summaryrefslogtreecommitdiffstats
path: root/video/out/opengl/utils.c
blob: 64421b73a89cc35f5df4273d7bb6b346a30e22ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#include "common/msg.h"
#include "video/out/vo.h"
#include "utils.h"

// Standard parallel 2D projection, except y1 < y0 means that the coordinate
// system is flipped, not the projection.
void gl_transform_ortho(struct gl_transform *t, float x0, float x1,
                        float y0, float y1)
{
    if (y1 < y0) {
        float tmp = y0;
        y0 = tmp - y1;
        y1 = tmp;
    }

    t->m[0][0] = 2.0f / (x1 - x0);
    t->m[0][1] = 0.0f;
    t->m[1][0] = 0.0f;
    t->m[1][1] = 2.0f / (y1 - y0);
    t->t[0] = -(x1 + x0) / (x1 - x0);
    t->t[1] = -(y1 + y0) / (y1 - y0);
}

// Apply the effects of one transformation to another, transforming it in the
// process. In other words: post-composes t onto x
void gl_transform_trans(struct gl_transform t, struct gl_transform *x)
{
    struct gl_transform xt = *x;
    x->m[0][0] = t.m[0][0] * xt.m[0][0] + t.m[0][1] * xt.m[1][0];
    x->m[1][0] = t.m[1][0] * xt.m[0][0] + t.m[1][1] * xt.m[1][0];
    x->m[0][1] = t.m[0][0] * xt.m[0][1] + t.m[0][1] * xt.m[1][1];
    x->m[1][1] = t.m[1][0] * xt.m[0][1] + t.m[1][1] * xt.m[1][1];
    gl_transform_vec(t, &x->t[0], &x->t[1]);
}

void gl_transform_ortho_fbodst(struct gl_transform *t, struct fbodst fbo)
{
    int y_dir = fbo.flip ? -1 : 1;
    gl_transform_ortho(t, 0, fbo.tex->params.w, 0, fbo.tex->params.h * y_dir);
}

// Create a texture and a FBO using the texture as color attachments.
//  fmt: texture internal format
// If the parameters are the same as the previous call, do not touch it.
// flags can be 0, or a combination of FBOTEX_FUZZY_W and FBOTEX_FUZZY_H.
// Enabling FUZZY for W or H means the w or h does not need to be exact.
bool fbotex_change(struct fbotex *fbo, struct ra *ra, struct mp_log *log,
                   int w, int h, const struct ra_format *fmt, int flags)
{
    int lw = w, lh = h;

    if (fbo->tex) {
        int cw = w, ch = h;
        int rw = fbo->tex->params.w, rh = fbo->tex->params.h;

        if ((flags & FBOTEX_FUZZY_W) && cw < rw)
            cw = rw;
        if ((flags & FBOTEX_FUZZY_H) && ch < rh)
            ch = rh;

        if (rw == cw && rh == ch && fbo->tex->params.format == fmt)
            goto done;
    }

    if (flags & FBOTEX_FUZZY_W)
        w = MP_ALIGN_UP(w, 256);
    if (flags & FBOTEX_FUZZY_H)
        h = MP_ALIGN_UP(h, 256);

    mp_verbose(log, "Create FBO: %dx%d (%dx%d)\n", lw, lh, w, h);

    if (!fmt || !fmt->renderable || !fmt->linear_filter) {
        mp_err(log, "Format %s not supported.\n", fmt ? fmt->name : "(unset)");
        return false;
    }

    fbotex_uninit(fbo);

    *fbo = (struct fbotex) {
        .ra = ra,
    };

    struct ra_tex_params params = {
        .dimensions = 2,
        .w = w,
        .h = h,
        .d = 1,
        .format = fmt,
        .src_linear = true,
        .render_src = true,
        .render_dst = true,
    };

    fbo->tex = ra_tex_create(fbo->ra, &params);

    if (!fbo->tex) {
        mp_err(log, "Error: framebuffer could not be created.\n");
        fbotex_uninit(fbo);
        return false;
    }

done:

    fbo->lw = lw;
    fbo->lh = lh;

    fbo->fbo = (struct fbodst){
        .tex = fbo->tex,
    };

    return true;
}

void fbotex_uninit(struct fbotex *fbo)
{
    if (fbo->ra) {
        ra_tex_free(fbo->ra, &fbo->tex);
        *fbo = (struct fbotex) {0};
    }
}

struct timer_pool {
    struct ra *ra;
    ra_timer *timer;
    bool running; // detect invalid usage

    uint64_t samples[PERF_SAMPLE_COUNT];
    int sample_idx;
    int sample_count;

    uint64_t avg_sum;
    uint64_t peak;
};

struct timer_pool *timer_pool_create(struct ra *ra)
{
    if (!ra->fns->timer_create)
        return NULL;

    ra_timer *timer = ra->fns->timer_create(ra);
    if (!timer)
        return NULL;

    struct timer_pool *pool = talloc(NULL, struct timer_pool);
    if (!pool) {
        ra->fns->timer_destroy(ra, timer);
        return NULL;
    }

    *pool = (struct timer_pool){ .ra = ra, .timer = timer };
    return pool;
}

void timer_pool_destroy(struct timer_pool *pool)
{
    if (!pool)
        return;

    pool->ra->fns->timer_destroy(pool->ra, pool->timer);
    talloc_free(pool);
}

void timer_pool_start(struct timer_pool *pool)
{
    if (!pool)
        return;

    assert(!pool->running);
    pool->ra->fns->timer_start(pool->ra, pool->timer);
    pool->running = true;
}

void timer_pool_stop(struct timer_pool *pool)
{
    if (!pool)
        return;

    assert(pool->running);
    uint64_t res = pool->ra->fns->timer_stop(pool->ra, pool->timer);
    pool->running = false;

    if (res) {
        // Input res into the buffer and grab the previous value
        uint64_t old = pool->samples[pool->sample_idx];
        pool->samples[pool->sample_idx++] = res;
        pool->sample_idx %= PERF_SAMPLE_COUNT;

        // Update average and sum
        pool->avg_sum = pool->avg_sum + res - old;
        pool->sample_count = MPMIN(pool->sample_count + 1, PERF_SAMPLE_COUNT);

        // Update peak if necessary
        if (res >= pool->peak) {
            pool->peak = res;
        } else if (pool->peak == old) {
            // It's possible that the last peak was the value we just removed,
            // if so we need to scan for the new peak
            uint64_t peak = res;
            for (int i = 0; i < PERF_SAMPLE_COUNT; i++)
                peak = MPMAX(peak, pool->samples[i]);
            pool->peak = peak;
        }
    }
}

struct mp_pass_perf timer_pool_measure(struct timer_pool *pool)
{
    if (!pool)
        return (struct mp_pass_perf){0};

    struct mp_pass_perf res = {
        .count = pool->sample_count,
        .index = (pool->sample_idx - pool->sample_count) % PERF_SAMPLE_COUNT,
        .peak = pool->peak,
        .samples = pool->samples,
    };

    res.last = pool->samples[(pool->sample_idx - 1) % PERF_SAMPLE_COUNT];

    if (pool->sample_count > 0) {
        res.avg  = pool->avg_sum / pool->sample_count;
    }

    return res;
}

void mp_log_source(struct mp_log *log, int lev, const char *src)
{
    int line = 1;
    if (!src)
        return;
    while (*src) {
        const char *end = strchr(src, '\n');
        const char *next = end + 1;
        if (!end)
            next = end = src + strlen(src);
        mp_msg(log, lev, "[%3d] %.*s\n", line, (int)(end - src), src);
        line++;
        src = next;
    }
}