summaryrefslogtreecommitdiffstats
path: root/libao2/remez.c
blob: afdce2c0888665f972d3d17e7562b70ee31ae485 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/**************************************************************************
 * Parks-McClellan algorithm for FIR filter design (C version)
 *-------------------------------------------------
 *  Copyright (c) 1995,1998  Jake Janovetz (janovetz@uiuc.edu)
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 *  You should have received a copy of the GNU Library General Public
 *  License along with this library; if not, write to the Free
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *************************************************************************/


#include "remez.h"
#include <math.h>

/*******************
 * CreateDenseGrid
 *=================
 * Creates the dense grid of frequencies from the specified bands.
 * Also creates the Desired Frequency Response function (D[]) and
 * the Weight function (W[]) on that dense grid
 *
 *
 * INPUT:
 * ------
 * int      r        - 1/2 the number of filter coefficients
 * int      numtaps  - Number of taps in the resulting filter
 * int      numband  - Number of bands in user specification
 * double   bands[]  - User-specified band edges [2*numband]
 * double   des[]    - Desired response per band [numband]
 * double   weight[] - Weight per band [numband]
 * int      symmetry - Symmetry of filter - used for grid check
 *
 * OUTPUT:
 * -------
 * int    gridsize   - Number of elements in the dense frequency grid
 * double Grid[]     - Frequencies (0 to 0.5) on the dense grid [gridsize]
 * double D[]        - Desired response on the dense grid [gridsize]
 * double W[]        - Weight function on the dense grid [gridsize]
 *******************/

void CreateDenseGrid(int r, int numtaps, int numband, double bands[],
                     double des[], double weight[], int *gridsize,
                     double Grid[], double D[], double W[],
                     int symmetry)
{
   int i, j, k, band;
   double delf, lowf, highf;

   delf = 0.5/(GRIDDENSITY*r);

/*
 * For differentiator, hilbert,
 *   symmetry is odd and Grid[0] = max(delf, band[0])
 */

   if ((symmetry == NEGATIVE) && (delf > bands[0]))
      bands[0] = delf;

   j=0;
   for (band=0; band < numband; band++)
   {
      Grid[j] = bands[2*band];
      lowf = bands[2*band];
      highf = bands[2*band + 1];
      k = (int)((highf - lowf)/delf + 0.5);   /* .5 for rounding */
      for (i=0; i<k; i++)
      {
         D[j] = des[band];
         W[j] = weight[band];
         Grid[j] = lowf;
         lowf += delf;
         j++;
      }
      Grid[j-1] = highf;
   }

/*
 * Similar to above, if odd symmetry, last grid point can't be .5
 *  - but, if there are even taps, leave the last grid point at .5
 */
   if ((symmetry == NEGATIVE) &&
       (Grid[*gridsize-1] > (0.5 - delf)) &&
       (numtaps % 2))
   {
      Grid[*gridsize-1] = 0.5-delf;
   }
}


/********************
 * InitialGuess
 *==============
 * Places Extremal Frequencies evenly throughout the dense grid.
 *
 *
 * INPUT: 
 * ------
 * int r        - 1/2 the number of filter coefficients
 * int gridsize - Number of elements in the dense frequency grid
 *
 * OUTPUT:
 * -------
 * int Ext[]    - Extremal indexes to dense frequency grid [r+1]
 ********************/

void InitialGuess(int r, int Ext[], int gridsize)
{
   int i;

   for (i=0; i<=r; i++)
      Ext[i] = i * (gridsize-1) / r;
}


/***********************
 * CalcParms
 *===========
 *
 *
 * INPUT:
 * ------
 * int    r      - 1/2 the number of filter coefficients
 * int    Ext[]  - Extremal indexes to dense frequency grid [r+1]
 * double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize]
 * double D[]    - Desired response on the dense grid [gridsize]
 * double W[]    - Weight function on the dense grid [gridsize]
 *
 * OUTPUT:
 * -------
 * double ad[]   - 'b' in Oppenheim & Schafer [r+1]
 * double x[]    - [r+1]
 * double y[]    - 'C' in Oppenheim & Schafer [r+1]
 ***********************/

void CalcParms(int r, int Ext[], double Grid[], double D[], double W[],
                double ad[], double x[], double y[])
{
   int i, j, k, ld;
   double sign, xi, delta, denom, numer;

/*
 * Find x[]
 */
   for (i=0; i<=r; i++)
      x[i] = cos(Pi2 * Grid[Ext[i]]);

/*
 * Calculate ad[]  - Oppenheim & Schafer eq 7.132
 */
   ld = (r-1)/15 + 1;         /* Skips around to avoid round errors */
   for (i=0; i<=r; i++)
   {
       denom = 1.0;
       xi = x[i];
       for (j=0; j<ld; j++)
       {
          for (k=j; k<=r; k+=ld)
             if (k != i)
                denom *= 2.0*(xi - x[k]);
       }
       if (fabs(denom)<0.00001)
          denom = 0.00001;
       ad[i] = 1.0/denom;
   }

/*
 * Calculate delta  - Oppenheim & Schafer eq 7.131
 */
   numer = denom = 0;
   sign = 1;
   for (i=0; i<=r; i++)
   {
      numer += ad[i] * D[Ext[i]];
      denom += sign * ad[i]/W[Ext[i]];
      sign = -sign;
   }
   delta = numer/denom;
   sign = 1;

/*
 * Calculate y[]  - Oppenheim & Schafer eq 7.133b
 */
   for (i=0; i<=r; i++)
   {
      y[i] = D[Ext[i]] - sign * delta/W[Ext[i]];
      sign = -sign;
   }
}


/*********************
 * ComputeA
 *==========
 * Using values calculated in CalcParms, ComputeA calculates the
 * actual filter response at a given frequency (freq).  Uses
 * eq 7.133a from Oppenheim & Schafer.
 *
 *
 * INPUT:
 * ------
 * double freq - Frequency (0 to 0.5) at which to calculate A
 * int    r    - 1/2 the number of filter coefficients
 * double ad[] - 'b' in Oppenheim & Schafer [r+1]
 * double x[]  - [r+1]
 * double y[]  - 'C' in Oppenheim & Schafer [r+1]
 *
 * OUTPUT:
 * -------
 * Returns double value of A[freq]
 *********************/

double ComputeA(double freq, int r, double ad[], double x[], double y[])
{
   int i;
   double xc, c, denom, numer;

   denom = numer = 0;
   xc = cos(Pi2 * freq);
   for (i=0; i<=r; i++)
   {
      c = xc - x[i];
      if (fabs(c) < 1.0e-7)
      {
         numer = y[i];
         denom = 1;
         break;
      }
      c = ad[i]/c;
      denom += c;
      numer += c*y[i];
   }
   return numer/denom;
}


/************************
 * CalcError
 *===========
 * Calculates the Error function from the desired frequency response
 * on the dense grid (D[]), the weight function on the dense grid (W[]),
 * and the present response calculation (A[])
 *
 *
 * INPUT:
 * ------
 * int    r      - 1/2 the number of filter coefficients
 * double ad[]   - [r+1]
 * double x[]    - [r+1]
 * double y[]    - [r+1]
 * int gridsize  - Number of elements in the dense frequency grid
 * double Grid[] - Frequencies on the dense grid [gridsize]
 * double D[]    - Desired response on the dense grid [gridsize]
 * double W[]    - Weight function on the desnse grid [gridsize]
 *
 * OUTPUT:
 * -------
 * double E[]    - Error function on dense grid [gridsize]
 ************************/

void CalcError(int r, double ad[], double x[], double y[],
               int gridsize, double Grid[],
               double D[], double W[], double E[])
{
   int i;
   double A;

   for (i=0; i<gridsize; i++)
   {
      A = ComputeA(Grid[i], r, ad, x, y);
      E[i] = W[i] * (D[i] - A);
   }
}

/************************
 * Search
 *========
 * Searches for the maxima/minima of the error curve.  If more than
 * r+1 extrema are found, it uses the following heuristic (thanks
 * Chris Hanson):
 * 1) Adjacent non-alternating extrema deleted first.
 * 2) If there are more than one excess extrema, delete the
 *    one with the smallest error.  This will create a non-alternation
 *    condition that is fixed by 1).
 * 3) If there is exactly one excess extremum, delete the smaller
 *    of the first/last extremum
 *
 *
 * INPUT:
 * ------
 * int    r        - 1/2 the number of filter coefficients
 * int    Ext[]    - Indexes to Grid[] of extremal frequencies [r+1]
 * int    gridsize - Number of elements in the dense frequency grid
 * double E[]      - Array of error values.  [gridsize]
 * OUTPUT:
 * -------
 * int    Ext[]    - New indexes to extremal frequencies [r+1]
 ************************/

void Search(int r, int Ext[],
            int gridsize, double E[])
{
   int i, j, k, l, extra;     /* Counters */
   int up, alt;
   int *foundExt;             /* Array of found extremals */

/*
 * Allocate enough space for found extremals.
 */
   foundExt = (int *)malloc((2*r) * sizeof(int));
   k = 0;

/*
 * Check for extremum at 0.
 */
   if (((E[0]>0.0) && (E[0]>E[1])) ||
       ((E[0]<0.0) && (E[0]<E[1])))
      foundExt[k++] = 0;

/*
 * Check for extrema inside dense grid
 */
   for (i=1; i<gridsize-1; i++)
   {
      if (((E[i]>=E[i-1]) && (E[i]>E[i+1]) && (E[i]>0.0)) ||
          ((E[i]<=E[i-1]) && (E[i]<E[i+1]) && (E[i]<0.0)))
         foundExt[k++] = i;
   }

/*
 * Check for extremum at 0.5
 */
   j = gridsize-1;
   if (((E[j]>0.0) && (E[j]>E[j-1])) ||
       ((E[j]<0.0) && (E[j]<E[j-1])))
      foundExt[k++] = j;


/*
 * Remove extra extremals
 */
   extra = k - (r+1);

   while (extra > 0)
   {
      if (E[foundExt[0]] > 0.0)
         up = 1;                /* first one is a maxima */
      else
         up = 0;                /* first one is a minima */

      l=0;
      alt = 1;
      for (j=1; j<k; j++)
      {
         if (fabs(E[foundExt[j]]) < fabs(E[foundExt[l]]))
            l = j;               /* new smallest error. */
         if ((up) && (E[foundExt[j]] < 0.0))
            up = 0;             /* switch to a minima */
         else if ((!up) && (E[foundExt[j]] > 0.0))
            up = 1;             /* switch to a maxima */
         else
	 { 
            alt = 0;
            break;              /* Ooops, found two non-alternating */
         }                      /* extrema.  Delete smallest of them */
      }  /* if the loop finishes, all extrema are alternating */

/*
 * If there's only one extremal and all are alternating,
 * delete the smallest of the first/last extremals.
 */
      if ((alt) && (extra == 1))
      {
         if (fabs(E[foundExt[k-1]]) < fabs(E[foundExt[0]]))
            l = foundExt[k-1];   /* Delete last extremal */
         else
            l = foundExt[0];     /* Delete first extremal */
      }

      for (j=l; j<k; j++)        /* Loop that does the deletion */
      {
         foundExt[j] = foundExt[j+1];
      }
      k--;
      extra--;
   }

   for (i=0; i<=r; i++)
   {
      Ext[i] = foundExt[i];       /* Copy found extremals to Ext[] */
   }

   free(foundExt);
}


/*********************
 * FreqSample
 *============
 * Simple frequency sampling algorithm to determine the impulse
 * response h[] from A's found in ComputeA
 *
 *
 * INPUT:
 * ------
 * int      N        - Number of filter coefficients
 * double   A[]      - Sample points of desired response [N/2]
 * int      symmetry - Symmetry of desired filter
 *
 * OUTPUT:
 * -------
 * double h[] - Impulse Response of final filter [N]
 *********************/
void FreqSample(int N, double A[], double h[], int symm)
{
   int n, k;
   double x, val, M;

   M = (N-1.0)/2.0;
   if (symm == POSITIVE)
   {
      if (N%2)
      {
         for (n=0; n<N; n++)
         {
            val = A[0];
            x = Pi2 * (n - M)/N;
            for (k=1; k<=M; k++)
               val += 2.0 * A[k] * cos(x*k);
            h[n] = val/N;
         }
      }
      else
      {
         for (n=0; n<N; n++)
         {
            val = A[0];
            x = Pi2 * (n - M)/N;
            for (k=1; k<=(N/2-1); k++)
               val += 2.0 * A[k] * cos(x*k);
            h[n] = val/N;
         }
      }
   }
   else
   {
      if (N%2)
      {
         for (n=0; n<N; n++)
         {
            val = 0;
            x = Pi2 * (n - M)/N;
            for (k=1; k<=M; k++)
               val += 2.0 * A[k] * sin(x*k);
            h[n] = val/N;
         }
      }
      else
      {
          for (n=0; n<N; n++)
          {
             val = A[N/2] * sin(Pi * (n - M));
             x = Pi2 * (n - M)/N;
             for (k=1; k<=(N/2-1); k++)
                val += 2.0 * A[k] * sin(x*k);
             h[n] = val/N;
          }
      }
   }
}

/*******************
 * isDone
 *========
 * Checks to see if the error function is small enough to consider
 * the result to have converged.
 *
 * INPUT:
 * ------
 * int    r     - 1/2 the number of filter coeffiecients
 * int    Ext[] - Indexes to extremal frequencies [r+1]
 * double E[]   - Error function on the dense grid [gridsize]
 *
 * OUTPUT:
 * -------
 * Returns 1 if the result converged
 * Returns 0 if the result has not converged
 ********************/

short isDone(int r, int Ext[], double E[])
{
   int i;
   double min, max, current;

   min = max = fabs(E[Ext[0]]);
   for (i=1; i<=r; i++)
   {
      current = fabs(E[Ext[i]]);
      if (current < min)
         min = current;
      if (current > max)
         max = current;
   }
   if (((max-min)/max) < 0.0001)
      return 1;
   return 0;
}

/********************
 * remez
 *=======
 * Calculates the optimal (in the Chebyshev/minimax sense)
 * FIR filter impulse response given a set of band edges,
 * the desired reponse on those bands, and the weight given to
 * the error in those bands.
 *
 * INPUT:
 * ------
 * int     numtaps     - Number of filter coefficients
 * int     numband     - Number of bands in filter specification
 * double  bands[]     - User-specified band edges [2 * numband]
 * double  des[]       - User-specified band responses [numband]
 * double  weight[]    - User-specified error weights [numband]
 * int     type        - Type of filter
 *
 * OUTPUT:
 * -------
 * double h[]      - Impulse response of final filter [numtaps]
 ********************/

void remez(double h[], int numtaps,
           int numband, double bands[], double des[], double weight[],
           int type)
{
   double *Grid, *W, *D, *E;
   int    i, iter, gridsize, r, *Ext;
   double *taps, c;
   double *x, *y, *ad;
   int    symmetry;

   if (type == BANDPASS)
      symmetry = POSITIVE;
   else
      symmetry = NEGATIVE;

   r = numtaps/2;                  /* number of extrema */
   if ((numtaps%2) && (symmetry == POSITIVE))
      r++;

/*
 * Predict dense grid size in advance for memory allocation
 *   .5 is so we round up, not truncate
 */
   gridsize = 0;
   for (i=0; i<numband; i++)
   {
      gridsize += (int)(2*r*GRIDDENSITY*(bands[2*i+1] - bands[2*i]) + .5);
   }
   if (symmetry == NEGATIVE)
   {
      gridsize--;
   }

/*
 * Dynamically allocate memory for arrays with proper sizes
 */
   Grid = (double *)malloc(gridsize * sizeof(double));
   D = (double *)malloc(gridsize * sizeof(double));
   W = (double *)malloc(gridsize * sizeof(double));
   E = (double *)malloc(gridsize * sizeof(double));
   Ext = (int *)malloc((r+1) * sizeof(int));
   taps = (double *)malloc((r+1) * sizeof(double));
   x = (double *)malloc((r+1) * sizeof(double));
   y = (double *)malloc((r+1) * sizeof(double));
   ad = (double *)malloc((r+1) * sizeof(double));

/*
 * Create dense frequency grid
 */
   CreateDenseGrid(r, numtaps, numband, bands, des, weight,
                   &gridsize, Grid, D, W, symmetry);
   InitialGuess(r, Ext, gridsize);

/*
 * For Differentiator: (fix grid)
 */
   if (type == DIFFERENTIATOR)
   {
      for (i=0; i<gridsize; i++)
      {
/* D[i] = D[i]*Grid[i]; */
         if (D[i] > 0.0001)
            W[i] = W[i]/Grid[i];
      }
   }

/*
 * For odd or Negative symmetry filters, alter the
 * D[] and W[] according to Parks McClellan
 */
   if (symmetry == POSITIVE)
   {
      if (numtaps % 2 == 0)
      {
         for (i=0; i<gridsize; i++)
         {
            c = cos(Pi * Grid[i]);
            D[i] /= c;
            W[i] *= c; 
         }
      }
   }
   else
   {
      if (numtaps % 2)
      {
         for (i=0; i<gridsize; i++)
         {
            c = sin(Pi2 * Grid[i]);
            D[i] /= c;
            W[i] *= c;
         }
      }
      else
      {
         for (i=0; i<gridsize; i++)
         {
            c = sin(Pi * Grid[i]);
            D[i] /= c;
            W[i] *= c;
         }
      }
   }

/*
 * Perform the Remez Exchange algorithm
 */
   for (iter=0; iter<MAXITERATIONS; iter++)
   {
      CalcParms(r, Ext, Grid, D, W, ad, x, y);
      CalcError(r, ad, x, y, gridsize, Grid, D, W, E);
      Search(r, Ext, gridsize, E);
      if (isDone(r, Ext, E))
         break;
   }
   if (iter == MAXITERATIONS)
   {
      printf("Reached maximum iteration count.\nResults may be bad.\n");
   }

   CalcParms(r, Ext, Grid, D, W, ad, x, y);

/*
 * Find the 'taps' of the filter for use with Frequency
 * Sampling.  If odd or Negative symmetry, fix the taps
 * according to Parks McClellan
 */
   for (i=0; i<=numtaps/2; i++)
   {
      if (symmetry == POSITIVE)
      {
         if (numtaps%2)
            c = 1;
         else
            c = cos(Pi * (double)i/numtaps);
      }
      else
      {
         if (numtaps%2)
            c = sin(Pi2 * (double)i/numtaps);
         else
            c = sin(Pi * (double)i/numtaps);
      }
      taps[i] = ComputeA((double)i/numtaps, r, ad, x, y)*c;
   }

/*
 * Frequency sampling design with calculated taps
 */
   FreqSample(numtaps, taps, h, symmetry);

/*
 * Delete allocated memory
 */
   free(Grid);
   free(W);
   free(D);
   free(E);
   free(Ext);
   free(x);
   free(y);
   free(ad);
}