#include #include #include "common/common.h" #include "common/global.h" #include "img_utils.h" #include "sub/draw_bmp.h" #include "sub/osd.h" #include "test_utils.h" #include "video/fmt-conversion.h" #include "video/mp_image.h" #include "video/img_format.h" #include "video/repack.h" #include "video/sws_utils.h" #include "video/zimg.h" // Excuse the utter stupidity. #define UNFUCK(v) ((v) > 0 ? (v) : pixfmt2imgfmt(-(v))) static_assert(IMGFMT_START > 0, ""); #define IMGFMT_GBRP (-AV_PIX_FMT_GBRP) #define IMGFMT_GBRAP (-AV_PIX_FMT_GBRAP) struct entry { int w, h; int fmt_a; const void *const a[4]; int fmt_b; const void *const b[4]; int flags; }; #define P8(...) (const uint8_t[]){__VA_ARGS__} #define P16(...) (const uint16_t[]){__VA_ARGS__} #define P32(...) (const uint32_t[]){__VA_ARGS__} #define SW16(v) ((((v) & 0xFF) << 8) | ((v) >> 8)) #define SW32(v) ((SW16((v) & 0xFFFFu) << 16) | (SW16(((v) | 0u) >> 16))) #define ZIMG_IMAGE_DIMENSION_MAX ((size_t)(1) << (CHAR_BIT * sizeof(size_t) / 2 - 2)) // Warning: only entries that match existing conversions are tested. static const struct entry repack_tests[] = { // Note: the '0' tests rely on 0 being written, although by definition the // contents of this padding is undefined. The repacker always writes // it this way, though. {1, 1, IMGFMT_RGB0, {P8(1, 2, 3, 0)}, IMGFMT_GBRP, {P8(2), P8(3), P8(1)}}, {1, 1, IMGFMT_BGR0, {P8(1, 2, 3, 0)}, IMGFMT_GBRP, {P8(2), P8(1), P8(3)}}, {1, 1, IMGFMT_0RGB, {P8(0, 1, 2, 3)}, IMGFMT_GBRP, {P8(2), P8(3), P8(1)}}, {1, 1, IMGFMT_0BGR, {P8(0, 1, 2, 3)}, IMGFMT_GBRP, {P8(2), P8(1), P8(3)}}, {1, 1, IMGFMT_RGBA, {P8(1, 2, 3, 4)}, IMGFMT_GBRAP, {P8(2), P8(3), P8(1), P8(4)}}, {1, 1, IMGFMT_BGRA, {P8(1, 2, 3, 4)}, IMGFMT_GBRAP, {P8(2), P8(1), P8(3), P8(4)}}, {1, 1, IMGFMT_ARGB, {P8(4, 1, 2, 3)}, IMGFMT_GBRAP, {P8(2), P8(3), P8(1), P8(4)}}, {1, 1, IMGFMT_ABGR, {P8(4, 1, 2, 3)}, IMGFMT_GBRAP, {P8(2), P8(1), P8(3), P8(4)}}, {1, 1, IMGFMT_BGR24, {P8(1, 2, 3)}, IMGFMT_GBRP, {P8(2), P8(1), P8(3)}}, {1, 1, IMGFMT_RGB24, {P8(1, 2, 3)}, IMGFMT_GBRP, {P8(2), P8(3), P8(1)}}, {1, 1, IMGFMT_RGBA64, {P16(0x1a1b, 0x2a2b, 0x3a3b, 0x4a4b)}, -AV_PIX_FMT_GBRAP16, {P16(0x2a2b), P16(0x3a3b), P16(0x1a1b), P16(0x4a4b)}}, {1, 1, -AV_PIX_FMT_BGRA64LE, {P16(0x1a1b, 0x2a2b, 0x3a3b, 0x4a4b)}, -AV_PIX_FMT_GBRAP16, {P16(0x2a2b), P16(0x1a1b), P16(0x3a3b), P16(0x4a4b)}}, {1, 1, -AV_PIX_FMT_RGBA64BE, {P16(0x1b1a, 0x2b2a, 0x3b3a, 0x4b4a)}, -AV_PIX_FMT_GBRAP16, {P16(0x2a2b), P16(0x3a3b), P16(0x1a1b), P16(0x4a4b)}}, {1, 1, -AV_PIX_FMT_BGRA64BE, {P16(0x1b1a, 0x2b2a, 0x3b3a, 0x4b4a)}, -AV_PIX_FMT_GBRAP16, {P16(0x2a2b), P16(0x1a1b), P16(0x3a3b), P16(0x4a4b)}}, {1, 1, -AV_PIX_FMT_RGB48BE, {P16(0x1a1b, 0x2a2b, 0x3a3b)}, -AV_PIX_FMT_GBRP16, {P16(0x2b2a), P16(0x3b3a), P16(0x1b1a)}}, {1, 1, -AV_PIX_FMT_RGB48LE, {P16(0x1a1b, 0x2a2b, 0x3a3b)}, -AV_PIX_FMT_GBRP16, {P16(0x2a2b), P16(0x3a3b), P16(0x1a1b)}}, {1, 1, -AV_PIX_FMT_BGR48BE, {P16(0x1a1b, 0x2a2b, 0x3a3b)}, -AV_PIX_FMT_GBRP16, {P16(0x2b2a), P16(0x1b1a), P16(0x3b3a)}}, {1, 1, -AV_PIX_FMT_BGR48LE, {P16(0x1a1b, 0x2a2b, 0x3a3b)}, -AV_PIX_FMT_GBRP16, {P16(0x2a2b), P16(0x1a1b), P16(0x3a3b)}}, {1, 1, -AV_PIX_FMT_XYZ12LE, {P16(0x1a1b, 0x2a2b, 0x3a3b)}, -AV_PIX_FMT_GBRP16, {P16(0x2a2b), P16(0x3a3b), P16(0x1a1b)}}, {1, 1, -AV_PIX_FMT_XYZ12BE, {P16(0x1b1a, 0x2b2a, 0x3b3a)}, -AV_PIX_FMT_GBRP16, {P16(0x2a2b), P16(0x3a3b), P16(0x1a1b)}}, {3, 1, -AV_PIX_FMT_BGR8, {P8(7, (7 << 3), (3 << 6))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0,0,0xFF), P8(0xFF,0,0)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_RGB8, {P8(3, (7 << 2), (7 << 5))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0xFF,0,0), P8(0,0,0xFF)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_BGR4_BYTE, {P8(1, (3 << 1), (1 << 3))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0,0,0xFF), P8(0xFF,0,0)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_RGB4_BYTE, {P8(1, (3 << 1), (1 << 3))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0xFF,0,0), P8(0,0,0xFF)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_RGB565LE, {P16((31), (63 << 5), (31 << 11))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0xFF,0,0), P8(0,0,0xFF)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_RGB565BE, {P16(SW16(31), SW16(63 << 5), SW16(31 << 11))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0xFF,0,0), P8(0,0,0xFF)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_BGR565LE, {P16((31), (63 << 5), (31 << 11))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0,0,0xFF), P8(0xFF,0,0)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_BGR565BE, {P16(SW16(31), SW16(63 << 5), SW16(31 << 11))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0,0,0xFF), P8(0xFF,0,0)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_RGB555LE, {P16((31), (31 << 5), (31 << 10))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0xFF,0,0), P8(0,0,0xFF)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_RGB555BE, {P16(SW16(31), SW16(31 << 5), SW16(31 << 10))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0xFF,0,0), P8(0,0,0xFF)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_BGR555LE, {P16((31), (31 << 5), (31 << 10))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0,0,0xFF), P8(0xFF,0,0)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_BGR555BE, {P16(SW16(31), SW16(31 << 5), SW16(31 << 10))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0,0,0xFF), P8(0xFF,0,0)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_RGB444LE, {P16((15), (15 << 4), (15 << 8))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0xFF,0,0), P8(0,0,0xFF)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_RGB444BE, {P16(SW16(15), SW16(15 << 4), SW16(15 << 8))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0xFF,0,0), P8(0,0,0xFF)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_BGR444LE, {P16((15), (15 << 4), (15 << 8))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0,0,0xFF), P8(0xFF,0,0)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {3, 1, -AV_PIX_FMT_BGR444BE, {P16(SW16(15), SW16(15 << 4), SW16(15 << 8))}, IMGFMT_GBRP, {P8(0,0xFF,0), P8(0,0,0xFF), P8(0xFF,0,0)}, .flags = REPACK_CREATE_EXPAND_8BIT}, {1, 1, IMGFMT_RGB30, {P32((3 << 20) | (2 << 10) | 1)}, -AV_PIX_FMT_GBRP10, {P16(2), P16(1), P16(3)}}, {1, 1, -AV_PIX_FMT_X2RGB10BE, {P32(SW32((3 << 20) | (2 << 10) | 1))}, -AV_PIX_FMT_GBRP10, {P16(2), P16(1), P16(3)}}, {8, 1, -AV_PIX_FMT_MONOWHITE, {P8(0xAA)}, IMGFMT_Y1, {P8(0, 1, 0, 1, 0, 1, 0, 1)}}, {8, 1, -AV_PIX_FMT_MONOBLACK, {P8(0xAA)}, IMGFMT_Y1, {P8(1, 0, 1, 0, 1, 0, 1, 0)}}, {2, 2, IMGFMT_NV12, {P8(1, 2, 3, 4), P8(5, 6)}, IMGFMT_420P, {P8(1, 2, 3, 4), P8(5), P8(6)}}, {2, 2, -AV_PIX_FMT_NV21, {P8(1, 2, 3, 4), P8(5, 6)}, IMGFMT_420P, {P8(1, 2, 3, 4), P8(6), P8(5)}}, {1, 1, -AV_PIX_FMT_AYUV64LE, {P16(1, 2, 3, 4)}, -AV_PIX_FMT_YUVA444P16, {P16(2), P16(3), P16(4), P16(1)}}, {1, 1, -AV_PIX_FMT_AYUV64BE, {P16(0x0100, 0x0200, 0x0300, 0x0400)}, -AV_PIX_FMT_YUVA444P16, {P16(2), P16(3), P16(4), P16(1)}}, {4, 1, -AV_PIX_FMT_YUYV422, {P8(1, 2, 3, 4, 5, 6, 7, 8)}, -AV_PIX_FMT_YUV422P, {P8(1, 3, 5, 7), P8(2, 6), P8(4, 8)}}, {2, 1, -AV_PIX_FMT_YVYU422, {P8(1, 2, 3, 4)}, -AV_PIX_FMT_YUV422P, {P8(1, 3), P8(4), P8(2)}}, {2, 1, -AV_PIX_FMT_UYVY422, {P8(1, 2, 3, 4)}, -AV_PIX_FMT_YUV422P, {P8(2, 4), P8(1), P8(3)}}, {2, 1, -AV_PIX_FMT_Y210LE, {P16(0x1a1b, 0x2a2b, 0x3a3b, 0x4a4b)}, -AV_PIX_FMT_YUV422P16, {P16(0x1a1b, 0x3a3b), P16(0x2a2b), P16(0x4a4b)}}, {2, 1, -AV_PIX_FMT_Y210BE, {P16(0x1b1a, 0x2b2a, 0x3b3a, 0x4b4a)}, -AV_PIX_FMT_YUV422P16, {P16(0x1a1b, 0x3a3b), P16(0x2a2b), P16(0x4a4b)}}, {1, 1, -AV_PIX_FMT_YA8, {P8(1, 2)}, IMGFMT_YAP8, {P8(1), P8(2)}}, {1, 1, -AV_PIX_FMT_YA16, {P16(0x1a1b, 0x2a2b)}, IMGFMT_YAP16, {P16(0x1a1b), P16(0x2a2b)}}, {2, 1, -AV_PIX_FMT_YUV422P16BE, {P16(0x1a1b, 0x2a2b), P16(0x3a3b), P16(0x4a4b)}, -AV_PIX_FMT_YUV422P16, {P16(0x1b1a, 0x2b2a), P16(0x3b3a), P16(0x4b4a)}}, {8, 1, -AV_PIX_FMT_UYYVYY411, {P8(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)}, -AV_PIX_FMT_YUV411P, {P8(2, 3, 5, 6, 8, 9, 11, 12), P8(1, 7), P8(4, 10)}}, }; static bool is_true_planar(int imgfmt) { struct mp_regular_imgfmt desc; if (!mp_get_regular_imgfmt(&desc, imgfmt)) return false; for (int n = 0; n < desc.num_planes; n++) { if (desc.planes[n].num_components != 1) return false; } return true; } static int try_repack(FILE *f, int imgfmt, int flags, int not_if_fmt) { char *head = mp_tprintf(80, "%-15s =>", mp_imgfmt_to_name(imgfmt)); struct mp_repack *un = mp_repack_create_planar(imgfmt, false, flags); struct mp_repack *pa = mp_repack_create_planar(imgfmt, true, flags); // If both exists, they must be always symmetric. if (un && pa) { assert(mp_repack_get_format_src(pa) == mp_repack_get_format_dst(un)); assert(mp_repack_get_format_src(un) == mp_repack_get_format_dst(pa)); assert(mp_repack_get_align_x(pa) == mp_repack_get_align_x(un)); assert(mp_repack_get_align_y(pa) == mp_repack_get_align_y(un)); } int a = 0; int b = 0; if (un) { a = mp_repack_get_format_src(un); b = mp_repack_get_format_dst(un); } else if (pa) { a = mp_repack_get_format_dst(pa); b = mp_repack_get_format_src(pa); } // Skip the identity ones because they're uninteresting, and add too much // noise. But still make sure they behave as expected. if (a == imgfmt && b == imgfmt) { assert(is_true_planar(imgfmt)); // (note that we require alpha-enabled zimg) assert(mp_zimg_supports_in_format(imgfmt)); assert(un && pa); talloc_free(pa); talloc_free(un); return b; } struct mp_repack *rp = pa ? pa : un; if (!rp) { if (!flags) fprintf(f, "%s no\n", head); return 0; } assert(a == imgfmt); if (b && b == not_if_fmt) { talloc_free(pa); talloc_free(un); return 0; } fprintf(f, "%s %4s %4s %-15s |", head, pa ? "[pa]" : "", un ? "[un]" : "", mp_imgfmt_to_name(b)); fprintf(f, " a=%d:%d", mp_repack_get_align_x(rp), mp_repack_get_align_y(rp)); if (flags & REPACK_CREATE_PLANAR_F32) fprintf(f, " [planar-f32]"); if (flags & REPACK_CREATE_ROUND_DOWN) fprintf(f, " [round-down]"); if (flags & REPACK_CREATE_EXPAND_8BIT) fprintf(f, " [expand-8bit]"); // LCM of alignment of all packers. int ax = mp_repack_get_align_x(rp); int ay = mp_repack_get_align_y(rp); if (pa && un) { ax = MPMAX(mp_repack_get_align_x(pa), mp_repack_get_align_x(un)); ay = MPMAX(mp_repack_get_align_y(pa), mp_repack_get_align_y(un)); } for (int n = 0; n < MP_ARRAY_SIZE(repack_tests); n++) { const struct entry *e = &repack_tests[n]; int fmt_a = UNFUCK(e->fmt_a); int fmt_b = UNFUCK(e->fmt_b); if (!(fmt_a == a && fmt_b == b && e->flags == flags)) continue; // We convert a "random" macro pixel to catch potential addressing bugs // that might be ignored with (0, 0) origins. struct mp_image *ia = mp_image_alloc(fmt_a, e->w * 5 * ax, e->h * 5 * ay); struct mp_image *ib = mp_image_alloc(fmt_b, e->w * 7 * ax, e->h * 6 * ay); int sx = 4 * ax, sy = 3 * ay, dx = 3 * ax, dy = 2 * ay; assert(ia && ib); mp_image_params_guess_csp(&ia->params); mp_image_params_guess_csp(&ib->params); for (int pack = 0; pack < 2; pack++) { struct mp_repack *repacker = pack ? pa : un; if (!repacker) continue; mp_image_clear(ia, 0, 0, ia->w, ia->h); mp_image_clear(ib, 0, 0, ib->w, ib->h); const void *const *dstd = pack ? e->a : e->b; const void *const *srcd = pack ? e->b : e->a; struct mp_image *dsti = pack ? ia : ib; struct mp_image *srci = pack ? ib : ia; bool r = repack_config_buffers(repacker, 0, dsti, 0, srci, NULL); assert(r); for (int p = 0; p < srci->num_planes; p++) { uint8_t *ptr = mp_image_pixel_ptr(srci, p, sx, sy); for (int y = 0; y < e->h >> srci->fmt.ys[p]; y++) { int wb = mp_image_plane_bytes(srci, p, 0, e->w); const void *cptr = (uint8_t *)srcd[p] + wb * y; memcpy(ptr + srci->stride[p] * y, cptr, wb); } } repack_line(repacker, dx, dy, sx, sy, e->w); for (int p = 0; p < dsti->num_planes; p++) { uint8_t *ptr = mp_image_pixel_ptr(dsti, p, dx, dy); for (int y = 0; y < e->h >> dsti->fmt.ys[p]; y++) { int wb = mp_image_plane_bytes(dsti, p, 0, e->w); const void *cptr = (uint8_t *)dstd[p] + wb * y; assert_memcmp(ptr + dsti->stride[p] * y, cptr, wb); } } fprintf(f, " [t%s]", pack ? "p" : "u"); } talloc_free(ia); talloc_free(ib); } fprintf(f, "\n"); talloc_free(pa); talloc_free(un); return b; } static void check_float_repack(int imgfmt, enum pl_color_system csp, enum pl_color_levels levels) { imgfmt = UNFUCK(imgfmt); struct mp_regular_imgfmt desc = {0}; mp_get_regular_imgfmt(&desc, imgfmt); int bpp = desc.component_size; int comp_bits = desc.component_size * 8 + MPMIN(desc.component_pad, 0); assert(bpp == 1 || bpp == 2); int w = 1 << (bpp * 8); if (w > ZIMG_IMAGE_DIMENSION_MAX) { printf("Image dimension (%d) exceeded maximum allowed by zimg (%zu)." " Skipping test...\n", w, ZIMG_IMAGE_DIMENSION_MAX); return; } struct mp_image *src = mp_image_alloc(imgfmt, w, 1); assert(src); src->params.repr.sys = csp; src->params.repr.levels = levels; mp_image_params_guess_csp(&src->params); // mpv may not allow all combinations assert(src->params.repr.sys == csp); assert(src->params.repr.levels == levels); for (int p = 0; p < src->num_planes; p++) { int val = 0; for (int x = 0; x < w >> src->fmt.xs[p]; x++) { val = MPMIN(val, (1 << comp_bits) - 1); void *pixel = mp_image_pixel_ptr(src, p, x, 0); if (bpp == 1) { *(uint8_t *)pixel = val; } else { *(uint16_t *)pixel = val; } val++; } } struct mp_repack *to_f = mp_repack_create_planar(src->imgfmt, false, REPACK_CREATE_PLANAR_F32); struct mp_repack *from_f = mp_repack_create_planar(src->imgfmt, true, REPACK_CREATE_PLANAR_F32); assert(to_f && from_f); struct mp_image *z_f = mp_image_alloc(mp_repack_get_format_dst(to_f), w, 1); struct mp_image *r_f = mp_image_alloc(z_f->imgfmt, w, 1); struct mp_image *z_i = mp_image_alloc(src->imgfmt, w, 1); struct mp_image *r_i = mp_image_alloc(src->imgfmt, w, 1); assert(z_f && r_f && z_i && r_i); z_f->params.color = r_f->params.color = z_i->params.color = r_i->params.color = src->params.color; z_f->params.repr = r_f->params.repr = z_i->params.repr = r_i->params.repr = src->params.repr; // The idea is to use zimg to cross-check conversion. struct mp_sws_context *s = mp_sws_alloc(NULL); s->force_scaler = MP_SWS_ZIMG; struct zimg_opts opts = zimg_opts_defaults; opts.dither = ZIMG_DITHER_NONE; s->zimg_opts = &opts; int ret = mp_sws_scale(s, z_f, src); assert_true(ret >= 0); ret = mp_sws_scale(s, z_i, z_f); assert_true(ret >= 0); talloc_free(s); repack_config_buffers(to_f, 0, r_f, 0, src, NULL); repack_line(to_f, 0, 0, 0, 0, w); repack_config_buffers(from_f, 0, r_i, 0, r_f, NULL); repack_line(from_f, 0, 0, 0, 0, w); for (int p = 0; p < src->num_planes; p++) { for (int x = 0; x < w >> src->fmt.xs[p]; x++) { uint32_t src_val, z_i_val, r_i_val; if (bpp == 1) { src_val = *(uint8_t *)mp_image_pixel_ptr(src, p, x, 0); z_i_val = *(uint8_t *)mp_image_pixel_ptr(z_i, p, x, 0); r_i_val = *(uint8_t *)mp_image_pixel_ptr(r_i, p, x, 0); } else { src_val = *(uint16_t *)mp_image_pixel_ptr(src, p, x, 0); z_i_val = *(uint16_t *)mp_image_pixel_ptr(z_i, p, x, 0); r_i_val = *(uint16_t *)mp_image_pixel_ptr(r_i, p, x, 0); } float z_f_val = *(float *)mp_image_pixel_ptr(z_f, p, x, 0); float r_f_val = *(float *)mp_image_pixel_ptr(r_f, p, x, 0); assert_int_equal(src_val, z_i_val); assert_int_equal(src_val, r_i_val); double tolerance = 1.0 / (1 << (bpp * 8)) / 4; assert_float_equal(r_f_val, z_f_val, tolerance); } } talloc_free(src); talloc_free(z_i); talloc_free(z_f); talloc_free(r_i); talloc_free(r_f); talloc_free(to_f); talloc_free(from_f); } static bool try_draw_bmp(FILE *f, int imgfmt) { bool ok = false; struct mp_image *dst = mp_image_alloc(imgfmt, 64, 64); if (!dst) goto done; struct sub_bitmap sb = { .bitmap = &(uint8_t[]){123}, .stride = 1, .x = 1, .y = 1, .w = 1, .dw = 1, .h = 1, .dh = 1, .libass = { .color = 0xDEDEDEDE }, }; struct sub_bitmaps sbs = { .format = SUBBITMAP_LIBASS, .parts = &sb, .num_parts = 1, .change_id = 1, }; struct sub_bitmap_list sbs_list = { .change_id = 1, .w = dst->w, .h = dst->h, .items = (struct sub_bitmaps *[]){&sbs}, .num_items = 1, }; struct mp_draw_sub_cache *c = mp_draw_sub_alloc_test(dst); if (mp_draw_sub_bitmaps(c, dst, &sbs_list)) { char *info = mp_draw_sub_get_dbg_info(c); fprintf(f, "%s\n", info); talloc_free(info); ok = true; } talloc_free(c); talloc_free(dst); done: if (!ok) fprintf(f, "no\n"); return ok; } int main(int argc, char *argv[]) { const char *refdir = argv[1]; const char *outdir = argv[2]; FILE *f = test_open_out(outdir, "repack.txt"); init_imgfmts_list(); for (int n = 0; n < num_imgfmts; n++) { int imgfmt = imgfmts[n]; int other = try_repack(f, imgfmt, 0, 0); try_repack(f, imgfmt, REPACK_CREATE_ROUND_DOWN, other); try_repack(f, imgfmt, REPACK_CREATE_EXPAND_8BIT, other); try_repack(f, imgfmt, REPACK_CREATE_PLANAR_F32, other); } fclose(f); assert_text_files_equal(refdir, outdir, "repack.txt", "This can fail if FFmpeg/libswscale adds or removes pixfmts."); check_float_repack(-AV_PIX_FMT_GBRAP, PL_COLOR_SYSTEM_RGB, PL_COLOR_LEVELS_FULL); check_float_repack(-AV_PIX_FMT_GBRAP10, PL_COLOR_SYSTEM_RGB, PL_COLOR_LEVELS_FULL); check_float_repack(-AV_PIX_FMT_GBRAP16, PL_COLOR_SYSTEM_RGB, PL_COLOR_LEVELS_FULL); check_float_repack(-AV_PIX_FMT_YUVA444P, PL_COLOR_SYSTEM_BT_709, PL_COLOR_LEVELS_FULL); check_float_repack(-AV_PIX_FMT_YUVA444P, PL_COLOR_SYSTEM_BT_709, PL_COLOR_LEVELS_LIMITED); check_float_repack(-AV_PIX_FMT_YUVA444P10, PL_COLOR_SYSTEM_BT_709, PL_COLOR_LEVELS_FULL); check_float_repack(-AV_PIX_FMT_YUVA444P10, PL_COLOR_SYSTEM_BT_709, PL_COLOR_LEVELS_LIMITED); check_float_repack(-AV_PIX_FMT_YUVA444P16, PL_COLOR_SYSTEM_BT_709, PL_COLOR_LEVELS_FULL); check_float_repack(-AV_PIX_FMT_YUVA444P16, PL_COLOR_SYSTEM_BT_709, PL_COLOR_LEVELS_LIMITED); // Determine the list of possible draw_bmp input formats. Do this here // because it mostly depends on repack and imgformat stuff. f = test_open_out(outdir, "draw_bmp.txt"); for (int n = 0; n < num_imgfmts; n++) { int imgfmt = imgfmts[n]; fprintf(f, "%-12s= ", mp_imgfmt_to_name(imgfmt)); try_draw_bmp(f, imgfmt); } fclose(f); assert_text_files_equal(refdir, outdir, "draw_bmp.txt", "This can fail if FFmpeg/libswscale adds or removes pixfmts."); return 0; }