/* * This file is part of mpv. * * mpv is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * mpv is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with mpv. If not, see . */ #include #include #include #include #include #include "common/common.h" #include "draw_bmp.h" #include "img_convert.h" #include "video/mp_image.h" #include "video/repack.h" #include "video/sws_utils.h" #include "video/img_format.h" #include "video/csputils.h" const bool mp_draw_sub_formats[SUBBITMAP_COUNT] = { [SUBBITMAP_LIBASS] = true, [SUBBITMAP_RGBA] = true, }; struct part { int change_id; // Sub-bitmaps scaled to final sizes. int num_imgs; struct mp_image **imgs; }; // Must be a power of 2. Height is 1, but mark_rect() effectively operates on // multiples of chroma sized macro-pixels. (E.g. 4:2:0 -> every second line is // the same as the previous one, and x0%2==x1%2==0.) #define SLICE_W 256u // Whether to scale in tiles. Faster, but can't use correct chroma position. // Should be a runtime option. SLICE_W is used as tile width. The tile size // should probably be small; too small or too big will cause overhead when // scaling. #define SCALE_IN_TILES 1 #define TILE_H 4u struct slice { uint16_t x0, x1; }; struct mp_draw_sub_cache { struct mpv_global *global; // Possibly cached parts. Also implies what's in the video_overlay. struct part parts[MAX_OSD_PARTS]; int64_t change_id; struct mp_image_params params; // target image params int w, h; // like params.w/h, but rounded up to chroma unsigned align_x, align_y; // alignment for all video pixels struct mp_image *rgba_overlay; // all OSD in RGBA struct mp_image *video_overlay; // rgba_overlay converted to video colorspace struct mp_image *alpha_overlay; // alpha plane ref. to video_overlay struct mp_image *calpha_overlay; // alpha_overlay scaled to chroma plane size unsigned s_w; // number of slices per line struct slice *slices; // slices[y * s_w + x / SLICE_W] bool any_osd; struct mp_sws_context *rgba_to_overlay; // scaler for rgba -> video csp. struct mp_sws_context *alpha_to_calpha; // scaler for overlay -> calpha bool scale_in_tiles; struct mp_sws_context *sub_scale; // scaler for SUBBITMAP_RGBA struct mp_repack *overlay_to_f32; // convert video_overlay to float struct mp_image *overlay_tmp; // slice in float32 struct mp_repack *calpha_to_f32; // convert video_overlay to float struct mp_image *calpha_tmp; // slice in float32 struct mp_repack *video_to_f32; // convert video to float struct mp_repack *video_from_f32; // convert float back to video struct mp_image *video_tmp; // slice in float32 struct mp_sws_context *premul; // video -> premultiplied video struct mp_sws_context *unpremul; // reverse struct mp_image *premul_tmp; // Function that works on the _f32 data. void (*blend_line)(void *dst, void *src, void *src_a, int w); struct mp_image res_overlay; // returned by mp_draw_sub_overlay() }; static void blend_line_f32(void *dst, void *src, void *src_a, int w) { float *dst_f = dst; float *src_f = src; float *src_a_f = src_a; for (int x = 0; x < w; x++) dst_f[x] = src_f[x] + dst_f[x] * (1.0f - src_a_f[x]); } static void blend_line_u8(void *dst, void *src, void *src_a, int w) { uint8_t *dst_i = dst; uint8_t *src_i = src; uint8_t *src_a_i = src_a; for (int x = 0; x < w; x++) dst_i[x] = src_i[x] + dst_i[x] * (255u - src_a_i[x]) / 255u; } static void blend_slice(struct mp_draw_sub_cache *p) { struct mp_image *ov = p->overlay_tmp; struct mp_image *ca = p->calpha_tmp; struct mp_image *vid = p->video_tmp; for (int plane = 0; plane < vid->num_planes; plane++) { int xs = vid->fmt.xs[plane]; int ys = vid->fmt.ys[plane]; int h = (1 << vid->fmt.chroma_ys) - (1 << ys) + 1; int cw = mp_chroma_div_up(vid->w, xs); for (int y = 0; y < h; y++) { p->blend_line(mp_image_pixel_ptr_ny(vid, plane, 0, y), mp_image_pixel_ptr_ny(ov, plane, 0, y), xs || ys ? mp_image_pixel_ptr_ny(ca, 0, 0, y) : mp_image_pixel_ptr_ny(ov, ov->num_planes - 1, 0, y), cw); } } } static bool blend_overlay_with_video(struct mp_draw_sub_cache *p, struct mp_image *dst) { if (!repack_config_buffers(p->video_to_f32, 0, p->video_tmp, 0, dst, NULL)) return false; if (!repack_config_buffers(p->video_from_f32, 0, dst, 0, p->video_tmp, NULL)) return false; int xs = dst->fmt.chroma_xs; int ys = dst->fmt.chroma_ys; for (int y = 0; y < dst->h; y += p->align_y) { struct slice *line = &p->slices[y * p->s_w]; for (int sx = 0; sx < p->s_w; sx++) { struct slice *s = &line[sx]; int w = s->x1 - s->x0; if (w <= 0) continue; int x = sx * SLICE_W + s->x0; assert(MP_IS_ALIGNED(x, p->align_x)); assert(MP_IS_ALIGNED(w, p->align_x)); assert(x + w <= p->w); repack_line(p->overlay_to_f32, 0, 0, x, y, w); repack_line(p->video_to_f32, 0, 0, x, y, w); if (p->calpha_to_f32) repack_line(p->calpha_to_f32, 0, 0, x >> xs, y >> ys, w >> xs); blend_slice(p); repack_line(p->video_from_f32, x, y, 0, 0, w); } } return true; } static bool convert_overlay_part(struct mp_draw_sub_cache *p, int x0, int y0, int w, int h) { struct mp_image src = *p->rgba_overlay; struct mp_image dst = *p->video_overlay; mp_image_crop(&src, x0, y0, x0 + w, y0 + h); mp_image_crop(&dst, x0, y0, x0 + w, y0 + h); if (mp_sws_scale(p->rgba_to_overlay, &dst, &src) < 0) return false; if (p->calpha_overlay) { src = *p->alpha_overlay; dst = *p->calpha_overlay; int xs = p->video_overlay->fmt.chroma_xs; int ys = p->video_overlay->fmt.chroma_ys; mp_image_crop(&src, x0, y0, x0 + w, y0 + h); mp_image_crop(&dst, x0 >> xs, y0 >> ys, (x0 + w) >> xs, (y0 + h) >> ys); if (mp_sws_scale(p->alpha_to_calpha, &dst, &src) < 0) return false; } return true; } static bool convert_to_video_overlay(struct mp_draw_sub_cache *p) { if (!p->video_overlay) return true; if (p->scale_in_tiles) { int t_h = p->rgba_overlay->h / TILE_H; for (int ty = 0; ty < t_h; ty++) { for (int sx = 0; sx < p->s_w; sx++) { struct slice *s = &p->slices[ty * TILE_H * p->s_w + sx]; bool pixels_set = false; for (int y = 0; y < TILE_H; y++) { if (s[0].x0 < s[0].x1) { pixels_set = true; break; } s += p->s_w; } if (!pixels_set) continue; if (!convert_overlay_part(p, sx * SLICE_W, ty * TILE_H, SLICE_W, TILE_H)) return false; } } } else { if (!convert_overlay_part(p, 0, 0, p->rgba_overlay->w, p->rgba_overlay->h)) return false; } return true; } // Mark the given rectangle of pixels as possibly non-transparent. // The rectangle must have been pre-clipped. static void mark_rect(struct mp_draw_sub_cache *p, int x0, int y0, int x1, int y1) { x0 = MP_ALIGN_DOWN(x0, p->align_x); y0 = MP_ALIGN_DOWN(y0, p->align_y); x1 = MP_ALIGN_UP(x1, p->align_x); y1 = MP_ALIGN_UP(y1, p->align_y); assert(x0 >= 0 && x0 <= x1 && x1 <= p->w); assert(y0 >= 0 && y0 <= y1 && y1 <= p->h); int sx0 = x0 / SLICE_W; int sx1 = x1 / SLICE_W; for (int y = y0; y < y1; y++) { struct slice *line = &p->slices[y * p->s_w]; struct slice *s0 = &line[sx0]; struct slice *s1 = &line[sx1]; s0->x0 = MPMIN(s0->x0, x0 % SLICE_W); s1->x1 = MPMAX(s1->x1, x1 % SLICE_W); if (s0 != s1) { s0->x1 = SLICE_W; s1->x0 = 0; for (int x = sx0 + 1; x < sx1; x++) { struct slice *s = &line[x]; s->x0 = 0; s->x1 = SLICE_W; } } p->any_osd = true; } } static void draw_ass_rgba(uint8_t *dst, ptrdiff_t dst_stride, uint8_t *src, ptrdiff_t src_stride, int w, int h, uint32_t color) { const unsigned int r = (color >> 24) & 0xff; const unsigned int g = (color >> 16) & 0xff; const unsigned int b = (color >> 8) & 0xff; const unsigned int a = 0xff - (color & 0xff); for (int y = 0; y < h; y++) { uint32_t *dstrow = (uint32_t *) dst; for (int x = 0; x < w; x++) { const unsigned int v = src[x]; unsigned int aa = a * v; uint32_t dstpix = dstrow[x]; unsigned int dstb = dstpix & 0xFF; unsigned int dstg = (dstpix >> 8) & 0xFF; unsigned int dstr = (dstpix >> 16) & 0xFF; unsigned int dsta = (dstpix >> 24) & 0xFF; dstb = (v * b * a + dstb * (255 * 255 - aa)) / (255 * 255); dstg = (v * g * a + dstg * (255 * 255 - aa)) / (255 * 255); dstr = (v * r * a + dstr * (255 * 255 - aa)) / (255 * 255); dsta = (aa * 255 + dsta * (255 * 255 - aa)) / (255 * 255); dstrow[x] = dstb | (dstg << 8) | (dstr << 16) | (dsta << 24); } dst += dst_stride; src += src_stride; } } static void render_ass(struct mp_draw_sub_cache *p, struct sub_bitmaps *sb) { assert(sb->format == SUBBITMAP_LIBASS); for (int i = 0; i < sb->num_parts; i++) { struct sub_bitmap *s = &sb->parts[i]; draw_ass_rgba(mp_image_pixel_ptr(p->rgba_overlay, 0, s->x, s->y), p->rgba_overlay->stride[0], s->bitmap, s->stride, s->w, s->h, s->libass.color); mark_rect(p, s->x, s->y, s->x + s->w, s->y + s->h); } } static void draw_rgba(uint8_t *dst, ptrdiff_t dst_stride, uint8_t *src, ptrdiff_t src_stride, int w, int h) { for (int y = 0; y < h; y++) { uint32_t *srcrow = (uint32_t *)src; uint32_t *dstrow = (uint32_t *)dst; for (int x = 0; x < w; x++) { uint32_t srcpix = srcrow[x]; uint32_t dstpix = dstrow[x]; unsigned int srcb = srcpix & 0xFF; unsigned int srcg = (srcpix >> 8) & 0xFF; unsigned int srcr = (srcpix >> 16) & 0xFF; unsigned int srca = (srcpix >> 24) & 0xFF; unsigned int dstb = dstpix & 0xFF; unsigned int dstg = (dstpix >> 8) & 0xFF; unsigned int dstr = (dstpix >> 16) & 0xFF; unsigned int dsta = (dstpix >> 24) & 0xFF; dstb = srcb + dstb * (255 * 255 - srca) / (255 * 255); dstg = srcg + dstg * (255 * 255 - srca) / (255 * 255); dstr = srcr + dstr * (255 * 255 - srca) / (255 * 255); dsta = srca + dsta * (255 * 255 - srca) / (255 * 255); dstrow[x] = dstb | (dstg << 8) | (dstr << 16) | (dsta << 24); } dst += dst_stride; src += src_stride; } } static bool render_rgba(struct mp_draw_sub_cache *p, struct part *part, struct sub_bitmaps *sb) { assert(sb->format == SUBBITMAP_RGBA); if (part->change_id != sb->change_id) { for (int n = 0; n < part->num_imgs; n++) talloc_free(part->imgs[n]); part->num_imgs = sb->num_parts; MP_TARRAY_GROW(p, part->imgs, part->num_imgs); for (int n = 0; n < part->num_imgs; n++) part->imgs[n] = NULL; part->change_id = sb->change_id; } for (int i = 0; i < sb->num_parts; i++) { struct sub_bitmap *s = &sb->parts[i]; // Clipping is rare but necessary. int sx0 = s->x; int sy0 = s->y; int sx1 = s->x + s->dw; int sy1 = s->y + s->dh; int x0 = MPCLAMP(sx0, 0, p->w); int y0 = MPCLAMP(sy0, 0, p->h); int x1 = MPCLAMP(sx1, 0, p->w); int y1 = MPCLAMP(sy1, 0, p->h); int dw = x1 - x0; int dh = y1 - y0; if (dw <= 0 || dh <= 0) continue; // We clip the source instead of the scaled image, because that might // avoid excessive memory usage when applying a ridiculous scale factor, // even if that stretches it to up to 1 pixel due to integer rounding. int sx = 0; int sy = 0; int sw = s->w; int sh = s->h; if (x0 != sx0 || y0 != sy0 || x1 != sx1 || y1 != sy1) { double fx = s->dw / (double)s->w; double fy = s->dh / (double)s->h; sx = MPCLAMP((x0 - sx0) / fx, 0, s->w); sy = MPCLAMP((y0 - sy0) / fy, 0, s->h); sw = MPCLAMP(dw / fx, 1, s->w); sh = MPCLAMP(dh / fy, 1, s->h); } assert(sx >= 0 && sw > 0 && sx + sw <= s->w); assert(sy >= 0 && sh > 0 && sy + sh <= s->h); ptrdiff_t s_stride = s->stride; void *s_ptr = (char *)s->bitmap + s_stride * sy + sx * 4; if (dw != sw || dh != sh) { struct mp_image *scaled = part->imgs[i]; if (!scaled) { struct mp_image src_img = {0}; mp_image_setfmt(&src_img, IMGFMT_BGRA); mp_image_set_size(&src_img, sw, sh); src_img.planes[0] = s_ptr; src_img.stride[0] = s_stride; src_img.params.alpha = MP_ALPHA_PREMUL; scaled = mp_image_alloc(IMGFMT_BGRA, dw, dh); if (!scaled) return false; part->imgs[i] = talloc_steal(p, scaled); mp_image_copy_attributes(scaled, &src_img); if (mp_sws_scale(p->sub_scale, scaled, &src_img) < 0) return false; } assert(scaled->w == dw); assert(scaled->h == dh); s_stride = scaled->stride[0]; s_ptr = scaled->planes[0]; } draw_rgba(mp_image_pixel_ptr(p->rgba_overlay, 0, x0, y0), p->rgba_overlay->stride[0], s_ptr, s_stride, dw, dh); mark_rect(p, x0, y0, x1, y1); } return true; } static bool render_sb(struct mp_draw_sub_cache *p, struct sub_bitmaps *sb) { struct part *part = &p->parts[sb->render_index]; switch (sb->format) { case SUBBITMAP_LIBASS: render_ass(p, sb); return true; case SUBBITMAP_RGBA: return render_rgba(p, part, sb); } return false; } static void clear_rgba_overlay(struct mp_draw_sub_cache *p) { assert(p->rgba_overlay->imgfmt == IMGFMT_BGRA); for (int y = 0; y < p->rgba_overlay->h; y++) { uint32_t *px = mp_image_pixel_ptr(p->rgba_overlay, 0, 0, y); struct slice *line = &p->slices[y * p->s_w]; for (int sx = 0; sx < p->s_w; sx++) { struct slice *s = &line[sx]; if (s->x0 <= s->x1) { memset(px + s->x0, 0, (s->x1 - s->x0) * 4); *s = (struct slice){SLICE_W, 0}; } px += SLICE_W; } } p->any_osd = false; } static struct mp_sws_context *alloc_scaler(struct mp_draw_sub_cache *p) { struct mp_sws_context *s = mp_sws_alloc(p); mp_sws_enable_cmdline_opts(s, p->global); return s; } static void init_general(struct mp_draw_sub_cache *p) { p->sub_scale = alloc_scaler(p); p->s_w = MP_ALIGN_UP(p->rgba_overlay->w, SLICE_W) / SLICE_W; p->slices = talloc_zero_array(p, struct slice, p->s_w * p->rgba_overlay->h); mp_image_clear(p->rgba_overlay, 0, 0, p->w, p->h); clear_rgba_overlay(p); } static bool reinit_to_video(struct mp_draw_sub_cache *p) { struct mp_image_params *params = &p->params; mp_image_params_guess_csp(params); bool need_premul = params->alpha != MP_ALPHA_PREMUL && (mp_imgfmt_get_desc(params->imgfmt).flags & MP_IMGFLAG_ALPHA); // Intermediate format for video_overlay. Requirements: // - same subsampling as video // - uses video colorspace // - has alpha // - repacker support (to the format used in p->blend_line) // - probably 8 bit per component rather than something wasteful or strange struct mp_regular_imgfmt vfdesc = {0}; int rflags = REPACK_CREATE_EXPAND_8BIT; bool use_shortcut = false; p->video_to_f32 = mp_repack_create_planar(params->imgfmt, false, rflags); talloc_steal(p, p->video_to_f32); if (!p->video_to_f32) return false; mp_get_regular_imgfmt(&vfdesc, mp_repack_get_format_dst(p->video_to_f32)); assert(vfdesc.num_planes); // must have succeeded if (params->color.space == MP_CSP_RGB && vfdesc.num_planes >= 3) { use_shortcut = true; if (vfdesc.component_type == MP_COMPONENT_TYPE_UINT && vfdesc.component_size == 1 && vfdesc.component_pad == 0) p->blend_line = blend_line_u8; } // If no special blender is available, blend in float. if (!p->blend_line) { TA_FREEP(&p->video_to_f32); rflags |= REPACK_CREATE_PLANAR_F32; p->video_to_f32 = mp_repack_create_planar(params->imgfmt, false, rflags); talloc_steal(p, p->video_to_f32); if (!p->video_to_f32) return false; mp_get_regular_imgfmt(&vfdesc, mp_repack_get_format_dst(p->video_to_f32)); assert(vfdesc.component_type == MP_COMPONENT_TYPE_FLOAT); p->blend_line = blend_line_f32; } p->scale_in_tiles = SCALE_IN_TILES; int vid_f32_fmt = mp_repack_get_format_dst(p->video_to_f32); p->video_from_f32 = mp_repack_create_planar(params->imgfmt, true, rflags); talloc_steal(p, p->video_from_f32); if (!p->video_from_f32) return false; assert(mp_repack_get_format_dst(p->video_to_f32) == mp_repack_get_format_src(p->video_from_f32)); int overlay_fmt = 0; if (use_shortcut) { // No point in doing anything fancy. overlay_fmt = IMGFMT_BGRA; p->scale_in_tiles = false; } else { struct mp_regular_imgfmt odesc = vfdesc; // Just use 8 bit as well (should be fine, may use less memory). odesc.component_type = MP_COMPONENT_TYPE_UINT; odesc.component_size = 1; odesc.component_pad = 0; // Ensure there's alpha. if (odesc.planes[odesc.num_planes - 1].components[0] != 4) { if (odesc.num_planes >= 4) return false; // wat odesc.planes[odesc.num_planes++] = (struct mp_regular_imgfmt_plane){1, {4}}; } overlay_fmt = mp_find_regular_imgfmt(&odesc); p->scale_in_tiles = odesc.chroma_xs || odesc.chroma_ys; } if (!overlay_fmt) return false; p->overlay_to_f32 = mp_repack_create_planar(overlay_fmt, false, rflags); talloc_steal(p, p->overlay_to_f32); if (!p->overlay_to_f32) return false; int render_fmt = mp_repack_get_format_dst(p->overlay_to_f32); struct mp_regular_imgfmt ofdesc = {0}; mp_get_regular_imgfmt(&ofdesc, render_fmt); if (ofdesc.planes[ofdesc.num_planes - 1].components[0] != 4) return false; // The formats must be the same, minus possible lack of alpha in vfdesc. if (ofdesc.num_planes != vfdesc.num_planes && ofdesc.num_planes - 1 != vfdesc.num_planes) return false; for (int n = 0; n < vfdesc.num_planes; n++) { if (vfdesc.planes[n].components[0] != ofdesc.planes[n].components[0]) return false; } p->align_x = mp_repack_get_align_x(p->video_to_f32); p->align_y = mp_repack_get_align_y(p->video_to_f32); assert(p->align_x >= mp_repack_get_align_x(p->overlay_to_f32)); assert(p->align_y >= mp_repack_get_align_y(p->overlay_to_f32)); if (p->align_x > SLICE_W || p->align_y > TILE_H) return false; p->w = MP_ALIGN_UP(params->w, p->align_x); int slice_h = p->align_y; p->h = MP_ALIGN_UP(params->h, slice_h); // Size of the overlay. If scaling in tiles, round up to tiles, so we don't // need to reinit the scale for right/bottom tiles. int w = p->w; int h = p->h; if (p->scale_in_tiles) { w = MP_ALIGN_UP(w, SLICE_W); h = MP_ALIGN_UP(h, TILE_H); } p->rgba_overlay = talloc_steal(p, mp_image_alloc(IMGFMT_BGRA, w, h)); p->overlay_tmp = talloc_steal(p, mp_image_alloc(render_fmt, SLICE_W, slice_h)); p->video_tmp = talloc_steal(p, mp_image_alloc(vid_f32_fmt, SLICE_W, slice_h)); if (!p->rgba_overlay || !p->overlay_tmp || !p->video_tmp) return false; mp_image_params_guess_csp(&p->rgba_overlay->params); p->rgba_overlay->params.alpha = MP_ALPHA_PREMUL; p->overlay_tmp->params.color = params->color; p->video_tmp->params.color = params->color; if (p->rgba_overlay->imgfmt == overlay_fmt) { if (!repack_config_buffers(p->overlay_to_f32, 0, p->overlay_tmp, 0, p->rgba_overlay, NULL)) return false; } else { // Generally non-RGB. p->video_overlay = talloc_steal(p, mp_image_alloc(overlay_fmt, w, h)); if (!p->video_overlay) return false; p->video_overlay->params.color = params->color; p->video_overlay->params.chroma_location = params->chroma_location; p->video_overlay->params.alpha = MP_ALPHA_PREMUL; if (p->scale_in_tiles) p->video_overlay->params.chroma_location = MP_CHROMA_CENTER; p->rgba_to_overlay = alloc_scaler(p); p->rgba_to_overlay->allow_zimg = true; if (!mp_sws_supports_formats(p->rgba_to_overlay, p->video_overlay->imgfmt, p->rgba_overlay->imgfmt)) return false; if (!repack_config_buffers(p->overlay_to_f32, 0, p->overlay_tmp, 0, p->video_overlay, NULL)) return false; // Setup a scaled alpha plane if chroma-subsampling is present. int xs = p->video_overlay->fmt.chroma_xs; int ys = p->video_overlay->fmt.chroma_ys; if (xs || ys) { // Require float so format selection becomes simpler (maybe). assert(rflags & REPACK_CREATE_PLANAR_F32); // For extracting the alpha plane, construct a gray format that is // compatible with the alpha one. struct mp_regular_imgfmt odesc = {0}; mp_get_regular_imgfmt(&odesc, overlay_fmt); assert(odesc.component_size); int aplane = odesc.num_planes - 1; assert(odesc.planes[aplane].num_components == 1); assert(odesc.planes[aplane].components[0] == 4); struct mp_regular_imgfmt cadesc = odesc; cadesc.num_planes = 1; cadesc.planes[0] = (struct mp_regular_imgfmt_plane){1, {1}}; cadesc.chroma_xs = cadesc.chroma_ys = 0; int calpha_fmt = mp_find_regular_imgfmt(&cadesc); if (!calpha_fmt) return false; // Unscaled alpha plane from p->video_overlay. p->alpha_overlay = talloc_zero(p, struct mp_image); mp_image_setfmt(p->alpha_overlay, calpha_fmt); mp_image_set_size(p->alpha_overlay, w, h); p->alpha_overlay->planes[0] = p->video_overlay->planes[aplane]; p->alpha_overlay->stride[0] = p->video_overlay->stride[aplane]; // Full range gray always has the same range as alpha. p->alpha_overlay->params.color.levels = MP_CSP_LEVELS_PC; mp_image_params_guess_csp(&p->alpha_overlay->params); p->calpha_overlay = talloc_steal(p, mp_image_alloc(calpha_fmt, w >> xs, h >> ys)); if (!p->calpha_overlay) return false; p->calpha_overlay->params.color = p->alpha_overlay->params.color; p->calpha_to_f32 = mp_repack_create_planar(calpha_fmt, false, rflags); talloc_steal(p, p->calpha_to_f32); if (!p->calpha_to_f32) return false; int af32_fmt = mp_repack_get_format_dst(p->calpha_to_f32); p->calpha_tmp = talloc_steal(p, mp_image_alloc(af32_fmt, SLICE_W, 1)); if (!p->calpha_tmp) return false; if (!repack_config_buffers(p->calpha_to_f32, 0, p->calpha_tmp, 0, p->calpha_overlay, NULL)) return false; p->alpha_to_calpha = alloc_scaler(p); if (!mp_sws_supports_formats(p->alpha_to_calpha, calpha_fmt, calpha_fmt)) return false; } } if (need_premul) { p->premul = alloc_scaler(p); p->unpremul = alloc_scaler(p); p->premul_tmp = mp_image_alloc(params->imgfmt, params->w, params->h); talloc_steal(p, p->premul_tmp); if (!p->premul_tmp) return false; mp_image_set_params(p->premul_tmp, params); p->premul_tmp->params.alpha = MP_ALPHA_PREMUL; // Only zimg supports this. p->premul->force_scaler = MP_SWS_ZIMG; p->unpremul->force_scaler = MP_SWS_ZIMG; } init_general(p); return true; } static bool reinit_to_overlay(struct mp_draw_sub_cache *p) { p->align_x = 1; p->align_y = 1; p->w = p->params.w; p->h = p->params.h; p->rgba_overlay = talloc_steal(p, mp_image_alloc(IMGFMT_BGRA, p->w, p->h)); if (!p->rgba_overlay) return false; mp_image_params_guess_csp(&p->rgba_overlay->params); p->rgba_overlay->params.alpha = MP_ALPHA_PREMUL; // Some non-sense with the intention to somewhat isolate the returned image. mp_image_setfmt(&p->res_overlay, p->rgba_overlay->imgfmt); mp_image_set_size(&p->res_overlay, p->rgba_overlay->w, p->rgba_overlay->h); mp_image_copy_attributes(&p->res_overlay, p->rgba_overlay); p->res_overlay.planes[0] = p->rgba_overlay->planes[0]; p->res_overlay.stride[0] = p->rgba_overlay->stride[0]; init_general(p); // Mark all dirty (for full reinit of user state). for (int y = 0; y < p->rgba_overlay->h; y++) { for (int sx = 0; sx < p->s_w; sx++) p->slices[y * p->s_w + sx] = (struct slice){0, SLICE_W}; } return true; } static bool check_reinit(struct mp_draw_sub_cache *p, struct mp_image_params *params, bool to_video) { if (!mp_image_params_equal(&p->params, params) || !p->rgba_overlay) { talloc_free_children(p); *p = (struct mp_draw_sub_cache){.global = p->global, .params = *params}; if (!(to_video ? reinit_to_video(p) : reinit_to_overlay(p))) { talloc_free_children(p); *p = (struct mp_draw_sub_cache){.global = p->global}; return false; } } return true; } char *mp_draw_sub_get_dbg_info(struct mp_draw_sub_cache *p) { assert(p); return talloc_asprintf(NULL, "align=%d:%d ov=%-7s, ov_f=%s, v_f=%s, a=%s, ca=%s, ca_f=%s", p->align_x, p->align_y, mp_imgfmt_to_name(p->video_overlay ? p->video_overlay->imgfmt : 0), mp_imgfmt_to_name(p->overlay_tmp->imgfmt), mp_imgfmt_to_name(p->video_tmp->imgfmt), mp_imgfmt_to_name(p->alpha_overlay ? p->alpha_overlay->imgfmt : 0), mp_imgfmt_to_name(p->calpha_overlay ? p->calpha_overlay->imgfmt : 0), mp_imgfmt_to_name(p->calpha_tmp ? p->calpha_tmp->imgfmt : 0)); } struct mp_draw_sub_cache *mp_draw_sub_alloc(void *ta_parent, struct mpv_global *g) { struct mp_draw_sub_cache *c = talloc_zero(ta_parent, struct mp_draw_sub_cache); c->global = g; return c; } bool mp_draw_sub_bitmaps(struct mp_draw_sub_cache *p, struct mp_image *dst, struct sub_bitmap_list *sbs_list) { bool ok = false; // dst must at least be as large as the bounding box, or you may get memory // corruption. assert(dst->w >= sbs_list->w); assert(dst->h >= sbs_list->h); if (!check_reinit(p, &dst->params, true)) return false; if (p->change_id != sbs_list->change_id) { p->change_id = sbs_list->change_id; clear_rgba_overlay(p); for (int n = 0; n < sbs_list->num_items; n++) { if (!render_sb(p, sbs_list->items[n])) goto done; } if (!convert_to_video_overlay(p)) goto done; } if (p->any_osd) { struct mp_image *target = dst; if (p->premul_tmp) { if (mp_sws_scale(p->premul, p->premul_tmp, dst) < 0) goto done; target = p->premul_tmp; } if (!blend_overlay_with_video(p, target)) goto done; if (target != dst) { if (mp_sws_scale(p->unpremul, dst, p->premul_tmp) < 0) goto done; } } ok = true; done: return ok; } // Bounding boxes for mp_draw_sub_overlay() API. For simplicity, each rectangle // covers a fixed tile on the screen, starts out empty, but is not extended // beyond the tile. In the simplest case, there's only 1 rect/tile for everything. struct rc_grid { unsigned w, h; // size in grid tiles unsigned r_w, r_h; // size of a grid tile in pixels struct mp_rect *rcs; // rcs[x * w + y] }; static void init_rc_grid(struct rc_grid *gr, struct mp_draw_sub_cache *p, struct mp_rect *rcs, int max_rcs) { *gr = (struct rc_grid){ .w = max_rcs ? 1 : 0, .h = max_rcs ? 1 : 0, .rcs = rcs, .r_w = p->s_w * SLICE_W, .r_h = p->h, }; // Dumb iteration to figure out max. size because I'm stupid. bool more = true; while (more) { more = false; if (gr->r_h >= 128) { if (gr->w * gr->h * 2 > max_rcs) break; gr->h *= 2; gr->r_h = (p->h + gr->h - 1) / gr->h; more = true; } if (gr->r_w >= SLICE_W * 2) { if (gr->w * gr->h * 2 > max_rcs) break; gr->w *= 2; gr->r_w = (p->s_w + gr->w - 1) / gr->w * SLICE_W; more = true; } } assert(gr->r_h * gr->h >= p->h); assert(!(gr->r_w & (SLICE_W - 1))); assert(gr->r_w * gr->w >= p->w); // Init with empty (degenerate) rectangles. for (int y = 0; y < gr->h; y++) { for (int x = 0; x < gr->w; x++) { struct mp_rect *rc = &gr->rcs[y * gr->w + x]; rc->x1 = x * gr->r_w; rc->y1 = y * gr->r_h; rc->x0 = rc->x1 + gr->r_w; rc->y0 = rc->y1 + gr->r_h; } } } // Extend given grid with contents of p->slices. static void mark_rcs(struct mp_draw_sub_cache *p, struct rc_grid *gr) { for (int y = 0; y < p->h; y++) { struct slice *line = &p->slices[y * p->s_w]; struct mp_rect *rcs = &gr->rcs[y / gr->r_h * gr->w]; for (int sx = 0; sx < p->s_w; sx++) { struct slice *s = &line[sx]; if (s->x0 < s->x1) { unsigned xpos = sx * SLICE_W; struct mp_rect *rc = &rcs[xpos / gr->r_w]; rc->y0 = MPMIN(rc->y0, y); rc->y1 = MPMAX(rc->y1, y + 1); rc->x0 = MPMIN(rc->x0, xpos + s->x0); rc->x1 = MPMAX(rc->x1, xpos + s->x1); } } } } // Remove empty RCs, and return rc count. static int return_rcs(struct rc_grid *gr) { int num = 0, cnt = gr->w * gr->h; for (int n = 0; n < cnt; n++) { struct mp_rect *rc = &gr->rcs[n]; if (rc->x0 < rc->x1 && rc->y0 < rc->y1) gr->rcs[num++] = *rc; } return num; } struct mp_image *mp_draw_sub_overlay(struct mp_draw_sub_cache *p, struct sub_bitmap_list *sbs_list, struct mp_rect *act_rcs, int max_act_rcs, int *num_act_rcs, struct mp_rect *mod_rcs, int max_mod_rcs, int *num_mod_rcs) { *num_act_rcs = 0; *num_mod_rcs = 0; struct mp_image_params params = {.w = sbs_list->w, .h = sbs_list->h}; if (!check_reinit(p, ¶ms, false)) return NULL; struct rc_grid gr_act, gr_mod; init_rc_grid(&gr_act, p, act_rcs, max_act_rcs); init_rc_grid(&gr_mod, p, mod_rcs, max_mod_rcs); if (p->change_id != sbs_list->change_id) { p->change_id = sbs_list->change_id; mark_rcs(p, &gr_mod); clear_rgba_overlay(p); for (int n = 0; n < sbs_list->num_items; n++) { if (!render_sb(p, sbs_list->items[n])) { p->change_id = 0; return NULL; } } mark_rcs(p, &gr_mod); } mark_rcs(p, &gr_act); *num_act_rcs = return_rcs(&gr_act); *num_mod_rcs = return_rcs(&gr_mod); return &p->res_overlay; } // vim: ts=4 sw=4 et tw=80