#pragma once #include "common/common.h" #include "misc/bstr.h" // Handle for a rendering API backend. struct ra { struct ra_fns *fns; void *priv; int glsl_version; // GLSL version (e.g. 300 => 3.0) bool glsl_es; // use ES dialect bool glsl_vulkan; // use vulkan dialect struct mp_log *log; // RA_CAP_* bit field. The RA backend must set supported features at init // time. uint64_t caps; // Maximum supported width and height of a 2D texture. Set by the RA backend // at init time. int max_texture_wh; // Maximum shared memory for compute shaders. Set by the RA backend at init // time. size_t max_shmem; // Maximum push constant size. Set by the RA backend at init time. size_t max_pushc_size; // Set of supported texture formats. Must be added by RA backend at init time. // If there are equivalent formats with different caveats, the preferred // formats should have a lower index. (E.g. GLES3 should put rg8 before la.) struct ra_format **formats; int num_formats; // Accelerate texture uploads via an extra PBO even when // RA_CAP_DIRECT_UPLOAD is supported. This is basically only relevant for // OpenGL. Set by the RA user. bool use_pbo; }; enum { RA_CAP_TEX_1D = 1 << 0, // supports 1D textures (as shader inputs) RA_CAP_TEX_3D = 1 << 1, // supports 3D textures (as shader inputs) RA_CAP_BLIT = 1 << 2, // supports ra_fns.blit RA_CAP_COMPUTE = 1 << 3, // supports compute shaders RA_CAP_DIRECT_UPLOAD = 1 << 4, // supports tex_upload without ra_buf RA_CAP_BUF_RO = 1 << 5, // supports RA_VARTYPE_BUF_RO RA_CAP_BUF_RW = 1 << 6, // supports RA_VARTYPE_BUF_RW RA_CAP_NESTED_ARRAY = 1 << 7, // supports nested arrays RA_CAP_GLOBAL_UNIFORM = 1 << 8, // supports using "naked" uniforms (not UBO) RA_CAP_GATHER = 1 << 9, // supports textureGather in GLSL RA_CAP_FRAGCOORD = 1 << 10, // supports reading from gl_FragCoord RA_CAP_PARALLEL_COMPUTE = 1 << 11, // supports parallel compute shaders }; enum ra_ctype { RA_CTYPE_UNKNOWN = 0, // also used for inconsistent multi-component formats RA_CTYPE_UNORM, // unsigned normalized integer (fixed point) formats RA_CTYPE_UINT, // full integer formats RA_CTYPE_FLOAT, // float formats (signed, any bit size) }; // All formats must be useable as texture formats. All formats must be byte // aligned (all pixels start and end on a byte boundary), at least as far CPU // transfers are concerned. struct ra_format { // All fields are read-only after creation. const char *name; // symbolic name for user interaction/debugging void *priv; enum ra_ctype ctype; // data type of each component bool ordered; // components are sequential in memory, and returned // by the shader in memory order (the shader can // return arbitrary values for unused components) int num_components; // component count, 0 if not applicable, max. 4 int component_size[4]; // in bits, all entries 0 if not applicable int component_depth[4]; // bits in use for each component, 0 if not applicable // (_must_ be set if component_size[] includes padding, // and the real procession as seen by shader is lower) int pixel_size; // in bytes, total pixel size (0 if opaque) bool luminance_alpha; // pre-GL_ARB_texture_rg hack for 2 component textures // if this is set, shader must use .ra instead of .rg // only applies to 2-component textures bool linear_filter; // linear filtering available from shader bool renderable; // can be used for render targets bool dummy_format; // is not a real ra_format but a fake one (e.g. FBO). // dummy formats cannot be used to create textures // If not 0, the format represents some sort of packed fringe format, whose // shader representation is given by the special_imgfmt_desc pointer. int special_imgfmt; const struct ra_imgfmt_desc *special_imgfmt_desc; // This gives the GLSL image format corresponding to the format, if any. // (e.g. rgba16ui) const char *glsl_format; }; struct ra_tex_params { int dimensions; // 1-3 for 1D-3D textures // Size of the texture. 1D textures require h=d=1, 2D textures require d=1. int w, h, d; const struct ra_format *format; bool render_src; // must be useable as source texture in a shader bool render_dst; // must be useable as target texture in a shader bool storage_dst; // must be usable as a storage image (RA_VARTYPE_IMG_W) bool blit_src; // must be usable as a blit source bool blit_dst; // must be usable as a blit destination bool host_mutable; // texture may be updated with tex_upload // When used as render source texture. bool src_linear; // if false, use nearest sampling (whether this can // be true depends on ra_format.linear_filter) bool src_repeat; // if false, clamp texture coordinates to edge // if true, repeat texture coordinates bool non_normalized; // hack for GL_TEXTURE_RECTANGLE OSX idiocy // always set to false, except in OSX code bool external_oes; // hack for GL_TEXTURE_EXTERNAL_OES idiocy // If non-NULL, the texture will be created with these contents. Using // this does *not* require setting host_mutable. Otherwise, the initial // data is undefined. void *initial_data; }; // Conflates the following typical GPU API concepts: // - texture itself // - sampler state // - staging buffers for texture upload // - framebuffer objects // - wrappers for swapchain framebuffers // - synchronization needed for upload/rendering/etc. struct ra_tex { // All fields are read-only after creation. struct ra_tex_params params; void *priv; }; struct ra_tex_upload_params { struct ra_tex *tex; // Texture to upload to bool invalidate; // Discard pre-existing data not in the region uploaded // Uploading from buffer: struct ra_buf *buf; // Buffer to upload from (mutually exclusive with `src`) size_t buf_offset; // Start of data within buffer (bytes) // Uploading directly: (Note: If RA_CAP_DIRECT_UPLOAD is not set, then this // will be internally translated to a tex_upload buffer by the RA) const void *src; // Address of data // For 2D textures only: struct mp_rect *rc; // Region to upload. NULL means entire image ptrdiff_t stride; // The size of a horizontal line in bytes (*not* texels!) }; // Buffer usage type. This restricts what types of operations may be performed // on a buffer. enum ra_buf_type { RA_BUF_TYPE_INVALID, RA_BUF_TYPE_TEX_UPLOAD, // texture upload buffer (pixel buffer object) RA_BUF_TYPE_SHADER_STORAGE, // shader buffer (SSBO), for RA_VARTYPE_BUF_RW RA_BUF_TYPE_UNIFORM, // uniform buffer (UBO), for RA_VARTYPE_BUF_RO RA_BUF_TYPE_VERTEX, // not publicly usable (RA-internal usage) }; struct ra_buf_params { enum ra_buf_type type; size_t size; bool host_mapped; // create a read-writable persistent mapping (ra_buf.data) bool host_mutable; // contents may be updated via buf_update() // If non-NULL, the buffer will be created with these contents. Otherwise, // the initial data is undefined. void *initial_data; }; // A generic buffer, which can be used for many purposes (texture upload, // storage buffer, uniform buffer, etc.) struct ra_buf { // All fields are read-only after creation. struct ra_buf_params params; void *data; // for persistently mapped buffers, points to the first byte void *priv; }; // Type of a shader uniform variable, or a vertex attribute. In all cases, // vectors are matrices are done by having more than 1 value. enum ra_vartype { RA_VARTYPE_INVALID, RA_VARTYPE_INT, // C: int, GLSL: int, ivec* RA_VARTYPE_FLOAT, // C: float, GLSL: float, vec*, mat* RA_VARTYPE_TEX, // C: ra_tex*, GLSL: various sampler types // ra_tex.params.render_src must be true RA_VARTYPE_IMG_W, // C: ra_tex*, GLSL: various image types // write-only (W) image for compute shaders // ra_tex.params.storage_dst must be true RA_VARTYPE_BYTE_UNORM, // C: uint8_t, GLSL: int, vec* (vertex data only) RA_VARTYPE_BUF_RO, // C: ra_buf*, GLSL: uniform buffer block // buf type must be RA_BUF_TYPE_UNIFORM RA_VARTYPE_BUF_RW, // C: ra_buf*, GLSL: shader storage buffer block // buf type must be RA_BUF_TYPE_SHADER_STORAGE RA_VARTYPE_COUNT }; // Returns the host size of a ra_vartype, or 0 for abstract vartypes (e.g. tex) size_t ra_vartype_size(enum ra_vartype type); // Represents a uniform, texture input parameter, and similar things. struct ra_renderpass_input { const char *name; // name as used in the shader enum ra_vartype type; // The total number of values is given by dim_v * dim_m. int dim_v; // vector dimension (1 for non-vector and non-matrix) int dim_m; // additional matrix dimension (dim_v x dim_m) // Vertex data: byte offset of the attribute into the vertex struct size_t offset; // RA_VARTYPE_TEX: texture unit // RA_VARTYPE_IMG_W: image unit // RA_VARTYPE_BUF_* buffer binding point // Other uniforms: unused // Bindings must be unique within each namespace, as specified by // desc_namespace() int binding; }; // Represents the layout requirements of an input value struct ra_layout { size_t align; // the alignment requirements (always a power of two) size_t stride; // the delta between two rows of an array/matrix size_t size; // the total size of the input }; // Returns the host layout of a render pass input. Returns {0} for renderpass // inputs without a corresponding host representation (e.g. textures/buffers) struct ra_layout ra_renderpass_input_layout(struct ra_renderpass_input *input); enum ra_blend { RA_BLEND_ZERO, RA_BLEND_ONE, RA_BLEND_SRC_ALPHA, RA_BLEND_ONE_MINUS_SRC_ALPHA, }; enum ra_renderpass_type { RA_RENDERPASS_TYPE_INVALID, RA_RENDERPASS_TYPE_RASTER, // vertex+fragment shader RA_RENDERPASS_TYPE_COMPUTE, // compute shader }; // Static part of a rendering pass. It conflates the following: // - compiled shader and its list of uniforms // - vertex attributes and its shader mappings // - blending parameters // (For Vulkan, this would be shader module + pipeline state.) // Upon creation, the values of dynamic values such as uniform contents (whose // initial values are not provided here) are required to be 0. struct ra_renderpass_params { enum ra_renderpass_type type; // Uniforms, including texture/sampler inputs. struct ra_renderpass_input *inputs; int num_inputs; size_t push_constants_size; // must be <= ra.max_pushc_size and a multiple of 4 // Highly implementation-specific byte array storing a compiled version // of the program. Can be used to speed up shader compilation. A backend // xan read this in renderpass_create, or set this on the newly created // ra_renderpass params field. bstr cached_program; // --- type==RA_RENDERPASS_TYPE_RASTER only // Describes the format of the vertex data. When using ra.glsl_vulkan, // the order of this array must match the vertex attribute locations. struct ra_renderpass_input *vertex_attribs; int num_vertex_attribs; int vertex_stride; // Format of the target texture const struct ra_format *target_format; // Shader text, in GLSL. (Yes, you need a GLSL compiler.) // These are complete shaders, including prelude and declarations. const char *vertex_shader; const char *frag_shader; // Target blending mode. If enable_blend is false, the blend_ fields can // be ignored. bool enable_blend; enum ra_blend blend_src_rgb; enum ra_blend blend_dst_rgb; enum ra_blend blend_src_alpha; enum ra_blend blend_dst_alpha; // If true, the contents of `target` not written to will become undefined bool invalidate_target; // --- type==RA_RENDERPASS_TYPE_COMPUTE only // Shader text, like vertex_shader/frag_shader. const char *compute_shader; }; struct ra_renderpass_params *ra_renderpass_params_copy(void *ta_parent, const struct ra_renderpass_params *params); // Conflates the following typical GPU API concepts: // - various kinds of shaders // - rendering pipelines // - descriptor sets, uniforms, other bindings // - all synchronization necessary // - the current values of all uniforms (this one makes it relatively stateful // from an API perspective) struct ra_renderpass { // All fields are read-only after creation. struct ra_renderpass_params params; void *priv; }; // An input value (see ra_renderpass_input). struct ra_renderpass_input_val { int index; // index into ra_renderpass_params.inputs[] void *data; // pointer to data according to ra_renderpass_input // (e.g. type==RA_VARTYPE_FLOAT+dim_v=3,dim_m=3 => float[9]) }; // Parameters for performing a rendering pass (basically the dynamic params). // These change potentially every time. struct ra_renderpass_run_params { struct ra_renderpass *pass; // Generally this lists parameters only which changed since the last // invocation and need to be updated. The ra_renderpass instance is // supposed to keep unchanged values from the previous run. // For non-primitive types like textures, these entries are always added, // even if they do not change. struct ra_renderpass_input_val *values; int num_values; void *push_constants; // must be set if params.push_constants_size > 0 // --- pass->params.type==RA_RENDERPASS_TYPE_RASTER only // target->params.render_dst must be true, and target->params.format must // match pass->params.target_format. struct ra_tex *target; struct mp_rect viewport; struct mp_rect scissors; // (The primitive type is always a triangle list.) void *vertex_data; int vertex_count; // number of vertex elements, not bytes // --- pass->params.type==RA_RENDERPASS_TYPE_COMPUTE only // Number of work groups to be run in X/Y/Z dimensions. int compute_groups[3]; }; // This is an opaque type provided by the implementation, but we want to at // least give it a saner name than void* for code readability purposes. typedef void ra_timer; // Rendering API entrypoints. (Note: there are some additional hidden features // you need to take care of. For example, hwdec mapping will be provided // separately from ra, but might need to call into ra private code.) struct ra_fns { void (*destroy)(struct ra *ra); // Create a texture (with undefined contents). Return NULL on failure. // This is a rare operation, and normally textures and even FBOs for // temporary rendering intermediate data are cached. struct ra_tex *(*tex_create)(struct ra *ra, const struct ra_tex_params *params); void (*tex_destroy)(struct ra *ra, struct ra_tex *tex); // Upload data to a texture. This is an extremely common operation. When // using a buffer, the contants of the buffer must exactly match the image // - conversions between bit depth etc. are not supported. The buffer *may* // be marked as "in use" while this operation is going on, and the contents // must not be touched again by the API user until buf_poll returns true. // Returns whether successful. bool (*tex_upload)(struct ra *ra, const struct ra_tex_upload_params *params); // Create a buffer. This can be used as a persistently mapped buffer, // a uniform buffer, a shader storage buffer or possibly others. // Not all usage types must be supported; may return NULL if unavailable. struct ra_buf *(*buf_create)(struct ra *ra, const struct ra_buf_params *params); void (*buf_destroy)(struct ra *ra, struct ra_buf *buf); // Update the contents of a buffer, starting at a given offset (*must* be a // multiple of 4) and up to a given size, with the contents of *data. This // is an extremely common operation. Calling this while the buffer is // considered "in use" is an error. (See: buf_poll) void (*buf_update)(struct ra *ra, struct ra_buf *buf, ptrdiff_t offset, const void *data, size_t size); // Returns if a buffer is currently "in use" or not. Updating the contents // of a buffer (via buf_update or writing to buf->data) while it is still // in use is an error and may result in graphical corruption. Optional, if // NULL then all buffers are always usable. bool (*buf_poll)(struct ra *ra, struct ra_buf *buf); // Returns the layout requirements of a uniform buffer element. Optional, // but must be implemented if RA_CAP_BUF_RO is supported. struct ra_layout (*uniform_layout)(struct ra_renderpass_input *inp); // Returns the layout requirements of a push constant element. Optional, // but must be implemented if ra.max_pushc_size > 0. struct ra_layout (*push_constant_layout)(struct ra_renderpass_input *inp); // Returns an abstract namespace index for a given renderpass input type. // This will always be a value >= 0 and < RA_VARTYPE_COUNT. This is used to // figure out which inputs may share the same value of `binding`. int (*desc_namespace)(enum ra_vartype type); // Clear the dst with the given color (rgba) and within the given scissor. // dst must have dst->params.render_dst==true. Content outside of the // scissor is preserved. void (*clear)(struct ra *ra, struct ra_tex *dst, float color[4], struct mp_rect *scissor); // Copy a sub-rectangle from one texture to another. The source/dest region // is always within the texture bounds. Areas outside the dest region are // preserved. The formats of the textures must be losely compatible. The // dst texture can be a swapchain framebuffer, but src can not. Only 2D // textures are supported. // The textures must have blit_src and blit_dst set, respectively. // Rectangles with negative width/height lead to flipping, different src/dst // sizes lead to point scaling. Coordinates are always in pixels. // Optional. Only available if RA_CAP_BLIT is set (if it's not set, it must // not be called, even if it's non-NULL). void (*blit)(struct ra *ra, struct ra_tex *dst, struct ra_tex *src, struct mp_rect *dst_rc, struct mp_rect *src_rc); // Compile a shader and create a pipeline. This is a rare operation. // The params pointer and anything it points to must stay valid until // renderpass_destroy. struct ra_renderpass *(*renderpass_create)(struct ra *ra, const struct ra_renderpass_params *params); void (*renderpass_destroy)(struct ra *ra, struct ra_renderpass *pass); // Perform a render pass, basically drawing a list of triangles to a FBO. // This is an extremely common operation. void (*renderpass_run)(struct ra *ra, const struct ra_renderpass_run_params *params); // Create a timer object. Returns NULL on failure, or if timers are // unavailable for some reason. Optional. ra_timer *(*timer_create)(struct ra *ra); void (*timer_destroy)(struct ra *ra, ra_timer *timer); // Start recording a timer. Note that valid usage requires you to pair // every start with a stop. Trying to start a timer twice, or trying to // stop a timer before having started it, consistutes invalid usage. void (*timer_start)(struct ra *ra, ra_timer *timer); // Stop recording a timer. This also returns any results that have been // measured since the last usage of this ra_timer. It's important to note // that GPU timer measurement are asynchronous, so this function does not // always produce a value - and the values it does produce are typically // delayed by a few frames. When no value is available, this returns 0. uint64_t (*timer_stop)(struct ra *ra, ra_timer *timer); // Associates a marker with any past error messages, for debugging // purposes. Optional. void (*debug_marker)(struct ra *ra, const char *msg); }; struct ra_tex *ra_tex_create(struct ra *ra, const struct ra_tex_params *params); void ra_tex_free(struct ra *ra, struct ra_tex **tex); struct ra_buf *ra_buf_create(struct ra *ra, const struct ra_buf_params *params); void ra_buf_free(struct ra *ra, struct ra_buf **buf); void ra_free(struct ra **ra); const struct ra_format *ra_find_unorm_format(struct ra *ra, int bytes_per_component, int n_components); const struct ra_format *ra_find_uint_format(struct ra *ra, int bytes_per_component, int n_components); const struct ra_format *ra_find_float16_format(struct ra *ra, int n_components); const struct ra_format *ra_find_named_format(struct ra *ra, const char *name); struct ra_imgfmt_desc { int num_planes; const struct ra_format *planes[4]; // Chroma pixel size (1x1 is 4:4:4) uint8_t chroma_w, chroma_h; // Component storage size in bits (possibly padded). For formats with // different sizes per component, this is arbitrary. For padded formats // like P010 or YUV420P10, padding is included. int component_bits; // Like mp_regular_imgfmt.component_pad. int component_pad; // For each texture and each texture output (rgba order) describe what // component it returns. // The values are like the values in mp_regular_imgfmt_plane.components[]. // Access as components[plane_nr][component_index]. Set unused items to 0. // For ra_format.luminance_alpha, this returns 1/2 ("rg") instead of 1/4 // ("ra"). the logic is that the texture format has 2 channels, thus the // data must be returned in the first two components. The renderer fixes // this later. uint8_t components[4][4]; }; const char *ra_fmt_glsl_format(const struct ra_format *fmt); bool ra_get_imgfmt_desc(struct ra *ra, int imgfmt, struct ra_imgfmt_desc *out); void ra_dump_tex_formats(struct ra *ra, int msgl); void ra_dump_imgfmt_desc(struct ra *ra, const struct ra_imgfmt_desc *desc, int msgl); void ra_dump_img_formats(struct ra *ra, int msgl);