/* * Common code related to colorspaces and conversion * * Copyleft (C) 2009 Reimar Döffinger * * mp_invert_cmat based on DarkPlaces engine, original code (GPL2 or later) * * This file is part of mpv. * * mpv is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * mpv is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with mpv. If not, see . * * You can alternatively redistribute this file and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. */ #include "config.h" #include #include #include #include #include #include "mp_image.h" #include "csputils.h" #include "options/m_option.h" const struct m_opt_choice_alternatives mp_csp_names[] = { {"auto", MP_CSP_AUTO}, {"bt.601", MP_CSP_BT_601}, {"bt.709", MP_CSP_BT_709}, {"smpte-240m", MP_CSP_SMPTE_240M}, {"bt.2020-ncl", MP_CSP_BT_2020_NC}, {"bt.2020-cl", MP_CSP_BT_2020_C}, {"rgb", MP_CSP_RGB}, {"xyz", MP_CSP_XYZ}, {"ycgco", MP_CSP_YCGCO}, {0} }; const struct m_opt_choice_alternatives mp_csp_levels_names[] = { {"auto", MP_CSP_LEVELS_AUTO}, {"limited", MP_CSP_LEVELS_TV}, {"full", MP_CSP_LEVELS_PC}, {0} }; const struct m_opt_choice_alternatives mp_csp_prim_names[] = { {"auto", MP_CSP_PRIM_AUTO}, {"bt.601-525", MP_CSP_PRIM_BT_601_525}, {"bt.601-625", MP_CSP_PRIM_BT_601_625}, {"bt.709", MP_CSP_PRIM_BT_709}, {"bt.2020", MP_CSP_PRIM_BT_2020}, {"bt.470m", MP_CSP_PRIM_BT_470M}, {"apple", MP_CSP_PRIM_APPLE}, {"adobe", MP_CSP_PRIM_ADOBE}, {"prophoto", MP_CSP_PRIM_PRO_PHOTO}, {"cie1931", MP_CSP_PRIM_CIE_1931}, {0} }; const struct m_opt_choice_alternatives mp_csp_trc_names[] = { {"auto", MP_CSP_TRC_AUTO}, {"bt.1886", MP_CSP_TRC_BT_1886}, {"srgb", MP_CSP_TRC_SRGB}, {"linear", MP_CSP_TRC_LINEAR}, {"gamma1.8", MP_CSP_TRC_GAMMA18}, {"gamma2.2", MP_CSP_TRC_GAMMA22}, {"gamma2.8", MP_CSP_TRC_GAMMA28}, {"prophoto", MP_CSP_TRC_PRO_PHOTO}, {0} }; const char *const mp_csp_equalizer_names[MP_CSP_EQ_COUNT] = { "brightness", "contrast", "hue", "saturation", "gamma", "output-levels", }; const struct m_opt_choice_alternatives mp_chroma_names[] = { {"unknown", MP_CHROMA_AUTO}, {"mpeg2/4/h264",MP_CHROMA_LEFT}, {"mpeg1/jpeg", MP_CHROMA_CENTER}, {0} }; // The short name _must_ match with what vf_stereo3d accepts (if supported). // The long name in comments is closer to the Matroska spec (StereoMode element). // The numeric index matches the Matroska StereoMode value. If you add entries // that don't match Matroska, make sure demux_mkv.c rejects them properly. const struct m_opt_choice_alternatives mp_stereo3d_names[] = { {"no", -1}, // disable/invalid {"mono", 0}, {"sbs2l", 1}, // "side_by_side_left" {"ab2r", 2}, // "top_bottom_right" {"ab2l", 3}, // "top_bottom_left" {"checkr", 4}, // "checkboard_right" (unsupported by vf_stereo3d) {"checkl", 5}, // "checkboard_left" (unsupported by vf_stereo3d) {"irr", 6}, // "row_interleaved_right" {"irl", 7}, // "row_interleaved_left" {"icr", 8}, // "column_interleaved_right" (unsupported by vf_stereo3d) {"icl", 9}, // "column_interleaved_left" (unsupported by vf_stereo3d) {"arcc", 10}, // "anaglyph_cyan_red" (Matroska: unclear which mode) {"sbs2r", 11}, // "side_by_side_right" {"agmc", 12}, // "anaglyph_green_magenta" (Matroska: unclear which mode) {"al", 13}, // "alternating frames left first" {"ar", 14}, // "alternating frames right first" {0} }; enum mp_csp avcol_spc_to_mp_csp(int avcolorspace) { switch (avcolorspace) { case AVCOL_SPC_BT709: return MP_CSP_BT_709; case AVCOL_SPC_BT470BG: return MP_CSP_BT_601; case AVCOL_SPC_BT2020_NCL: return MP_CSP_BT_2020_NC; case AVCOL_SPC_BT2020_CL: return MP_CSP_BT_2020_C; case AVCOL_SPC_SMPTE170M: return MP_CSP_BT_601; case AVCOL_SPC_SMPTE240M: return MP_CSP_SMPTE_240M; case AVCOL_SPC_RGB: return MP_CSP_RGB; case AVCOL_SPC_YCOCG: return MP_CSP_YCGCO; default: return MP_CSP_AUTO; } } enum mp_csp_levels avcol_range_to_mp_csp_levels(int avrange) { switch (avrange) { case AVCOL_RANGE_MPEG: return MP_CSP_LEVELS_TV; case AVCOL_RANGE_JPEG: return MP_CSP_LEVELS_PC; default: return MP_CSP_LEVELS_AUTO; } } enum mp_csp_prim avcol_pri_to_mp_csp_prim(int avpri) { switch (avpri) { case AVCOL_PRI_SMPTE240M: // Same as below case AVCOL_PRI_SMPTE170M: return MP_CSP_PRIM_BT_601_525; case AVCOL_PRI_BT470BG: return MP_CSP_PRIM_BT_601_625; case AVCOL_PRI_BT709: return MP_CSP_PRIM_BT_709; case AVCOL_PRI_BT2020: return MP_CSP_PRIM_BT_2020; case AVCOL_PRI_BT470M: return MP_CSP_PRIM_BT_470M; default: return MP_CSP_PRIM_AUTO; } } enum mp_csp_trc avcol_trc_to_mp_csp_trc(int avtrc) { switch (avtrc) { case AVCOL_TRC_BT709: case AVCOL_TRC_SMPTE170M: case AVCOL_TRC_SMPTE240M: case AVCOL_TRC_BT1361_ECG: case AVCOL_TRC_BT2020_10: case AVCOL_TRC_BT2020_12: return MP_CSP_TRC_BT_1886; case AVCOL_TRC_IEC61966_2_1: return MP_CSP_TRC_SRGB; case AVCOL_TRC_LINEAR: return MP_CSP_TRC_LINEAR; case AVCOL_TRC_GAMMA22: return MP_CSP_TRC_GAMMA22; case AVCOL_TRC_GAMMA28: return MP_CSP_TRC_GAMMA28; default: return MP_CSP_TRC_AUTO; } } int mp_csp_to_avcol_spc(enum mp_csp colorspace) { switch (colorspace) { case MP_CSP_BT_709: return AVCOL_SPC_BT709; case MP_CSP_BT_601: return AVCOL_SPC_BT470BG; case MP_CSP_BT_2020_NC: return AVCOL_SPC_BT2020_NCL; case MP_CSP_BT_2020_C: return AVCOL_SPC_BT2020_CL; case MP_CSP_SMPTE_240M: return AVCOL_SPC_SMPTE240M; case MP_CSP_RGB: return AVCOL_SPC_RGB; case MP_CSP_YCGCO: return AVCOL_SPC_YCOCG; default: return AVCOL_SPC_UNSPECIFIED; } } int mp_csp_levels_to_avcol_range(enum mp_csp_levels range) { switch (range) { case MP_CSP_LEVELS_TV: return AVCOL_RANGE_MPEG; case MP_CSP_LEVELS_PC: return AVCOL_RANGE_JPEG; default: return AVCOL_RANGE_UNSPECIFIED; } } int mp_csp_prim_to_avcol_pri(enum mp_csp_prim prim) { switch (prim) { case MP_CSP_PRIM_BT_601_525: return AVCOL_PRI_SMPTE170M; case MP_CSP_PRIM_BT_601_625: return AVCOL_PRI_BT470BG; case MP_CSP_PRIM_BT_709: return AVCOL_PRI_BT709; case MP_CSP_PRIM_BT_2020: return AVCOL_PRI_BT2020; case MP_CSP_PRIM_BT_470M: return AVCOL_PRI_BT470M; default: return AVCOL_PRI_UNSPECIFIED; } } int mp_csp_trc_to_avcol_trc(enum mp_csp_trc trc) { switch (trc) { // We just call it BT.1886 since we're decoding, but it's still BT.709 case MP_CSP_TRC_BT_1886: return AVCOL_TRC_BT709; case MP_CSP_TRC_SRGB: return AVCOL_TRC_IEC61966_2_1; case MP_CSP_TRC_LINEAR: return AVCOL_TRC_LINEAR; case MP_CSP_TRC_GAMMA22: return AVCOL_TRC_GAMMA22; case MP_CSP_TRC_GAMMA28: return AVCOL_TRC_GAMMA28; default: return AVCOL_TRC_UNSPECIFIED; } } enum mp_csp mp_csp_guess_colorspace(int width, int height) { return width >= 1280 || height > 576 ? MP_CSP_BT_709 : MP_CSP_BT_601; } enum mp_csp_prim mp_csp_guess_primaries(int width, int height) { // HD content if (width >= 1280 || height > 576) return MP_CSP_PRIM_BT_709; switch (height) { case 576: // Typical PAL content, including anamorphic/squared return MP_CSP_PRIM_BT_601_625; case 480: // Typical NTSC content, including squared case 486: // NTSC Pro or anamorphic NTSC return MP_CSP_PRIM_BT_601_525; default: // No good metric, just pick BT.709 to minimize damage return MP_CSP_PRIM_BT_709; } } enum mp_chroma_location avchroma_location_to_mp(int avloc) { switch (avloc) { case AVCHROMA_LOC_LEFT: return MP_CHROMA_LEFT; case AVCHROMA_LOC_CENTER: return MP_CHROMA_CENTER; default: return MP_CHROMA_AUTO; } } int mp_chroma_location_to_av(enum mp_chroma_location mploc) { switch (mploc) { case MP_CHROMA_LEFT: return AVCHROMA_LOC_LEFT; case MP_CHROMA_CENTER: return AVCHROMA_LOC_CENTER; default: return AVCHROMA_LOC_UNSPECIFIED; } } // Return location of chroma samples relative to luma samples. 0/0 means // centered. Other possible values are -1 (top/left) and +1 (right/bottom). void mp_get_chroma_location(enum mp_chroma_location loc, int *x, int *y) { *x = 0; *y = 0; if (loc == MP_CHROMA_LEFT) *x = -1; } void mp_invert_matrix3x3(float m[3][3]) { float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m10 = m[1][0], m11 = m[1][1], m12 = m[1][2], m20 = m[2][0], m21 = m[2][1], m22 = m[2][2]; // calculate the adjoint m[0][0] = (m11 * m22 - m21 * m12); m[0][1] = -(m01 * m22 - m21 * m02); m[0][2] = (m01 * m12 - m11 * m02); m[1][0] = -(m10 * m22 - m20 * m12); m[1][1] = (m00 * m22 - m20 * m02); m[1][2] = -(m00 * m12 - m10 * m02); m[2][0] = (m10 * m21 - m20 * m11); m[2][1] = -(m00 * m21 - m20 * m01); m[2][2] = (m00 * m11 - m10 * m01); // calculate the determinant (as inverse == 1/det * adjoint, // adjoint * m == identity * det, so this calculates the det) float det = m00 * m[0][0] + m10 * m[0][1] + m20 * m[0][2]; det = 1.0f / det; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) m[i][j] *= det; } } // A := A * B static void mp_mul_matrix3x3(float a[3][3], float b[3][3]) { float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2], a10 = a[1][0], a11 = a[1][1], a12 = a[1][2], a20 = a[2][0], a21 = a[2][1], a22 = a[2][2]; for (int i = 0; i < 3; i++) { a[0][i] = a00 * b[0][i] + a01 * b[1][i] + a02 * b[2][i]; a[1][i] = a10 * b[0][i] + a11 * b[1][i] + a12 * b[2][i]; a[2][i] = a20 * b[0][i] + a21 * b[1][i] + a22 * b[2][i]; } } // return the primaries associated with a certain mp_csp_primaries val struct mp_csp_primaries mp_get_csp_primaries(enum mp_csp_prim spc) { /* Values from: ITU-R Recommendations BT.470-6, BT.601-7, BT.709-5, BT.2020-0 https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.470-6-199811-S!!PDF-E.pdf https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.601-7-201103-I!!PDF-E.pdf https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.709-5-200204-I!!PDF-E.pdf https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.2020-0-201208-I!!PDF-E.pdf Other colorspaces from https://en.wikipedia.org/wiki/RGB_color_space#Specifications */ // CIE standard illuminant series static const struct mp_csp_col_xy d50 = {0.34577, 0.35850}, d65 = {0.31271, 0.32902}, c = {0.31006, 0.31616}, e = {1.0/3.0, 1.0/3.0}; switch (spc) { case MP_CSP_PRIM_BT_470M: return (struct mp_csp_primaries) { .red = {0.670, 0.330}, .green = {0.210, 0.710}, .blue = {0.140, 0.080}, .white = c }; case MP_CSP_PRIM_BT_601_525: return (struct mp_csp_primaries) { .red = {0.630, 0.340}, .green = {0.310, 0.595}, .blue = {0.155, 0.070}, .white = d65 }; case MP_CSP_PRIM_BT_601_625: return (struct mp_csp_primaries) { .red = {0.640, 0.330}, .green = {0.290, 0.600}, .blue = {0.150, 0.060}, .white = d65 }; // This is the default assumption if no colorspace information could // be determined, eg. for files which have no video channel. case MP_CSP_PRIM_AUTO: case MP_CSP_PRIM_BT_709: return (struct mp_csp_primaries) { .red = {0.640, 0.330}, .green = {0.300, 0.600}, .blue = {0.150, 0.060}, .white = d65 }; case MP_CSP_PRIM_BT_2020: return (struct mp_csp_primaries) { .red = {0.708, 0.292}, .green = {0.170, 0.797}, .blue = {0.131, 0.046}, .white = d65 }; case MP_CSP_PRIM_APPLE: return (struct mp_csp_primaries) { .red = {0.625, 0.340}, .green = {0.280, 0.595}, .blue = {0.115, 0.070}, .white = d65 }; case MP_CSP_PRIM_ADOBE: return (struct mp_csp_primaries) { .red = {0.640, 0.330}, .green = {0.210, 0.710}, .blue = {0.150, 0.060}, .white = d65 }; case MP_CSP_PRIM_PRO_PHOTO: return (struct mp_csp_primaries) { .red = {0.7347, 0.2653}, .green = {0.1596, 0.8404}, .blue = {0.0366, 0.0001}, .white = d50 }; case MP_CSP_PRIM_CIE_1931: return (struct mp_csp_primaries) { .red = {0.7347, 0.2653}, .green = {0.2738, 0.7174}, .blue = {0.1666, 0.0089}, .white = e }; default: return (struct mp_csp_primaries) {{0}}; } } // Compute the RGB/XYZ matrix as described here: // http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html static void mp_get_rgb2xyz_matrix(struct mp_csp_primaries space, float m[3][3]) { float S[3], X[4], Z[4]; // Convert from CIE xyY to XYZ. Note that Y=1 holds true for all primaries X[0] = space.red.x / space.red.y; X[1] = space.green.x / space.green.y; X[2] = space.blue.x / space.blue.y; X[3] = space.white.x / space.white.y; Z[0] = (1 - space.red.x - space.red.y) / space.red.y; Z[1] = (1 - space.green.x - space.green.y) / space.green.y; Z[2] = (1 - space.blue.x - space.blue.y) / space.blue.y; Z[3] = (1 - space.white.x - space.white.y) / space.white.y; // S = XYZ^-1 * W for (int i = 0; i < 3; i++) { m[0][i] = X[i]; m[1][i] = 1; m[2][i] = Z[i]; } mp_invert_matrix3x3(m); for (int i = 0; i < 3; i++) S[i] = m[i][0] * X[3] + m[i][1] * 1 + m[i][2] * Z[3]; // M = [Sc * XYZc] for (int i = 0; i < 3; i++) { m[0][i] = S[i] * X[i]; m[1][i] = S[i] * 1; m[2][i] = S[i] * Z[i]; } } // M := M * XYZd<-XYZs static void mp_apply_chromatic_adaptation(struct mp_csp_col_xy src, struct mp_csp_col_xy dest, float m[3][3]) { // If the white points are nearly identical, this is a wasteful identity // operation. if (fabs(src.x - dest.x) < 1e-6 && fabs(src.y - dest.y) < 1e-6) return; // XYZd<-XYZs = Ma^-1 * (I*[Cd/Cs]) * Ma // http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html float C[3][2], tmp[3][3] = {{0}}; // Ma = Bradford matrix, arguably most popular method in use today. // This is derived experimentally and thus hard-coded. float bradford[3][3] = { { 0.8951, 0.2664, -0.1614 }, { -0.7502, 1.7135, 0.0367 }, { 0.0389, -0.0685, 1.0296 }, }; for (int i = 0; i < 3; i++) { // source cone C[i][0] = bradford[i][0] * src.x / src.y + bradford[i][1] * 1 + bradford[i][2] * (1 - src.x - src.y) / src.y; // dest cone C[i][1] = bradford[i][0] * dest.x / dest.y + bradford[i][1] * 1 + bradford[i][2] * (1 - dest.x - dest.y) / dest.y; } // tmp := I * [Cd/Cs] * Ma for (int i = 0; i < 3; i++) tmp[i][i] = C[i][1] / C[i][0]; mp_mul_matrix3x3(tmp, bradford); // M := M * Ma^-1 * tmp mp_invert_matrix3x3(bradford); mp_mul_matrix3x3(m, bradford); mp_mul_matrix3x3(m, tmp); } // get the coefficients of the source -> bt2020 cms matrix void mp_get_cms_matrix(struct mp_csp_primaries src, struct mp_csp_primaries dest, enum mp_render_intent intent, float m[3][3]) { float tmp[3][3]; // In saturation mapping, we don't care about accuracy and just want // primaries to map to primaries, making this an identity transformation. if (intent == MP_INTENT_SATURATION) { for (int i = 0; i < 3; i++) m[i][i] = 1; return; } // RGBd<-RGBs = RGBd<-XYZd * XYZd<-XYZs * XYZs<-RGBs // Equations from: http://www.brucelindbloom.com/index.html?Math.html // Note: Perceptual is treated like relative colorimetric. There's no // definition for perceptual other than "make it look good". // RGBd<-XYZd, inverted from XYZd<-RGBd mp_get_rgb2xyz_matrix(dest, m); mp_invert_matrix3x3(m); // Chromatic adaptation, except in absolute colorimetric intent if (intent != MP_INTENT_ABSOLUTE_COLORIMETRIC) mp_apply_chromatic_adaptation(src.white, dest.white, m); // XYZs<-RGBs mp_get_rgb2xyz_matrix(src, tmp); mp_mul_matrix3x3(m, tmp); } // get the coefficients of an SMPTE 428-1 xyz -> rgb conversion matrix // intent = the rendering intent used to convert to the target primaries static void mp_get_xyz2rgb_coeffs(struct mp_csp_params *params, enum mp_render_intent intent, struct mp_cmat *m) { struct mp_csp_primaries prim = mp_get_csp_primaries(params->primaries); float brightness = params->brightness; mp_get_rgb2xyz_matrix(prim, m->m); mp_invert_matrix3x3(m->m); // All non-absolute mappings want to map source white to target white if (intent != MP_INTENT_ABSOLUTE_COLORIMETRIC) { // SMPTE 428-1 defines the calibration white point as CIE xy (0.314, 0.351) static const struct mp_csp_col_xy smpte428 = {0.314, 0.351}; mp_apply_chromatic_adaptation(smpte428, prim.white, m->m); } // Since this outputs linear RGB rather than companded RGB, we // want to linearize any brightness additions. 2 is a reasonable // approximation for any sort of gamma function that could be in use. // As this is an aesthetic setting only, any exact values do not matter. brightness *= fabs(brightness); for (int i = 0; i < 3; i++) m->c[i] = brightness; } // Get multiplication factor required if image data is fit within the LSBs of a // higher smaller bit depth isfixed-point texture data. double mp_get_csp_mul(enum mp_csp csp, int input_bits, int texture_bits) { assert(texture_bits >= input_bits); // Convenience for some irrelevant cases, e.g. rgb565 or disabling expansion. if (!input_bits) return 1; // RGB always uses the full range available. if (csp == MP_CSP_RGB) return ((1LL << input_bits) - 1.) / ((1LL << texture_bits) - 1.); if (csp == MP_CSP_XYZ) return 1; // High bit depth YUV uses a range shifted from 8 bit. return (1LL << input_bits) / ((1LL << texture_bits) - 1.) * 255 / 256; } /* Fill in the Y, U, V vectors of a yuv-to-rgb conversion matrix * based on the given luma weights of the R, G and B components (lr, lg, lb). * lr+lg+lb is assumed to equal 1. * This function is meant for colorspaces satisfying the following * conditions (which are true for common YUV colorspaces): * - The mapping from input [Y, U, V] to output [R, G, B] is linear. * - Y is the vector [1, 1, 1]. (meaning input Y component maps to 1R+1G+1B) * - U maps to a value with zero R and positive B ([0, x, y], y > 0; * i.e. blue and green only). * - V maps to a value with zero B and positive R ([x, y, 0], x > 0; * i.e. red and green only). * - U and V are orthogonal to the luma vector [lr, lg, lb]. * - The magnitudes of the vectors U and V are the minimal ones for which * the image of the set Y=[0...1],U=[-0.5...0.5],V=[-0.5...0.5] under the * conversion function will cover the set R=[0...1],G=[0...1],B=[0...1] * (the resulting matrix can be converted for other input/output ranges * outside this function). * Under these conditions the given parameters lr, lg, lb uniquely * determine the mapping of Y, U, V to R, G, B. */ static void luma_coeffs(struct mp_cmat *mat, float lr, float lg, float lb) { assert(fabs(lr+lg+lb - 1) < 1e-6); *mat = (struct mp_cmat) { { {1, 0, 2 * (1-lr) }, {1, -2 * (1-lb) * lb/lg, -2 * (1-lr) * lr/lg }, {1, 2 * (1-lb), 0 } }, // Constant coefficients (mat->c) not set here }; } // get the coefficients of the yuv -> rgb conversion matrix void mp_get_csp_matrix(struct mp_csp_params *params, struct mp_cmat *m) { int colorspace = params->colorspace; if (colorspace <= MP_CSP_AUTO || colorspace >= MP_CSP_COUNT) colorspace = MP_CSP_BT_601; int levels_in = params->levels_in; if (levels_in <= MP_CSP_LEVELS_AUTO || levels_in >= MP_CSP_LEVELS_COUNT) levels_in = MP_CSP_LEVELS_TV; switch (colorspace) { case MP_CSP_BT_601: luma_coeffs(m, 0.299, 0.587, 0.114 ); break; case MP_CSP_BT_709: luma_coeffs(m, 0.2126, 0.7152, 0.0722); break; case MP_CSP_SMPTE_240M: luma_coeffs(m, 0.2122, 0.7013, 0.0865); break; case MP_CSP_BT_2020_NC: luma_coeffs(m, 0.2627, 0.6780, 0.0593); break; case MP_CSP_BT_2020_C: { // Note: This outputs into the [-0.5,0.5] range for chroma information. // If this clips on any VO, a constant 0.5 coefficient can be added // to the chroma channels to normalize them into [0,1]. This is not // currently needed by anything, though. *m = (struct mp_cmat){{{0, 0, 1}, {1, 0, 0}, {0, 1, 0}}}; break; } case MP_CSP_RGB: { *m = (struct mp_cmat){{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}}; levels_in = -1; break; } case MP_CSP_XYZ: { // The vo should probably not be using a matrix generated by this // function for XYZ sources, but if it does, let's just assume it // wants BT.709 with D65 white point (virtually all other content). mp_get_xyz2rgb_coeffs(params, MP_INTENT_RELATIVE_COLORIMETRIC, m); levels_in = -1; break; } case MP_CSP_YCGCO: { *m = (struct mp_cmat) { {{1, -1, 1}, {1, 1, 0}, {1, -1, -1}}, }; break; } default: abort(); }; if ((colorspace == MP_CSP_BT_601 || colorspace == MP_CSP_BT_709 || colorspace == MP_CSP_SMPTE_240M || colorspace == MP_CSP_BT_2020_NC)) { // Hue is equivalent to rotating input [U, V] subvector around the origin. // Saturation scales [U, V]. float huecos = params->gray ? 0 : params->saturation * cos(params->hue); float huesin = params->gray ? 0 : params->saturation * sin(params->hue); for (int i = 0; i < 3; i++) { float u = m->m[i][1], v = m->m[i][2]; m->m[i][1] = huecos * u - huesin * v; m->m[i][2] = huesin * u + huecos * v; } } // The values below are written in 0-255 scale - thus bring s into range. double s = mp_get_csp_mul(colorspace, params->input_bits, params->texture_bits) / 255; struct yuvlevels { double ymin, ymax, cmin, cmid; } yuvlim = { 16*s, 235*s, 16*s, 128*s }, yuvfull = { 0*s, 255*s, 1*s, 128*s }, // '1' for symmetry around 128 anyfull = { 0*s, 255*s, -255*s/2, 0 }, yuvlev; switch (levels_in) { case MP_CSP_LEVELS_TV: yuvlev = yuvlim; break; case MP_CSP_LEVELS_PC: yuvlev = yuvfull; break; case -1: yuvlev = anyfull; break; default: abort(); } int levels_out = params->levels_out; if (levels_out <= MP_CSP_LEVELS_AUTO || levels_out >= MP_CSP_LEVELS_COUNT) levels_out = MP_CSP_LEVELS_PC; struct rgblevels { double min, max; } rgblim = { 16/255., 235/255. }, rgbfull = { 0, 1 }, rgblev; switch (levels_out) { case MP_CSP_LEVELS_TV: rgblev = rgblim; break; case MP_CSP_LEVELS_PC: rgblev = rgbfull; break; default: abort(); } double ymul = (rgblev.max - rgblev.min) / (yuvlev.ymax - yuvlev.ymin); double cmul = (rgblev.max - rgblev.min) / (yuvlev.cmid - yuvlev.cmin) / 2; // Contrast scales the output value range (gain) ymul *= params->contrast; cmul *= params->contrast; for (int i = 0; i < 3; i++) { m->m[i][0] *= ymul; m->m[i][1] *= cmul; m->m[i][2] *= cmul; // Set c so that Y=umin,UV=cmid maps to RGB=min (black to black), // also add brightness offset (black lift) m->c[i] = rgblev.min - m->m[i][0] * yuvlev.ymin - (m->m[i][1] + m->m[i][2]) * yuvlev.cmid + params->brightness; } } // Set colorspace related fields in p from f. Don't touch other fields. void mp_csp_set_image_params(struct mp_csp_params *params, const struct mp_image_params *imgparams) { struct mp_image_params p = *imgparams; mp_image_params_guess_csp(&p); // ensure consistency params->colorspace = p.colorspace; params->levels_in = p.colorlevels; params->primaries = p.primaries; } // Copy settings from eq into params. void mp_csp_copy_equalizer_values(struct mp_csp_params *params, const struct mp_csp_equalizer *eq) { params->brightness = eq->values[MP_CSP_EQ_BRIGHTNESS] / 100.0; params->contrast = (eq->values[MP_CSP_EQ_CONTRAST] + 100) / 100.0; params->hue = eq->values[MP_CSP_EQ_HUE] / 100.0 * M_PI; params->saturation = (eq->values[MP_CSP_EQ_SATURATION] + 100) / 100.0; params->gamma = exp(log(8.0) * eq->values[MP_CSP_EQ_GAMMA] / 100.0); params->levels_out = eq->values[MP_CSP_EQ_OUTPUT_LEVELS]; } static int find_eq(int capabilities, const char *name) { for (int i = 0; i < MP_CSP_EQ_COUNT; i++) { if (strcmp(name, mp_csp_equalizer_names[i]) == 0) return ((1 << i) & capabilities) ? i : -1; } return -1; } int mp_csp_equalizer_get(struct mp_csp_equalizer *eq, const char *property, int *out_value) { int index = find_eq(eq->capabilities, property); if (index < 0) return -1; *out_value = eq->values[index]; return 0; } int mp_csp_equalizer_set(struct mp_csp_equalizer *eq, const char *property, int value) { int index = find_eq(eq->capabilities, property); if (index < 0) return 0; eq->values[index] = value; return 1; } void mp_invert_cmat(struct mp_cmat *out, struct mp_cmat *in) { *out = *in; mp_invert_matrix3x3(out->m); // fix the constant coefficient // rgb = M * yuv + C // M^-1 * rgb = yuv + M^-1 * C // yuv = M^-1 * rgb - M^-1 * C // ^^^^^^^^^^ out->c[0] = -(out->m[0][0] * in->c[0] + out->m[0][1] * in->c[1] + out->m[0][2] * in->c[2]); out->c[1] = -(out->m[1][0] * in->c[0] + out->m[1][1] * in->c[1] + out->m[1][2] * in->c[2]); out->c[2] = -(out->m[2][0] * in->c[0] + out->m[2][1] * in->c[1] + out->m[2][2] * in->c[2]); } // Multiply the color in c with the given matrix. // i/o is {R, G, B} or {Y, U, V} (depending on input/output and matrix), using // a fixed point representation with the given number of bits (so for bits==8, // [0,255] maps to [0,1]). The output is clipped to the range as needed. void mp_map_fixp_color(struct mp_cmat *matrix, int ibits, int in[3], int obits, int out[3]) { for (int i = 0; i < 3; i++) { double val = matrix->c[i]; for (int x = 0; x < 3; x++) val += matrix->m[i][x] * in[x] / ((1 << ibits) - 1); int ival = lrint(val * ((1 << obits) - 1)); out[i] = av_clip(ival, 0, (1 << obits) - 1); } }