summaryrefslogtreecommitdiffstats
path: root/filters/f_async_queue.c
blob: 696649f3d1b0bd5983a58e7bc54d5784b9e322a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#include <limits.h>
#include <pthread.h>

#include "audio/aframe.h"
#include "common/common.h"
#include "common/msg.h"
#include "osdep/atomic.h"

#include "f_async_queue.h"
#include "filter_internal.h"

struct mp_async_queue {
    // This is just a wrapper, so the API user can talloc_free() it, instead of
    // having to call a special unref function.
    struct async_queue *q;
};

struct async_queue {
    mp_atomic_uint64 refcount;

    pthread_mutex_t lock;

    // -- protected by lock
    struct mp_async_queue_config cfg;
    bool active; // queue was resumed; consumer may request frames
    bool reading; // data flow: reading => consumer has requested frames
    int64_t samples_size; // queue size in the cfg.sample_unit
    size_t byte_size; // queue size in bytes (using approx. frame sizes)
    int num_frames;
    struct mp_frame *frames;
    int eof_count; // number of MP_FRAME_EOF in frames[], for draining
    struct mp_filter *conn[2]; // filters: in (0), out (1)
};

static void reset_queue(struct async_queue *q)
{
    pthread_mutex_lock(&q->lock);
    q->active = q->reading = false;
    for (int n = 0; n < q->num_frames; n++)
        mp_frame_unref(&q->frames[n]);
    q->num_frames = 0;
    q->eof_count = 0;
    q->samples_size = 0;
    q->byte_size = 0;
    for (int n = 0; n < 2; n++) {
        if (q->conn[n])
            mp_filter_wakeup(q->conn[n]);
    }
    pthread_mutex_unlock(&q->lock);
}

static void unref_queue(struct async_queue *q)
{
    if (!q)
        return;
    int count = atomic_fetch_add(&q->refcount, -1) - 1;
    assert(count >= 0);
    if (count == 0) {
        reset_queue(q);
        pthread_mutex_destroy(&q->lock);
        talloc_free(q);
    }
}

static void on_free_queue(void *p)
{
    struct mp_async_queue *q = p;
    unref_queue(q->q);
}

struct mp_async_queue *mp_async_queue_create(void)
{
    struct mp_async_queue *r = talloc_zero(NULL, struct mp_async_queue);
    r->q = talloc_zero(NULL, struct async_queue);
    *r->q = (struct async_queue){
        .refcount = ATOMIC_VAR_INIT(1),
    };
    pthread_mutex_init(&r->q->lock, NULL);
    talloc_set_destructor(r, on_free_queue);
    mp_async_queue_set_config(r, (struct mp_async_queue_config){0});
    return r;
}

static int64_t frame_get_samples(struct async_queue *q, struct mp_frame frame)
{
    int64_t res = 1;
    if (frame.type == MP_FRAME_AUDIO && q->cfg.sample_unit == AQUEUE_UNIT_SAMPLES) {
        struct mp_aframe *aframe = frame.data;
        res = mp_aframe_get_size(aframe);
    }
    return res;
}

static bool is_full(struct async_queue *q)
{
    if (q->samples_size >= q->cfg.max_samples || q->byte_size >= q->cfg.max_bytes)
        return true;
    if (q->num_frames >= 2 && q->cfg.max_duration > 0) {
        double pts1 = mp_frame_get_pts(q->frames[q->num_frames - 1]);
        double pts2 = mp_frame_get_pts(q->frames[0]);
        if (pts1 != MP_NOPTS_VALUE && pts2 != MP_NOPTS_VALUE &&
            pts2 - pts1 >= q->cfg.max_duration)
            return true;
    }
    return false;
}

// Add or remove a frame from the accounted queue size.
//  dir==1: add, dir==-1: remove
static void account_frame(struct async_queue *q, struct mp_frame frame,
                          int dir)
{
    assert(dir == 1 || dir == -1);

    q->samples_size += dir * frame_get_samples(q, frame);
    q->byte_size += dir * mp_frame_approx_size(frame);

    if (frame.type == MP_FRAME_EOF)
        q->eof_count += dir;
}

static void recompute_sizes(struct async_queue *q)
{
    q->eof_count = 0;
    q->samples_size = 0;
    q->byte_size = 0;
    for (int n = 0; n < q->num_frames; n++)
        account_frame(q, q->frames[n], 1);
}

void mp_async_queue_set_config(struct mp_async_queue *queue,
                               struct mp_async_queue_config cfg)
{
    struct async_queue *q = queue->q;

    cfg.max_bytes = MPCLAMP(cfg.max_bytes, 1, (size_t)-1 / 2);

    assert(cfg.sample_unit == AQUEUE_UNIT_FRAME ||
           cfg.sample_unit == AQUEUE_UNIT_SAMPLES);

    cfg.max_samples = MPMAX(cfg.max_samples, 1);

    pthread_mutex_lock(&q->lock);
    bool recompute = q->cfg.sample_unit != cfg.sample_unit;
    q->cfg = cfg;
    if (recompute)
        recompute_sizes(q);
    pthread_mutex_unlock(&q->lock);
}

void mp_async_queue_reset(struct mp_async_queue *queue)
{
    reset_queue(queue->q);
}

void mp_async_queue_resume(struct mp_async_queue *queue)
{
    struct async_queue *q = queue->q;

    pthread_mutex_lock(&q->lock);
    if (!q->active) {
        q->active = true;
        // Possibly make the consumer request new frames.
        if (q->conn[1])
            mp_filter_wakeup(q->conn[1]);
    }
    pthread_mutex_unlock(&q->lock);
}

struct priv {
    struct async_queue *q;
};

static void destroy(struct mp_filter *f)
{
    struct priv *p = f->priv;
    struct async_queue *q = p->q;

    pthread_mutex_lock(&q->lock);
    for (int n = 0; n < 2; n++) {
        if (q->conn[n] == f)
            q->conn[n] = NULL;
    }
    pthread_mutex_unlock(&q->lock);

    unref_queue(q);
}

static void process_in(struct mp_filter *f)
{
    struct priv *p = f->priv;
    struct async_queue *q = p->q;
    assert(q->conn[0] == f);

    pthread_mutex_lock(&q->lock);
    if (!q->reading) {
        // mp_async_queue_reset()/reset_queue() is usually called asynchronously,
        // so we might have requested a frame earlier, and now can't use it.
        // Discard it; the expectation is that this is a benign logical race
        // condition, and the filter graph will be reset anyway.
        if (mp_pin_out_has_data(f->ppins[0])) {
            struct mp_frame frame = mp_pin_out_read(f->ppins[0]);
            mp_frame_unref(&frame);
            MP_DBG(f, "discarding frame due to async reset\n");
        }
    } else if (!is_full(q) && mp_pin_out_request_data(f->ppins[0])) {
        struct mp_frame frame = mp_pin_out_read(f->ppins[0]);
        account_frame(q, frame, 1);
        MP_TARRAY_INSERT_AT(q, q->frames, q->num_frames, 0, frame);
        // Notify reader that we have new frames.
        if (q->conn[1])
            mp_filter_wakeup(q->conn[1]);
        if (!is_full(q))
            mp_pin_out_request_data_next(f->ppins[0]);
    }
    pthread_mutex_unlock(&q->lock);
}

static void process_out(struct mp_filter *f)
{
    struct priv *p = f->priv;
    struct async_queue *q = p->q;
    assert(q->conn[1] == f);

    if (!mp_pin_in_needs_data(f->ppins[0]))
        return;

    pthread_mutex_lock(&q->lock);
    if (q->active && !q->reading) {
        q->reading = true;
        mp_filter_wakeup(q->conn[0]);
    }
    if (q->active && q->num_frames) {
        struct mp_frame frame = q->frames[q->num_frames - 1];
        q->num_frames -= 1;
        account_frame(q, frame, -1);
        assert(q->samples_size >= 0);
        mp_pin_in_write(f->ppins[0], frame);
        // Notify writer that we need new frames.
        if (q->conn[0])
            mp_filter_wakeup(q->conn[0]);
    }
    pthread_mutex_unlock(&q->lock);
}

static void reset(struct mp_filter *f)
{
    struct priv *p = f->priv;
    struct async_queue *q = p->q;

    reset_queue(q);
}

// producer
static const struct mp_filter_info info_in = {
    .name = "async_queue_in",
    .priv_size = sizeof(struct priv),
    .destroy = destroy,
    .process = process_in,
    .reset = reset,
};

// consumer
static const struct mp_filter_info info_out = {
    .name = "async_queue_out",
    .priv_size = sizeof(struct priv),
    .destroy = destroy,
    .process = process_out,
    .reset = reset,
};

struct mp_filter *mp_async_queue_create_filter(struct mp_filter *parent,
                                               enum mp_pin_dir dir,
                                               struct mp_async_queue *queue)
{
    bool is_in = dir == MP_PIN_IN;
    assert(queue);

    struct mp_filter *f = mp_filter_create(parent, is_in ? &info_in : &info_out);
    if (!f)
        return NULL;

    struct priv *p = f->priv;

    struct async_queue *q = queue->q;

    mp_filter_add_pin(f, dir, is_in ? "in" : "out");

    atomic_fetch_add(&q->refcount, 1);
    p->q = q;

    pthread_mutex_lock(&q->lock);
    int slot = is_in ? 0 : 1;
    assert(!q->conn[slot]); // fails if already connected on this end
    q->conn[slot] = f;
    pthread_mutex_unlock(&q->lock);

    return f;
}