/* * Generate a dithering matrix for downsampling images. * * Copyright © 2013 Wessel Dankers * * This file is part of mpv. * * mpv is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * mpv is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with mpv. If not, see . */ #include #include #include #include #include #include #include #include #include #include "mpv_talloc.h" #include "dither.h" #define MAX_SIZEB 8 #define MAX_SIZE (1 << MAX_SIZEB) #define MAX_SIZE2 (MAX_SIZE * MAX_SIZE) typedef uint_fast32_t index_t; #define WRAP_SIZE2(k, x) ((index_t)((index_t)(x) & ((k)->size2 - 1))) #define XY(k, x, y) ((index_t)(((x) | ((y) << (k)->sizeb)))) struct ctx { unsigned int sizeb, size, size2; unsigned int gauss_radius; unsigned int gauss_middle; uint64_t gauss[MAX_SIZE2]; index_t randomat[MAX_SIZE2]; bool calcmat[MAX_SIZE2]; uint64_t gaussmat[MAX_SIZE2]; index_t unimat[MAX_SIZE2]; AVLFG avlfg; }; static void makegauss(struct ctx *k, unsigned int sizeb) { assert(sizeb >= 1 && sizeb <= MAX_SIZEB); av_lfg_init(&k->avlfg, 123); k->sizeb = sizeb; k->size = 1 << k->sizeb; k->size2 = k->size * k->size; k->gauss_radius = k->size / 2 - 1; k->gauss_middle = XY(k, k->gauss_radius, k->gauss_radius); unsigned int gauss_size = k->gauss_radius * 2 + 1; unsigned int gauss_size2 = gauss_size * gauss_size; for (index_t c = 0; c < k->size2; c++) k->gauss[c] = 0; double sigma = -log(1.5 / UINT64_MAX * gauss_size2) / k->gauss_radius; for (index_t gy = 0; gy <= k->gauss_radius; gy++) { for (index_t gx = 0; gx <= gy; gx++) { int cx = (int)gx - k->gauss_radius; int cy = (int)gy - k->gauss_radius; int sq = cx * cx + cy * cy; double e = exp(-sqrt(sq) * sigma); uint64_t v = e / gauss_size2 * UINT64_MAX; k->gauss[XY(k, gx, gy)] = k->gauss[XY(k, gy, gx)] = k->gauss[XY(k, gx, gauss_size - 1 - gy)] = k->gauss[XY(k, gy, gauss_size - 1 - gx)] = k->gauss[XY(k, gauss_size - 1 - gx, gy)] = k->gauss[XY(k, gauss_size - 1 - gy, gx)] = k->gauss[XY(k, gauss_size - 1 - gx, gauss_size - 1 - gy)] = k->gauss[XY(k, gauss_size - 1 - gy, gauss_size - 1 - gx)] = v; } } uint64_t total = 0; for (index_t c = 0; c < k->size2; c++) { uint64_t oldtotal = total; total += k->gauss[c]; assert(total >= oldtotal); } } static void setbit(struct ctx *k, index_t c) { if (k->calcmat[c]) return; k->calcmat[c] = true; uint64_t *m = k->gaussmat; uint64_t *me = k->gaussmat + k->size2; uint64_t *g = k->gauss + WRAP_SIZE2(k, k->gauss_middle + k->size2 - c); uint64_t *ge = k->gauss + k->size2; while (g < ge) *m++ += *g++; g = k->gauss; while (m < me) *m++ += *g++; } static index_t getmin(struct ctx *k) { uint64_t min = UINT64_MAX; index_t resnum = 0; unsigned int size2 = k->size2; for (index_t c = 0; c < size2; c++) { if (k->calcmat[c]) continue; uint64_t total = k->gaussmat[c]; if (total <= min) { if (total != min) { min = total; resnum = 0; } k->randomat[resnum++] = c; } } if (resnum == 1) return k->randomat[0]; if (resnum == size2) return size2 / 2; return k->randomat[av_lfg_get(&k->avlfg) % resnum]; } static void makeuniform(struct ctx *k) { unsigned int size2 = k->size2; for (index_t c = 0; c < size2; c++) { index_t r = getmin(k); setbit(k, r); k->unimat[r] = c; } } // out_matrix is a reactangular tsize * tsize array, where tsize = (1 << size). void mp_make_fruit_dither_matrix(float *out_matrix, int size) { struct ctx *k = talloc_zero(NULL, struct ctx); makegauss(k, size); makeuniform(k); float invscale = k->size2; for(index_t y = 0; y < k->size; y++) { for(index_t x = 0; x < k->size; x++) out_matrix[x + y * k->size] = k->unimat[XY(k, x, y)] / invscale; } talloc_free(k); } void mp_make_ordered_dither_matrix(unsigned char *m, int size) { m[0] = 0; for (int sz = 1; sz < size; sz *= 2) { int offset[] = {sz*size, sz, sz * (size+1), 0}; for (int i = 0; i < 4; i++) for (int y = 0; y < sz * size; y += size) for (int x = 0; x < sz; x++) m[x+y+offset[i]] = m[x+y] * 4 + (3-i) * 256/size/size; } } #if 0 static int index_cmp(const void *a, const void *b) { index_t x = *(const index_t *)a; index_t y = *(const index_t *)b; return x < y ? -1 : x > y; } static void fsck(struct ctx *k) { qsort(k->unimat, k->size2, sizeof k->unimat[0], index_cmp); for (index_t c = 0; c < k->size2; c++) assert(k->unimat[c] == c); } uint16_t r[MAX_SIZE2]; static void print(struct ctx *k) { #if 0 puts("#include "); printf("static const int mp_dither_size = %d;\n", k->size); printf("static const int mp_dither_size2 = %d;\n", k->size2); printf("static const uint16_t mp_dither_matrix[] = {\n"); for(index_t y = 0; y < k->size; y++) { printf("\t"); for(index_t x = 0; x < k->size; x++) printf("%4"PRIuFAST32", ", k->unimat[XY(k, x, y)]); printf("\n"); } puts("};"); #else for(index_t y = 0; y < k->size; y++) { for(index_t x = 0; x < k->size; x++) r[XY(k, x, y)] = k->unimat[XY(k, x, y)]; } #endif } #include "osdep/timer.h" int main(void) { mp_time_init(); struct ctx *k = calloc(1,sizeof(struct ctx)); int64_t s = mp_time_us(); makegauss(k, 6); makeuniform(k); print(k); fsck(k); int64_t l = mp_time_us() - s; printf("time: %f ms\n", l / 1000.0); return 0; } #endif