summaryrefslogtreecommitdiffstats
path: root/video/out/filter_kernels.c
blob: 2c2f56ee519c0d1d7f89488405ccc7567aff6073 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*
 * This file is part of mplayer2.
 *
 * Most code for computing the weights is taken from Anti-Grain Geometry (AGG)
 * (licensed under GPL 2 or later), with modifications.
 * Copyright (C) 2002-2006 Maxim Shemanarev
 * http://vector-agg.cvs.sourceforge.net/viewvc/vector-agg/agg-2.5/include/agg_image_filters.h?view=markup
 *
 * Also see glumpy (BSD licensed), contains the same code in Python:
 * http://code.google.com/p/glumpy/source/browse/glumpy/image/filter.py
 *
 * Also see: Paul Heckbert's "zoom"
 *
 * Also see XBMC: ConvolutionKernels.cpp etc.
 *
 * mplayer2 is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * mplayer2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with mplayer2; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include <stddef.h>
#include <string.h>
#include <math.h>
#include <assert.h>

#include "filter_kernels.h"

// NOTE: all filters are separable, symmetric, and are intended for use with
//       a lookup table/texture.

const struct filter_kernel *mp_find_filter_kernel(const char *name)
{
    for (const struct filter_kernel *k = mp_filter_kernels; k->name; k++) {
        if (strcmp(k->name, name) == 0)
            return k;
    }
    return NULL;
}

// sizes = sorted list of available filter sizes, terminated with size 0
// inv_scale = source_size / dest_size
bool mp_init_filter(struct filter_kernel *filter, const int *sizes,
                    double inv_scale)
{
    // only downscaling requires widening the filter
    filter->inv_scale = inv_scale >= 1.0 ? inv_scale : 1.0;
    double support = filter->radius * filter->inv_scale;
    int size = ceil(2.0 * support);
    // round up to smallest available size that's still large enough
    if (size < sizes[0])
        size = sizes[0];
    const int *cursize = sizes;
    while (size > *cursize && *cursize)
        cursize++;
    if (*cursize) {
        filter->size = *cursize;
        return true;
    } else {
        // The filter doesn't fit - instead of failing completely, use the
        // largest filter available. This is incorrect, but better than refusing
        // to do anything.
        filter->size = cursize[-1];
        filter->inv_scale = filter->size / 2.0 / filter->radius;
        return false;
    }
}

// Calculate the 1D filtering kernel for N sample points.
// N = number of samples, which is filter->size
// The weights will be stored in out_w[0] to out_w[N - 1]
// f = x0 - abs(x0), subpixel position in the range [0,1) or [0,1].
void mp_compute_weights(struct filter_kernel *filter, double f, float *out_w)
{
    assert(filter->size > 0);
    double sum = 0;
    for (int n = 0; n < filter->size; n++) {
        double x = f - (n - filter->size / 2 + 1);
        double w = filter->weight(filter, fabs(x) / filter->inv_scale);
        out_w[n] = w;
        sum += w;
    }
    //normalize
    for (int n = 0; n < filter->size; n++)
        out_w[n] /= sum;
}

// Fill the given array with weights for the range [0.0, 1.0]. The array is
// interpreted as rectangular array of count * filter->size items.
void mp_compute_lut(struct filter_kernel *filter, int count, float *out_array)
{
    for (int n = 0; n < count; n++) {
        mp_compute_weights(filter, n / (double)(count - 1),
                           out_array + filter->size * n);
    }
}

typedef struct filter_kernel kernel;

static double bilinear(kernel *k, double x)
{
    return 1.0 - x;
}

static double hanning(kernel *k, double x)
{
    return 0.5 + 0.5 * cos(M_PI * x);
}

static double hamming(kernel *k, double x)
{
    return 0.54 + 0.46 * cos(M_PI * x);
}

static double hermite(kernel *k, double x)
{
    return (2.0 * x - 3.0) * x * x + 1.0;
}

static double quadric(kernel *k, double x)
{
    // NOTE: glumpy uses 0.75, AGG uses 0.5
    if (x < 0.5)
        return 0.75 - x * x;
    if (x < 1.5)
        return 0.5 * (x - 1.5) * (x - 1.5);
    return 0;
}

static double bc_pow3(double x)
{
    return (x <= 0) ? 0 : x * x * x;
}

static double bicubic(kernel *k, double x)
{
    return (1.0/6.0) * (      bc_pow3(x + 2)
                        - 4 * bc_pow3(x + 1)
                        + 6 * bc_pow3(x)
                        - 4 * bc_pow3(x - 1));
}

static double bessel_i0(double epsilon, double x)
{
    double sum = 1;
    double y = x * x / 4;
    double t = y;
    for (int i = 2; t > epsilon; i++) {
        sum += t;
        t *= y / (i * i);
    }
    return sum;
}

static double kaiser(kernel *k, double x)
{
    double a = k->params[0];
    double b = k->params[1];
    double epsilon = 1e-12;
    double i0a = 1 / bessel_i0(epsilon, b);
    return bessel_i0(epsilon, a * sqrt(1 - x * x)) * i0a;
}

static double catmull_rom(kernel *k, double x)
{
    if (x < 1.0)
        return 0.5 * (2.0 + x * x * (-5.0 + x * 3.0));
    if (x < 2.0)
        return 0.5 * (4.0 + x * (-8.0 + x * (5.0 - x)));
    return 0;
}

// Mitchell-Netravali
static double mitchell(kernel *k, double x)
{
    double b = k->params[0];
    double c = k->params[1];
    double
        p0 = (6.0 - 2.0 * b) / 6.0,
        p2 = (-18.0 + 12.0 * b + 6.0 * c) / 6.0,
        p3 = (12.0 - 9.0 * b - 6.0 * c) / 6.0,
        q0 = (8.0 * b + 24.0 * c) / 6.0,
        q1 = (-12.0 * b - 48.0 * c) / 6.0,
        q2 = (6.0 * b + 30.0 * c) / 6.0,
        q3 = (-b - 6.0 * c) / 6.0;
    if (x < 1.0)
        return p0 + x * x * (p2 + x * p3);
    if (x < 2.0)
        return q0 + x * (q1 + x * (q2 + x * q3));
    return 0;
}

static double spline16(kernel *k, double x)
{
    if (x < 1.0)
        return ((x - 9.0/5.0 ) * x - 1.0/5.0 ) * x + 1.0;
    return ((-1.0/3.0 * (x-1) + 4.0/5.0) * (x-1) - 7.0/15.0 ) * (x-1);
}

static double spline36(kernel *k, double x)
{
    if(x < 1.0)
        return ((13.0/11.0 * x - 453.0/209.0) * x - 3.0/209.0) * x + 1.0;
    if(x < 2.0)
        return ((-6.0/11.0 * (x - 1) + 270.0/209.0) * (x - 1) - 156.0/209.0)
               * (x - 1);
    return ((1.0/11.0 * (x - 2) - 45.0/209.0) * (x - 2) +  26.0/209.0)
           * (x - 2);
}

static double gaussian(kernel *k, double x)
{
    return exp(-2.0 * x * x) * sqrt(2.0 / M_PI);
}

static double sinc(kernel *k, double x)
{
    if (x == 0.0)
        return 1.0;
    double pix = M_PI * x;
    return sin(pix) / pix;
}

static double lanczos(kernel *k, double x)
{
    double radius = k->size / 2;
    if (x < -radius || x > radius)
        return 0;
    if (x == 0)
        return 1;
    double pix = M_PI * x;
    return radius * sin(pix) * sin(pix / radius) / (pix * pix);
}

static double blackman(kernel *k, double x)
{
    double radius = k->size / 2;
    if (x == 0.0)
        return 1.0;
    if (x > radius)
        return 0.0;
    x *= M_PI;
    double xr = x / radius;
    return (sin(x) / x) * (0.42 + 0.5 * cos(xr) + 0.08 * cos(2 * xr));
}

const struct filter_kernel mp_filter_kernels[] = {
    {"bilinear_slow",  1,   bilinear},
    {"hanning",        1,   hanning},
    {"hamming",        1,   hamming},
    {"hermite",        1,   hermite},
    {"quadric",        1.5, quadric},
    {"bicubic",        2,   bicubic},
    {"kaiser",         1,   kaiser, .params = {6.33, 6.33} },
    {"catmull_rom",    2,   catmull_rom},
    {"mitchell",       2,   mitchell, .params = {1.0/3.0, 1.0/3.0} },
    {"spline16",       2,   spline16},
    {"spline36",       3,   spline36},
    {"gaussian",       2,   gaussian},
    {"sinc2",          2,   sinc},
    {"sinc3",          3,   sinc},
    {"sinc4",          4,   sinc},
    {"lanczos2",       2,   lanczos},
    {"lanczos3",       3,   lanczos},
    {"lanczos4",       4,   lanczos},
    {"blackman2",      2,   blackman},
    {"blackman3",      3,   blackman},
    {"blackman4",      4,   blackman},
    {0}
};