&desc2);
    if (!planar_fmt)
        return;

    for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
        const struct regular_repacker *pa = &regular_repackers[i];

        // The following may assume little endian (because some repack backends
        // use word access, while the metadata here uses byte access).

        int prepad = p->components[0] ? 0 : 8;
        int first_comp = p->components[0] ? 0 : 1;
        void (*repack_cb)(void *p1, void *p2[], int x0, int x1) =
            r->pack ? pa->pa_scanline : pa->un_scanline;

        if (pa->packed_width != desc.component_size * p->num_components * 8 ||
            pa->component_width != depth ||
            pa->num_components != num_real_components ||
            pa->prepadding != prepad ||
            !repack_cb)
            continue;

        r->repack = packed_repack;
        r->packed_repack_scanline = repack_cb;
        r->zimgfmt = planar_fmt;
        for (int n = 0; n < num_real_components; n++)
            r->components[n] = p->components[first_comp + n] - 1;
        return;
    }
}

// (ctx can be NULL for the sake of probing.)
static bool setup_format(zimg_image_format *zfmt, struct mp_zimg_repack *r,
                         struct mp_zimg_context *ctx)
{
    zimg_image_format_default(zfmt, ZIMG_API_VERSION);

    struct mp_image_params fmt = r->fmt;
    mp_image_params_guess_csp(&fmt);

    r->zimgfmt = fmt.imgfmt;

    if (!r->repack)
        setup_nv_packer(r);
    if (!r->repack)
        setup_misc_packer(r);
    if (!r->repack)
        setup_regular_rgb_packer(r);

    struct mp_regular_imgfmt desc;
    if (!mp_get_regular_imgfmt(&desc, r->zimgfmt))
        return false;

    // no weird stuff
    if (desc.num_planes > 4 || !MP_IS_POWER_OF_2(desc.chroma_w) ||
        !MP_IS_POWER_OF_2(desc.chroma_h))
        return false;

    // Accept only true planar formats.
    for (int n = 0; n < desc.num_planes; n++) {
        if (desc.planes[n].num_components != 1)
            return false;
        int c = desc.planes[n].components[0];
        if (c < 1 || c > 4)
            return false;
        if (c < 4) {
            // Unfortunately, ffmpeg prefers GBR order for planar RGB, while zimg
            // is sane. This makes it necessary to determine and fix the order.
            r->z_planes[c - 1] = n;
        } else {
            r->z_planes[3] = n; // alpha, always plane 4 in zimg

#if HAVE_ZIMG_ALPHA
            zfmt->alpha = ZIMG_ALPHA_STRAIGHT;
#else
            return false;
#endif
        }
    }

    r->zplanes = desc.num_planes;

    // Note: formats with subsampled chroma may have odd width or height in mpv
    // and FFmpeg. This is because the width/height is actually a cropping
    // rectangle. Reconstruct the image allocation size and set the cropping.
    zfmt->width = MP_ALIGN_UP(fmt.w, desc.chroma_w);
    zfmt->height = MP_ALIGN_UP(fmt.h, desc.chroma_h);
    if (zfmt->width != fmt.w)
        zfmt->active_region.width = fmt.w;
    if (zfmt->height != fmt.h)
        zfmt->active_region.height = fmt.h;

    zfmt->subsample_w = mp_log2(desc.chroma_w);
    zfmt->subsample_h = mp_log2(desc.chroma_h);

    zfmt->color_family = ZIMG_COLOR_YUV;
    if (desc.num_planes == 1) {
        zfmt->color_family = ZIMG_COLOR_GREY;
    } else if (fmt.color.space == MP_CSP_RGB || fmt.color.space == MP_CSP_XYZ) {
        zfmt->color_family = ZIMG_COLOR_RGB;
    }

    if (desc.component_type == MP_COMPONENT_TYPE_UINT &&
        desc.component_size == 1)
    {
        zfmt->pixel_type = ZIMG_PIXEL_BYTE;
    } else if (desc.component_type == MP_COMPONENT_TYPE_UINT &&
               desc.component_size == 2)
    {
        zfmt->pixel_type = ZIMG_PIXEL_WORD;
    } else if (desc.component_type == MP_COMPONENT_TYPE_FLOAT &&
               desc.component_size == 2)
    {
        zfmt->pixel_type = ZIMG_PIXEL_HALF;
    } else if (desc.component_type == MP_COMPONENT_TYPE_FLOAT &&
               desc.component_size == 4)
    {
        zf