summaryrefslogtreecommitdiffstats
path: root/libaf/window.c
blob: 715257d9df1495a6412b0422b89649272199c585 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*=============================================================================
//	
//  This software has been released under the terms of the GNU General Public
//  license. See http://www.gnu.org/copyleft/gpl.html for details.
//
//  Copyright 2001 Anders Johansson ajh@atri.curtin.edu.au
//
//=============================================================================
*/

/* Calculates a number of window functions. The following window
   functions are currently implemented: Boxcar, Triang, Hanning,
   Hamming, Blackman, Flattop and Kaiser. In the function call n is
   the number of filter taps and w the buffer in which the filter
   coefficients will be stored.
*/

#include <math.h>
#include "dsp.h"

/*
// Boxcar
//
// n window length
// w buffer for the window parameters
*/
void af_window_boxcar(int n, FLOAT_TYPE* w)
{
  int i;
  // Calculate window coefficients
  for (i=0 ; i<n ; i++)
    w[i] = 1.0;
}


/*
// Triang a.k.a Bartlett
//
//               |    (N-1)| 
//           2 * |k - -----|
//               |      2  |
// w = 1.0 - ---------------
//                    N+1
// n window length
// w buffer for the window parameters
*/
void af_window_triang(int n, FLOAT_TYPE* w)
{
  FLOAT_TYPE k1  = (FLOAT_TYPE)(n & 1);
  FLOAT_TYPE k2  = 1/((FLOAT_TYPE)n + k1);
  int      end = (n + 1) >> 1;
  int	   i;
  
  // Calculate window coefficients
  for (i=0 ; i<end ; i++)
    w[i] = w[n-i-1] = (2.0*((FLOAT_TYPE)(i+1))-(1.0-k1))*k2;
}


/*
// Hanning
//                   2*pi*k
// w = 0.5 - 0.5*cos(------), where 0 < k <= N
//                    N+1
// n window length
// w buffer for the window parameters
*/
void af_window_hanning(int n, FLOAT_TYPE* w)
{
  int	   i;
  FLOAT_TYPE k = 2*M_PI/((FLOAT_TYPE)(n+1)); // 2*pi/(N+1)
  
  // Calculate window coefficients
  for (i=0; i<n; i++)
    *w++ = 0.5*(1.0 - cos(k*(FLOAT_TYPE)(i+1)));
}

/*
// Hamming
//                        2*pi*k
// w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N
//                         N-1
//
// n window length
// w buffer for the window parameters
*/
void af_window_hamming(int n,FLOAT_TYPE* w)
{
  int      i;
  FLOAT_TYPE k = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1)

  // Calculate window coefficients
  for (i=0; i<n; i++)
    *w++ = 0.54 - 0.46*cos(k*(FLOAT_TYPE)i);
}

/*
// Blackman
//                       2*pi*k             4*pi*k
// w(k) = 0.42 - 0.5*cos(------) + 0.08*cos(------), where 0 <= k < N
//                        N-1                 N-1
//
// n window length
// w buffer for the window parameters
*/
void af_window_blackman(int n,FLOAT_TYPE* w)
{
  int      i;
  FLOAT_TYPE k1 = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1)
  FLOAT_TYPE k2 = 2*k1; // 4*pi/(N-1)

  // Calculate window coefficients
  for (i=0; i<n; i++)
    *w++ = 0.42 - 0.50*cos(k1*(FLOAT_TYPE)i) + 0.08*cos(k2*(FLOAT_TYPE)i);
}

/*
// Flattop
//                                        2*pi*k                     4*pi*k
// w(k) = 0.2810638602 - 0.5208971735*cos(------) + 0.1980389663*cos(------), where 0 <= k < N
//                                          N-1                        N-1
//
// n window length
// w buffer for the window parameters
*/
void af_window_flattop(int n,FLOAT_TYPE* w)
{
  int      i;
  FLOAT_TYPE k1 = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1)
  FLOAT_TYPE k2 = 2*k1;                   // 4*pi/(N-1)
  
  // Calculate window coefficients
  for (i=0; i<n; i++)
    *w++ = 0.2810638602 - 0.5208971735*cos(k1*(FLOAT_TYPE)i)
                        + 0.1980389663*cos(k2*(FLOAT_TYPE)i);
}

/* Computes the 0th order modified Bessel function of the first kind.  
// (Needed to compute Kaiser window) 
//   
// y = sum( (x/(2*n))^2 )
//      n
*/
#define BIZ_EPSILON 1E-21 // Max error acceptable 

static FLOAT_TYPE besselizero(FLOAT_TYPE x)
{ 
  FLOAT_TYPE temp;
  FLOAT_TYPE sum   = 1.0;
  FLOAT_TYPE u     = 1.0;
  FLOAT_TYPE halfx = x/2.0;
  int      n     = 1;

  do {
    temp = halfx/(FLOAT_TYPE)n;
    u *=temp * temp;
    sum += u;
    n++;
  } while (u >= BIZ_EPSILON * sum);
  return(sum);
}

/*
// Kaiser
//
// n window length
// w buffer for the window parameters
// b beta parameter of Kaiser window, Beta >= 1
//
// Beta trades the rejection of the low pass filter against the
// transition width from passband to stop band.  Larger Beta means a
// slower transition and greater stop band rejection.  See Rabiner and
// Gold (Theory and Application of DSP) under Kaiser windows for more
// about Beta.  The following table from Rabiner and Gold gives some
// feel for the effect of Beta:
// 
// All ripples in dB, width of transition band = D*N where N = window
// length
// 
// BETA    D       PB RIP   SB RIP
// 2.120   1.50  +-0.27      -30
// 3.384   2.23    0.0864    -40
// 4.538   2.93    0.0274    -50
// 5.658   3.62    0.00868   -60
// 6.764   4.32    0.00275   -70
// 7.865   5.0     0.000868  -80
// 8.960   5.7     0.000275  -90
// 10.056  6.4     0.000087  -100
*/
void af_window_kaiser(int n, FLOAT_TYPE* w, FLOAT_TYPE b)
{
  FLOAT_TYPE tmp;
  FLOAT_TYPE k1  = 1.0/besselizero(b);
  int	   k2  = 1 - (n & 1);
  int      end = (n + 1) >> 1;
  int      i; 
  
  // Calculate window coefficients
  for (i=0 ; i<end ; i++){
    tmp = (FLOAT_TYPE)(2*i + k2) / ((FLOAT_TYPE)n - 1.0);
    w[end-(1&(!k2))+i] = w[end-1-i] = k1 * besselizero(b*sqrt(1.0 - tmp*tmp));
  }
}