/* * Common code related to colorspaces and conversion * * Copyleft (C) 2009 Reimar Döffinger * * mp_invert_yuv2rgb based on DarkPlaces engine, original code (GPL2 or later) * * This file is part of MPlayer. * * MPlayer is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * MPlayer is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with MPlayer; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * You can alternatively redistribute this file and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. */ #include #include #include #include #include #include "csputils.h" char * const mp_csp_names[MP_CSP_COUNT] = { "Autoselect", "BT.601 (SD)", "BT.709 (HD)", "SMPTE-240M", "RGB", "XYZ", "YCgCo", }; char * const mp_csp_levels_names[MP_CSP_LEVELS_COUNT] = { "Autoselect", "TV", "PC", }; char * const mp_csp_equalizer_names[MP_CSP_EQ_COUNT] = { "brightness", "contrast", "hue", "saturation", "gamma", }; enum mp_csp avcol_spc_to_mp_csp(int avcolorspace) { switch (avcolorspace) { case AVCOL_SPC_BT709: return MP_CSP_BT_709; case AVCOL_SPC_BT470BG: return MP_CSP_BT_601; case AVCOL_SPC_SMPTE170M: return MP_CSP_BT_601; case AVCOL_SPC_SMPTE240M: return MP_CSP_SMPTE_240M; case AVCOL_SPC_RGB: return MP_CSP_RGB; case AVCOL_SPC_YCOCG: return MP_CSP_YCGCO; default: return MP_CSP_AUTO; } } enum mp_csp_levels avcol_range_to_mp_csp_levels(int avrange) { switch (avrange) { case AVCOL_RANGE_MPEG: return MP_CSP_LEVELS_TV; case AVCOL_RANGE_JPEG: return MP_CSP_LEVELS_PC; default: return MP_CSP_LEVELS_AUTO; } } int mp_csp_to_avcol_spc(enum mp_csp colorspace) { switch (colorspace) { case MP_CSP_BT_709: return AVCOL_SPC_BT709; case MP_CSP_BT_601: return AVCOL_SPC_BT470BG; case MP_CSP_SMPTE_240M: return AVCOL_SPC_SMPTE240M; case MP_CSP_RGB: return AVCOL_SPC_RGB; case MP_CSP_YCGCO: return AVCOL_SPC_YCOCG; default: return AVCOL_SPC_UNSPECIFIED; } } int mp_csp_levels_to_avcol_range(enum mp_csp_levels range) { switch (range) { case MP_CSP_LEVELS_TV: return AVCOL_RANGE_MPEG; case MP_CSP_LEVELS_PC: return AVCOL_RANGE_JPEG; default: return AVCOL_RANGE_UNSPECIFIED; } } enum mp_csp mp_csp_guess_colorspace(int width, int height) { return width >= 1280 || height > 576 ? MP_CSP_BT_709 : MP_CSP_BT_601; } enum mp_chroma_location avchroma_location_to_mp(int avloc) { switch (avloc) { case AVCHROMA_LOC_LEFT: return MP_CHROMA_LEFT; case AVCHROMA_LOC_CENTER: return MP_CHROMA_CENTER; default: return MP_CHROMA_AUTO; } } int mp_chroma_location_to_av(enum mp_chroma_location mploc) { switch (mploc) { case MP_CHROMA_LEFT: return AVCHROMA_LOC_LEFT; case MP_CHROMA_CENTER: return AVCHROMA_LOC_CENTER; default: return AVCHROMA_LOC_UNSPECIFIED; } } // Return location of chroma samples relative to luma samples. 0/0 means // centered. Other possible values are -1 (top/left) and +1 (right/bottom). void mp_get_chroma_location(enum mp_chroma_location loc, int *x, int *y) { *x = 0; *y = 0; if (loc == MP_CHROMA_LEFT) *x = -1; } /** * \brief little helper function to create a lookup table for gamma * \param map buffer to create map into * \param size size of buffer * \param gamma gamma value */ void mp_gen_gamma_map(uint8_t *map, int size, float gamma) { if (gamma == 1.0) { for (int i = 0; i < size; i++) map[i] = 255 * i / (size - 1); return; } gamma = 1.0 / gamma; for (int i = 0; i < size; i++) { float tmp = (float)i / (size - 1.0); tmp = pow(tmp, gamma); if (tmp > 1.0) tmp = 1.0; if (tmp < 0.0) tmp = 0.0; map[i] = 255 * tmp; } } /* Fill in the Y, U, V vectors of a yuv2rgb conversion matrix * based on the given luma weights of the R, G and B components (lr, lg, lb). * lr+lg+lb is assumed to equal 1. * This function is meant for colorspaces satisfying the following * conditions (which are true for common YUV colorspaces): * - The mapping from input [Y, U, V] to output [R, G, B] is linear. * - Y is the vector [1, 1, 1]. (meaning input Y component maps to 1R+1G+1B) * - U maps to a value with zero R and positive B ([0, x, y], y > 0; * i.e. blue and green only). * - V maps to a value with zero B and positive R ([x, y, 0], x > 0; * i.e. red and green only). * - U and V are orthogonal to the luma vector [lr, lg, lb]. * - The magnitudes of the vectors U and V are the minimal ones for which * the image of the set Y=[0...1],U=[-0.5...0.5],V=[-0.5...0.5] under the * conversion function will cover the set R=[0...1],G=[0...1],B=[0...1] * (the resulting matrix can be converted for other input/output ranges * outside this function). * Under these conditions the given parameters lr, lg, lb uniquely * determine the mapping of Y, U, V to R, G, B. */ static void luma_coeffs(float m[3][4], float lr, float lg, float lb) { assert(fabs(lr+lg+lb - 1) < 1e-6); m[0][0] = m[1][0] = m[2][0] = 1; m[0][1] = 0; m[1][1] = -2 * (1-lb) * lb/lg; m[2][1] = 2 * (1-lb); m[0][2] = 2 * (1-lr); m[1][2] = -2 * (1-lr) * lr/lg; m[2][2] = 0; // Constant coefficients (m[x][3]) not set here } /** * \brief get the coefficients of the yuv -> rgb conversion matrix * \param params struct specifying the properties of the conversion like * brightness, ... * \param m array to store coefficients into */ void mp_get_yuv2rgb_coeffs(struct mp_csp_params *params, float m[3][4]) { int format = params->colorspace.format; if (format <= MP_CSP_AUTO || format >= MP_CSP_COUNT) format = MP_CSP_BT_601; int levels_in = params->colorspace.levels_in; if (levels_in <= MP_CSP_LEVELS_AUTO || levels_in >= MP_CSP_LEVELS_COUNT) levels_in = MP_CSP_LEVELS_TV; switch (format) { case MP_CSP_BT_601: luma_coeffs(m, 0.299, 0.587, 0.114 ); break; case MP_CSP_BT_709: luma_coeffs(m, 0.2126, 0.7152, 0.0722); break; case MP_CSP_SMPTE_240M: luma_coeffs(m, 0.2122, 0.7013, 0.0865); break; case MP_CSP_RGB: { static const float ident[3][4] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; memcpy(m, ident, sizeof(ident)); levels_in = -1; break; } case MP_CSP_XYZ: { static const float xyz_to_rgb[3][4] = { {3.2404542, -1.5371385, -0.4985314}, {-0.9692660, 1.8760108, 0.0415560}, {0.0556434, -0.2040259, 1.0572252}, }; memcpy(m, xyz_to_rgb, sizeof(xyz_to_rgb)); levels_in = -1; break; } case MP_CSP_YCGCO: { static const float ycgco_to_rgb[3][4] = { {1, -1, 1}, {1, 1, 0}, {1, -1, -1}, }; memcpy(m, ycgco_to_rgb, sizeof(ycgco_to_rgb)); break; } default: abort(); }; // Hue is equivalent to rotating input [U, V] subvector around the origin. // Saturation scales [U, V]. float huecos = params->saturation * cos(params->hue); float huesin = params->saturation * sin(params->hue); for (int i = 0; i < 3; i++) { float u = m[i][COL_U]; m[i][COL_U] = huecos * u - huesin * m[i][COL_V]; m[i][COL_V] = huesin * u + huecos * m[i][COL_V]; } assert(params->input_bits >= 8); assert(params->texture_bits >= params->input_bits); double s = (1 << (params->input_bits-8)) / ((1<texture_bits)-1.); // The values below are written in 0-255 scale struct yuvlevels { double ymin, ymax, cmin, cmid; } yuvlim = { 16*s, 235*s, 16*s, 128*s }, yuvfull = { 0*s, 255*s, 1*s, 128*s }, // '1' for symmetry around 128 anyfull = { 0*s, 255*s, -255*s/2, 0 }, yuvlev; switch (levels_in) { case MP_CSP_LEVELS_TV: yuvlev = yuvlim; break; case MP_CSP_LEVELS_PC: yuvlev = yuvfull; break; case -1: yuvlev = anyfull; break; default: abort(); } int levels_out = params->colorspace.levels_out; if (levels_out <= MP_CSP_LEVELS_AUTO || levels_out >= MP_CSP_LEVELS_COUNT) levels_out = MP_CSP_LEVELS_PC; struct rgblevels { double min, max; } rgblim = { 16/255., 235/255. }, rgbfull = { 0, 1 }, rgblev; switch (levels_out) { case MP_CSP_LEVELS_TV: rgblev = rgblim; break; case MP_CSP_LEVELS_PC: rgblev = rgbfull; break; default: abort(); } double ymul = (rgblev.max - rgblev.min) / (yuvlev.ymax - yuvlev.ymin); double cmul = (rgblev.max - rgblev.min) / (yuvlev.cmid - yuvlev.cmin) / 2; for (int i = 0; i < 3; i++) { m[i][COL_Y] *= ymul; m[i][COL_U] *= cmul; m[i][COL_V] *= cmul; // Set COL_C so that Y=umin,UV=cmid maps to RGB=min (black to black) m[i][COL_C] = rgblev.min - m[i][COL_Y] * yuvlev.ymin -(m[i][COL_U] + m[i][COL_V]) * yuvlev.cmid; } // Brightness adds a constant to output R,G,B. // Contrast scales Y around 1/2 (not 0 in this implementation). for (int i = 0; i < 3; i++) { m[i][COL_C] += params->brightness; m[i][COL_Y] *= params->contrast; m[i][COL_C] += (rgblev.max-rgblev.min) * (1 - params->contrast)/2; } int in_bits = FFMAX(params->int_bits_in, 1); int out_bits = FFMAX(params->int_bits_out, 1); double in_scale = (1 << in_bits) - 1.0; double out_scale = (1 << out_bits) - 1.0; for (int i = 0; i < 3; i++) { m[i][COL_C] *= out_scale; // constant is 1.0 for (int x = 0; x < 3; x++) m[i][x] *= out_scale / in_scale; } } //! size of gamma map use to avoid slow exp function in gen_yuv2rgb_map #define GMAP_SIZE (1024) /** * \brief generate a 3D YUV -> RGB map * \param params struct containing parameters like brightness, gamma, ... * \param map where to store map. Must provide space for (size + 2)^3 elements * \param size size of the map, excluding border */ void mp_gen_yuv2rgb_map(struct mp_csp_params *params, unsigned char *map, int size) { int i, j, k, l; float step = 1.0 / size; float y, u, v; float yuv2rgb[3][4]; unsigned char gmaps[3][GMAP_SIZE]; mp_gen_gamma_map(gmaps[0], GMAP_SIZE, params->rgamma); mp_gen_gamma_map(gmaps[1], GMAP_SIZE, params->ggamma); mp_gen_gamma_map(gmaps[2], GMAP_SIZE, params->bgamma); mp_get_yuv2rgb_coeffs(params, yuv2rgb); for (i = 0; i < 3; i++) for (j = 0; j < 4; j++) yuv2rgb[i][j] *= GMAP_SIZE - 1; v = 0; for (i = -1; i <= size; i++) { u = 0; for (j = -1; j <= size; j++) { y = 0; for (k = -1; k <= size; k++) { for (l = 0; l < 3; l++) { float rgb = yuv2rgb[l][COL_Y] * y + yuv2rgb[l][COL_U] * u + yuv2rgb[l][COL_V] * v + yuv2rgb[l][COL_C]; *map++ = gmaps[l][av_clip(rgb, 0, GMAP_SIZE - 1)]; } y += (k == -1 || k == size - 1) ? step / 2 : step; } u += (j == -1 || j == size - 1) ? step / 2 : step; } v += (i == -1 || i == size - 1) ? step / 2 : step; } } // Copy settings from eq into params. void mp_csp_copy_equalizer_values(struct mp_csp_params *params, const struct mp_csp_equalizer *eq) { params->brightness = eq->values[MP_CSP_EQ_BRIGHTNESS] / 100.0; params->contrast = (eq->values[MP_CSP_EQ_CONTRAST] + 100) / 100.0; params->hue = eq->values[MP_CSP_EQ_HUE] / 100.0 * 3.1415927; params->saturation = (eq->values[MP_CSP_EQ_SATURATION] + 100) / 100.0; float gamma = exp(log(8.0) * eq->values[MP_CSP_EQ_GAMMA] / 100.0); params->rgamma = gamma; params->ggamma = gamma; params->bgamma = gamma; } static int find_eq(int capabilities, const char *name) { for (int i = 0; i < MP_CSP_EQ_COUNT; i++) { if (strcmp(name, mp_csp_equalizer_names[i]) == 0) return ((1 << i) & capabilities) ? i : -1; } return -1; } int mp_csp_equalizer_get(struct mp_csp_equalizer *eq, const char *property, int *out_value) { int index = find_eq(eq->capabilities, property); if (index < 0) return -1; *out_value = eq->values[index]; return 0; } int mp_csp_equalizer_set(struct mp_csp_equalizer *eq, const char *property, int value) { int index = find_eq(eq->capabilities, property); if (index < 0) return 0; eq->values[index] = value; return 1; } void mp_invert_yuv2rgb(float out[3][4], float in[3][4]) { float m00 = in[0][0], m01 = in[0][1], m02 = in[0][2], m03 = in[0][3], m10 = in[1][0], m11 = in[1][1], m12 = in[1][2], m13 = in[1][3], m20 = in[2][0], m21 = in[2][1], m22 = in[2][2], m23 = in[2][3]; // calculate the adjoint out[0][0] = (m11 * m22 - m21 * m12); out[0][1] = -(m01 * m22 - m21 * m02); out[0][2] = (m01 * m12 - m11 * m02); out[1][0] = -(m10 * m22 - m20 * m12); out[1][1] = (m00 * m22 - m20 * m02); out[1][2] = -(m00 * m12 - m10 * m02); out[2][0] = (m10 * m21 - m20 * m11); out[2][1] = -(m00 * m21 - m20 * m01); out[2][2] = (m00 * m11 - m10 * m01); // calculate the determinant (as inverse == 1/det * adjoint, // adjoint * m == identity * det, so this calculates the det) float det = m00 * out[0][0] + m10 * out[0][1] + m20 * out[0][2]; det = 1.0f / det; out[0][0] *= det; out[0][1] *= det; out[0][2] *= det; out[1][0] *= det; out[1][1] *= det; out[1][2] *= det; out[2][0] *= det; out[2][1] *= det; out[2][2] *= det; // fix the constant coefficient // rgb = M * yuv + C // M^-1 * rgb = yuv + M^-1 * C // yuv = M^-1 * rgb - M^-1 * C // ^^^^^^^^^^ out[0][3] = -(out[0][0] * m03 + out[0][1] * m13 + out[0][2] * m23); out[1][3] = -(out[1][0] * m03 + out[1][1] * m13 + out[1][2] * m23); out[2][3] = -(out[2][0] * m03 + out[2][1] * m13 + out[2][2] * m23); } // Multiply the color in c with the given matrix. // c is {R, G, B} or {Y, U, V} (depending on input/output and matrix). // Output is clipped to the given number of bits. void mp_map_int_color(float matrix[3][4], int clip_bits, int c[3]) { int in[3] = {c[0], c[1], c[2]}; for (int i = 0; i < 3; i++) { double val = matrix[i][3]; for (int x = 0; x < 3; x++) val += matrix[i][x] * in[x]; int ival = lrint(val); c[i] = av_clip(ival, 0, (1 << clip_bits) - 1); } }