1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
/*=============================================================================
//
// This software has been released under the terms of the GNU General Public
// license. See http://www.gnu.org/copyleft/gpl.html for details.
//
// Copyright 2002 Anders Johansson ajh@atri.curtin.edu.au
//
//=============================================================================
*/
/* */
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <math.h>
#include <limits.h>
#include "af.h"
// Data for specific instances of this filter
typedef struct af_pan_s
{
int nch; // Number of output channels; zero means same as input
float level[AF_NCH][AF_NCH]; // Gain level for each channel
}af_pan_t;
// Initialization and runtime control
static int control(struct af_instance_s* af, int cmd, void* arg)
{
af_pan_t* s = af->setup;
switch(cmd){
case AF_CONTROL_REINIT:
// Sanity check
if(!arg) return AF_ERROR;
af->data->rate = ((af_data_t*)arg)->rate;
af->data->format = AF_FORMAT_FLOAT_NE;
af->data->bps = 4;
af->data->nch = s->nch ? s->nch: ((af_data_t*)arg)->nch;
af->mul.n = af->data->nch;
af->mul.d = ((af_data_t*)arg)->nch;
af_frac_cancel(&af->mul);
if((af->data->format != ((af_data_t*)arg)->format) ||
(af->data->bps != ((af_data_t*)arg)->bps)){
((af_data_t*)arg)->format = af->data->format;
((af_data_t*)arg)->bps = af->data->bps;
return AF_FALSE;
}
return AF_OK;
case AF_CONTROL_COMMAND_LINE:{
int nch = 0;
int n = 0;
char* cp = NULL;
int j,k;
// Read number of outputs
sscanf((char*)arg,"%i%n", &nch,&n);
if(AF_OK != control(af,AF_CONTROL_PAN_NOUT | AF_CONTROL_SET, &nch))
return AF_ERROR;
// Read pan values
cp = &((char*)arg)[n];
j = 0; k = 0;
while((*cp == ':') && (k < AF_NCH)){
sscanf(cp, ":%f%n" , &s->level[j][k], &n);
af_msg(AF_MSG_VERBOSE,"[pan] Pan level from channel %i to"
" channel %i = %f\n",k,j,s->level[j][k]);
cp =&cp[n];
j++;
if(j>=nch){
j = 0;
k++;
}
}
return AF_OK;
}
case AF_CONTROL_PAN_LEVEL | AF_CONTROL_SET:{
int i;
int ch = ((af_control_ext_t*)arg)->ch;
float* level = ((af_control_ext_t*)arg)->arg;
if (ch >= AF_NCH)
return AF_FALSE;
for(i=0;i<AF_NCH;i++)
s->level[ch][i] = level[i];
return AF_OK;
}
case AF_CONTROL_PAN_LEVEL | AF_CONTROL_GET:{
int i;
int ch = ((af_control_ext_t*)arg)->ch;
float* level = ((af_control_ext_t*)arg)->arg;
if (ch >= AF_NCH)
return AF_FALSE;
for(i=0;i<AF_NCH;i++)
level[i] = s->level[ch][i];
return AF_OK;
}
case AF_CONTROL_PAN_NOUT | AF_CONTROL_SET:
// Reinit must be called after this function has been called
// Sanity check
if(((int*)arg)[0] <= 0 || ((int*)arg)[0] > AF_NCH){
af_msg(AF_MSG_ERROR,"[pan] The number of output channels must be"
" between 1 and %i. Current value is %i\n",AF_NCH,((int*)arg)[0]);
return AF_ERROR;
}
s->nch=((int*)arg)[0];
return AF_OK;
case AF_CONTROL_PAN_NOUT | AF_CONTROL_GET:
*(int*)arg = af->data->nch;
return AF_OK;
case AF_CONTROL_PAN_BALANCE | AF_CONTROL_SET:{
float val = *(float*)arg;
if (s->nch)
return AF_ERROR;
if (af->data->nch >= 2) {
s->level[0][0] = min(1.f, 1.f - val);
s->level[0][1] = max(0.f, val);
s->level[1][0] = max(0.f, -val);
s->level[1][1] = min(1.f, 1.f + val);
}
return AF_OK;
}
case AF_CONTROL_PAN_BALANCE | AF_CONTROL_GET:
if (s->nch)
return AF_ERROR;
*(float*)arg = s->level[0][1] - s->level[1][0];
return AF_OK;
}
return AF_UNKNOWN;
}
// Deallocate memory
static void uninit(struct af_instance_s* af)
{
if(af->data)
free(af->data->audio);
free(af->data);
if(af->setup)
free(af->setup);
}
// Filter data through filter
static af_data_t* play(struct af_instance_s* af, af_data_t* data)
{
af_data_t* c = data; // Current working data
af_data_t* l = af->data; // Local data
af_pan_t* s = af->setup; // Setup for this instance
float* in = c->audio; // Input audio data
float* out = NULL; // Output audio data
float* end = in+c->len/4; // End of loop
int nchi = c->nch; // Number of input channels
int ncho = l->nch; // Number of output channels
register int j,k;
if(AF_OK != RESIZE_LOCAL_BUFFER(af,data))
return NULL;
out = l->audio;
// Execute panning
// FIXME: Too slow
while(in < end){
for(j=0;j<ncho;j++){
register float x = 0.0;
register float* tin = in;
for(k=0;k<nchi;k++)
x += tin[k] * s->level[j][k];
out[j] = x;
}
out+= ncho;
in+= nchi;
}
// Set output data
c->audio = l->audio;
c->len = (c->len*af->mul.n)/af->mul.d;
c->nch = l->nch;
return c;
}
// Allocate memory and set function pointers
static int af_open(af_instance_t* af){
af->control=control;
af->uninit=uninit;
af->play=play;
af->mul.n=1;
af->mul.d=1;
af->data=calloc(1,sizeof(af_data_t));
af->setup=calloc(1,sizeof(af_pan_t));
if(af->data == NULL || af->setup == NULL)
return AF_ERROR;
return AF_OK;
}
// Description of this filter
af_info_t af_info_pan = {
"Panning audio filter",
"pan",
"Anders",
"",
AF_FLAGS_REENTRANT,
af_open
};
|