/* Copyright (C) 2001-2002 Michael Niedermayer This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* supported Input formats: YV12 (grayscale soon too) supported output formats: YV12, BGR15, BGR16, BGR24, BGR32 (grayscale soon too) */ #include #include #include #include #include "../config.h" #include "../mangle.h" #ifdef HAVE_MALLOC_H #include #endif #include "swscale.h" #include "../cpudetect.h" #include "../libvo/img_format.h" #undef MOVNTQ #undef PAVGB //#undef HAVE_MMX2 //#define HAVE_3DNOW //#undef HAVE_MMX //#undef ARCH_X86 #define DITHER1XBPP #define RET 0xC3 //near return opcode #ifdef MP_DEBUG #define ASSERT(x) if(!(x)) { printf("ASSERT " #x " failed\n"); *((int*)0)=0; } #else #define ASSERT(x) ; #endif #ifdef M_PI #define PI M_PI #else #define PI 3.14159265358979323846 #endif extern int verbose; // defined in mplayer.c /* NOTES known BUGS with known cause (no bugreports please!, but patches are welcome :) ) horizontal fast_bilinear MMX2 scaler reads 1-7 samples too much (might cause a sig11) Supported output formats BGR15 BGR16 BGR24 BGR32 YV12 BGR15 & BGR16 MMX verions support dithering Special versions: fast Y 1:1 scaling (no interpolation in y direction) TODO more intelligent missalignment avoidance for the horizontal scaler dither in C change the distance of the u & v buffer write special vertical cubic upscale version Optimize C code (yv12 / minmax) */ #define ABS(a) ((a) > 0 ? (a) : (-(a))) #define MIN(a,b) ((a) > (b) ? (b) : (a)) #define MAX(a,b) ((a) < (b) ? (b) : (a)) #ifdef ARCH_X86 #define CAN_COMPILE_X86_ASM #endif #ifdef CAN_COMPILE_X86_ASM static uint64_t __attribute__((aligned(8))) yCoeff= 0x2568256825682568LL; static uint64_t __attribute__((aligned(8))) vrCoeff= 0x3343334333433343LL; static uint64_t __attribute__((aligned(8))) ubCoeff= 0x40cf40cf40cf40cfLL; static uint64_t __attribute__((aligned(8))) vgCoeff= 0xE5E2E5E2E5E2E5E2LL; static uint64_t __attribute__((aligned(8))) ugCoeff= 0xF36EF36EF36EF36ELL; static uint64_t __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL; static uint64_t __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL; static uint64_t __attribute__((aligned(8))) w400= 0x0400040004000400LL; static uint64_t __attribute__((aligned(8))) w80= 0x0080008000800080LL; static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL; static uint64_t __attribute__((aligned(8))) w02= 0x0002000200020002LL; static uint64_t __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL; static uint64_t __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL; static uint64_t __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL; static volatile uint64_t __attribute__((aligned(8))) b5Dither; static volatile uint64_t __attribute__((aligned(8))) g5Dither; static volatile uint64_t __attribute__((aligned(8))) g6Dither; static volatile uint64_t __attribute__((aligned(8))) r5Dither; static uint64_t __attribute__((aligned(8))) dither4[2]={ 0x0103010301030103LL, 0x0200020002000200LL,}; static uint64_t __attribute__((aligned(8))) dither8[2]={ 0x0602060206020602LL, 0x0004000400040004LL,}; static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL; static uint64_t __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL; static uint64_t __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL; static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL; static uint64_t __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL; static uint64_t __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL; static uint64_t __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL; static uint64_t __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL; static uint64_t __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL; // FIXME remove static uint64_t __attribute__((aligned(8))) asm_yalpha1; static uint64_t __attribute__((aligned(8))) asm_uvalpha1; #endif // clipping helper table for C implementations: static unsigned char clip_table[768]; static unsigned short clip_table16b[768]; static unsigned short clip_table16g[768]; static unsigned short clip_table16r[768]; static unsigned short clip_table15b[768]; static unsigned short clip_table15g[768]; static unsigned short clip_table15r[768]; // yuv->rgb conversion tables: static int yuvtab_2568[256]; static int yuvtab_3343[256]; static int yuvtab_0c92[256]; static int yuvtab_1a1e[256]; static int yuvtab_40cf[256]; // Needed for cubic scaler to catch overflows static int clip_yuvtab_2568[768]; static int clip_yuvtab_3343[768]; static int clip_yuvtab_0c92[768]; static int clip_yuvtab_1a1e[768]; static int clip_yuvtab_40cf[768]; //global sws_flags from the command line int sws_flags=0; //global srcFilter SwsFilter src_filter= {NULL, NULL, NULL, NULL}; float sws_lum_gblur= 0.0; float sws_chr_gblur= 0.0; int sws_chr_vshift= 0; int sws_chr_hshift= 0; float sws_chr_sharpen= 0.0; float sws_lum_sharpen= 0.0; /* cpuCaps combined from cpudetect and whats actually compiled in (if there is no support for something compiled in it wont appear here) */ static CpuCaps cpuCaps; void (*swScale)(SwsContext *context, uint8_t* src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t* dst[], int dstStride[])=NULL; static SwsVector *getConvVec(SwsVector *a, SwsVector *b); #ifdef CAN_COMPILE_X86_ASM void in_asm_used_var_warning_killer() { volatile int i= yCoeff+vrCoeff+ubCoeff+vgCoeff+ugCoeff+bF8+bFC+w400+w80+w10+ bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+asm_yalpha1+ asm_uvalpha1+ M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]; if(i) i=0; } #endif static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize, int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW) { //FIXME Optimize (just quickly writen not opti..) int i; for(i=0; i>19, 0), 255); } if(uDest != NULL) for(i=0; i<(dstW>>1); i++) { int u=0; int v=0; int j; for(j=0; j>19, 0), 255); vDest[i]= MIN(MAX(v>>19, 0), 255); } } static inline void yuv2rgbXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize, int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize, uint8_t *dest, int dstW, int dstFormat) { if(dstFormat==IMGFMT_BGR32) { int i; for(i=0; i<(dstW>>1); i++){ int j; int Y1=0; int Y2=0; int U=0; int V=0; int Cb, Cr, Cg; for(j=0; j>19) + 256 ]; Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; U >>= 19; V >>= 19; Cb= clip_yuvtab_40cf[U+ 256]; Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; Cr= clip_yuvtab_3343[V+ 256]; dest[8*i+0]=clip_table[((Y1 + Cb) >>13)]; dest[8*i+1]=clip_table[((Y1 + Cg) >>13)]; dest[8*i+2]=clip_table[((Y1 + Cr) >>13)]; dest[8*i+4]=clip_table[((Y2 + Cb) >>13)]; dest[8*i+5]=clip_table[((Y2 + Cg) >>13)]; dest[8*i+6]=clip_table[((Y2 + Cr) >>13)]; } } else if(dstFormat==IMGFMT_BGR24) { int i; for(i=0; i<(dstW>>1); i++){ int j; int Y1=0; int Y2=0; int U=0; int V=0; int Cb, Cr, Cg; for(j=0; j>19) + 256 ]; Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; U >>= 19; V >>= 19; Cb= clip_yuvtab_40cf[U+ 256]; Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; Cr= clip_yuvtab_3343[V+ 256]; dest[0]=clip_table[((Y1 + Cb) >>13)]; dest[1]=clip_table[((Y1 + Cg) >>13)]; dest[2]=clip_table[((Y1 + Cr) >>13)]; dest[3]=clip_table[((Y2 + Cb) >>13)]; dest[4]=clip_table[((Y2 + Cg) >>13)]; dest[5]=clip_table[((Y2 + Cr) >>13)]; dest+=6; } } else if(dstFormat==IMGFMT_BGR16) { int i; #ifdef DITHER1XBPP static int ditherb1=1<<14; static int ditherg1=1<<13; static int ditherr1=2<<14; static int ditherb2=3<<14; static int ditherg2=3<<13; static int ditherr2=0<<14; ditherb1 ^= (1^2)<<14; ditherg1 ^= (1^2)<<13; ditherr1 ^= (1^2)<<14; ditherb2 ^= (3^0)<<14; ditherg2 ^= (3^0)<<13; ditherr2 ^= (3^0)<<14; #else const int ditherb1=0; const int ditherg1=0; const int ditherr1=0; const int ditherb2=0; const int ditherg2=0; const int ditherr2=0; #endif for(i=0; i<(dstW>>1); i++){ int j; int Y1=0; int Y2=0; int U=0; int V=0; int Cb, Cr, Cg; for(j=0; j>19) + 256 ]; Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; U >>= 19; V >>= 19; Cb= clip_yuvtab_40cf[U+ 256]; Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; Cr= clip_yuvtab_3343[V+ 256]; ((uint16_t*)dest)[2*i] = clip_table16b[(Y1 + Cb + ditherb1) >>13] | clip_table16g[(Y1 + Cg + ditherg1) >>13] | clip_table16r[(Y1 + Cr + ditherr1) >>13]; ((uint16_t*)dest)[2*i+1] = clip_table16b[(Y2 + Cb + ditherb2) >>13] | clip_table16g[(Y2 + Cg + ditherg2) >>13] | clip_table16r[(Y2 + Cr + ditherr2) >>13]; } } else if(dstFormat==IMGFMT_BGR15) { int i; #ifdef DITHER1XBPP static int ditherb1=1<<14; static int ditherg1=1<<14; static int ditherr1=2<<14; static int ditherb2=3<<14; static int ditherg2=3<<14; static int ditherr2=0<<14; ditherb1 ^= (1^2)<<14; ditherg1 ^= (1^2)<<14; ditherr1 ^= (1^2)<<14; ditherb2 ^= (3^0)<<14; ditherg2 ^= (3^0)<<14; ditherr2 ^= (3^0)<<14; #else const int ditherb1=0; const int ditherg1=0; const int ditherr1=0; const int ditherb2=0; const int ditherg2=0; const int ditherr2=0; #endif for(i=0; i<(dstW>>1); i++){ int j; int Y1=0; int Y2=0; int U=0; int V=0; int Cb, Cr, Cg; for(j=0; j>19) + 256 ]; Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ]; U >>= 19; V >>= 19; Cb= clip_yuvtab_40cf[U+ 256]; Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256]; Cr= clip_yuvtab_3343[V+ 256]; ((uint16_t*)dest)[2*i] = clip_table15b[(Y1 + Cb + ditherb1) >>13] | clip_table15g[(Y1 + Cg + ditherg1) >>13] | clip_table15r[(Y1 + Cr + ditherr1) >>13]; ((uint16_t*)dest)[2*i+1] = clip_table15b[(Y2 + Cb + ditherb2) >>13] | clip_table15g[(Y2 + Cg + ditherg2) >>13] | clip_table15r[(Y2 + Cr + ditherr2) >>13]; } } } //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one //Plain C versions #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) #define COMPILE_C #endif #ifdef CAN_COMPILE_X86_ASM #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT) #define COMPILE_MMX #endif #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT) #define COMPILE_MMX2 #endif #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT) #define COMPILE_3DNOW #endif #endif //CAN_COMPILE_X86_ASM #undef HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #ifdef COMPILE_C #undef HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #define RENAME(a) a ## _C #include "swscale_template.c" #endif #ifdef CAN_COMPILE_X86_ASM //X86 versions /* #undef RENAME #undef HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #define ARCH_X86 #define RENAME(a) a ## _X86 #include "swscale_template.c" */ //MMX versions #ifdef COMPILE_MMX #undef RENAME #define HAVE_MMX #undef HAVE_MMX2 #undef HAVE_3DNOW #define RENAME(a) a ## _MMX #include "swscale_template.c" #endif //MMX2 versions #ifdef COMPILE_MMX2 #undef RENAME #define HAVE_MMX #define HAVE_MMX2 #undef HAVE_3DNOW #define RENAME(a) a ## _MMX2 #include "swscale_template.c" #endif //3DNOW versions #ifdef COMPILE_3DNOW #undef RENAME #define HAVE_MMX #undef HAVE_MMX2 #define HAVE_3DNOW #define RENAME(a) a ## _3DNow #include "swscale_template.c" #endif #endif //CAN_COMPILE_X86_ASM // minor note: the HAVE_xyz is messed up after that line so dont use it // old global scaler, dont use for new code, unless it uses only the stuff from the command line // will use sws_flags from the command line void SwScale_YV12slice(unsigned char* src[], int srcStride[], int srcSliceY , int srcSliceH, uint8_t* dst[], int dstStride, int dstbpp, int srcW, int srcH, int dstW, int dstH){ static SwsContext *context=NULL; int dstFormat; int flags=0; static int firstTime=1; int dstStride3[3]= {dstStride, dstStride>>1, dstStride>>1}; if(firstTime) { #ifdef ARCH_X86 if(gCpuCaps.hasMMX) asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions) #endif flags= SWS_PRINT_INFO; firstTime=0; if(src_filter.lumH) freeVec(src_filter.lumH); if(src_filter.lumV) freeVec(src_filter.lumV); if(src_filter.chrH) freeVec(src_filter.chrH); if(src_filter.chrV) freeVec(src_filter.chrV); if(sws_lum_gblur!=0.0){ src_filter.lumH= getGaussianVec(sws_lum_gblur, 3.0); src_filter.lumV= getGaussianVec(sws_lum_gblur, 3.0); }else{ src_filter.lumH= getIdentityVec(); src_filter.lumV= getIdentityVec(); } if(sws_chr_gblur!=0.0){ src_filter.chrH= getGaussianVec(sws_chr_gblur, 3.0); src_filter.chrV= getGaussianVec(sws_chr_gblur, 3.0); }else{ src_filter.chrH= getIdentityVec(); src_filter.chrV= getIdentityVec(); } if(sws_chr_sharpen!=0.0){ SwsVector *g= getConstVec(-1.0, 3); SwsVector *id= getConstVec(10.0/sws_chr_sharpen, 1); g->coeff[1]=2.0; addVec(id, g); convVec(src_filter.chrH, id); convVec(src_filter.chrV, id); freeVec(g); freeVec(id); } if(sws_lum_sharpen!=0.0){ SwsVector *g= getConstVec(-1.0, 3); SwsVector *id= getConstVec(10.0/sws_lum_sharpen, 1); g->coeff[1]=2.0; addVec(id, g); convVec(src_filter.lumH, id); convVec(src_filter.lumV, id); freeVec(g); freeVec(id); } if(sws_chr_hshift) shiftVec(src_filter.chrH, sws_chr_hshift); if(sws_chr_vshift) shiftVec(src_filter.chrV, sws_chr_vshift); normalizeVec(src_filter.chrH, 1.0); normalizeVec(src_filter.chrV, 1.0); normalizeVec(src_filter.lumH, 1.0); normalizeVec(src_filter.lumV, 1.0); if(verbose > 1) printVec(src_filter.chrH); if(verbose > 1) printVec(src_filter.lumH); } switch(dstbpp) { case 8 : dstFormat= IMGFMT_Y8; break; case 12: dstFormat= IMGFMT_YV12; break; case 15: dstFormat= IMGFMT_BGR15; break; case 16: dstFormat= IMGFMT_BGR16; break; case 24: dstFormat= IMGFMT_BGR24; break; case 32: dstFormat= IMGFMT_BGR32; break; default: return; } switch(sws_flags) { case 0: flags|= SWS_FAST_BILINEAR; break; case 1: flags|= SWS_BILINEAR; break; case 2: flags|= SWS_BICUBIC; break; case 3: flags|= SWS_X; break; default:flags|= SWS_BILINEAR; break; } if(!context) context=getSwsContext(srcW, srcH, IMGFMT_YV12, dstW, dstH, dstFormat, flags, &src_filter, NULL); swScale(context, src, srcStride, srcSliceY, srcSliceH, dst, dstStride3); } static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, SwsVector *srcFilter, SwsVector *dstFilter) { int i; int filterSize; int filter2Size; int minFilterSize; double *filter=NULL; double *filter2=NULL; #ifdef ARCH_X86 if(gCpuCaps.hasMMX) asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions) #endif *filterPos = (int16_t*)memalign(8, dstW*sizeof(int16_t)); if(ABS(xInc - 0x10000) <10) // unscaled { int i; filterSize= 1; filter= (double*)memalign(8, dstW*sizeof(double)*filterSize); for(i=0; i>16) - (filterSize>>1) + 1; int j; (*filterPos)[i]= xx; if((flags & SWS_BICUBIC) || (flags & SWS_X)) { double d= ABS(((xx+1)<<16) - xDstInSrc)/(double)(1<<16); double y1,y2,y3,y4; double A= -0.6; if(flags & SWS_BICUBIC){ // Equation is from VirtualDub y1 = ( + A*d - 2.0*A*d*d + A*d*d*d); y2 = (+ 1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d); y3 = ( - A*d + (2.0*A+3.0)*d*d - (A+2.0)*d*d*d); y4 = ( + A*d*d - A*d*d*d); }else{ // cubic interpolation (derived it myself) y1 = ( -2.0*d + 3.0*d*d - 1.0*d*d*d)/6.0; y2 = (6.0 -3.0*d - 6.0*d*d + 3.0*d*d*d)/6.0; y3 = ( +6.0*d + 3.0*d*d - 3.0*d*d*d)/6.0; y4 = ( -1.0*d + 1.0*d*d*d)/6.0; } // printf("%d %d %d \n", coeff, (int)d, xDstInSrc); filter[i*filterSize + 0]= y1; filter[i*filterSize + 1]= y2; filter[i*filterSize + 2]= y3; filter[i*filterSize + 3]= y4; // printf("%1.3f %1.3f %1.3f %1.3f %1.3f\n",d , y1, y2, y3, y4); } else { for(j=0; j filter2 free(filter); */ filter2Size= filterSize; if(srcFilter) filter2Size+= srcFilter->length - 1; if(dstFilter) filter2Size+= dstFilter->length - 1; filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double)); for(i=0; ilength == filter2Size) //FIXME dstFilter for(j=0; jlength; j++) { filter2[i*filter2Size + j]= outVec->coeff[j]; } (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2; if(outVec != &scaleFilter) freeVec(outVec); } free(filter); filter=NULL; /* try to reduce the filter-size (step1 find size and shift left) */ // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not) minFilterSize= 0; for(i=dstW-1; i>=0; i--) { int min= filter2Size; int j; double cutOff=0.0; /* get rid off near zero elements on the left by shifting left */ for(j=0; j SWS_MAX_REDUCE_CUTOFF) break; /* preserve Monotonicity because the core cant handle the filter otherwise */ if(i= (*filterPos)[i+1]) break; // Move filter coeffs left for(k=1; k0; j--) { cutOff += ABS(filter2[i*filter2Size + j]); if(cutOff > SWS_MAX_REDUCE_CUTOFF) break; min--; } if(min>minFilterSize) minFilterSize= min; } /* try to reduce the filter-size (step2 reduce it) */ for(i=0; i %d\n", filter2Size, minFilterSize); filter2Size= minFilterSize; ASSERT(filter2Size > 0) //FIXME try to align filterpos if possible //fix borders for(i=0; i srcW) { int shift= (*filterPos)[i] + filter2Size - srcW; // Move filter coeffs right to compensate for filterPos for(j=filter2Size-2; j>=0; j--) { int right= MIN(j + shift, filter2Size-1); filter2[i*filter2Size +right] += filter2[i*filter2Size +j]; filter2[i*filter2Size +j]=0; } (*filterPos)[i]= srcW - filter2Size; } } *outFilterSize= (filter2Size +(filterAlign-1)) & (~(filterAlign-1)); *outFilter= (int16_t*)memalign(8, *outFilterSize*dstW*sizeof(int16_t)); memset(*outFilter, 0, *outFilterSize*dstW*sizeof(int16_t)); /* Normalize & Store in outFilter */ for(i=0; i>16 + carry "pshufw $0xFF, %%mm0, %%mm0 \n\t" "2: \n\t" "psrlw $9, %%mm3 \n\t" "psubw %%mm1, %%mm0 \n\t" "pmullw %%mm3, %%mm0 \n\t" "paddw %%mm6, %%mm2 \n\t" // 2*alpha += xpos&0xFFFF "psllw $7, %%mm1 \n\t" "paddw %%mm1, %%mm0 \n\t" "movq %%mm0, (%%edi, %%eax) \n\t" "addl $8, %%eax \n\t" // End "9: \n\t" // "int $3\n\t" "leal 0b, %0 \n\t" "leal 1b, %1 \n\t" "leal 2b, %2 \n\t" "decl %1 \n\t" "decl %2 \n\t" "subl %0, %1 \n\t" "subl %0, %2 \n\t" "leal 9b, %3 \n\t" "subl %0, %3 \n\t" :"=r" (fragment), "=r" (imm8OfPShufW1), "=r" (imm8OfPShufW2), "=r" (fragmentLength) ); xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers for(i=0; i>16; if((i&3) == 0) { int a=0; int b=((xpos+xInc)>>16) - xx; int c=((xpos+xInc*2)>>16) - xx; int d=((xpos+xInc*3)>>16) - xx; memcpy(funnyCode + fragmentLength*i/4, fragment, fragmentLength); funnyCode[fragmentLength*i/4 + imm8OfPShufW1]= funnyCode[fragmentLength*i/4 + imm8OfPShufW2]= a | (b<<2) | (c<<4) | (d<<6); // if we dont need to read 8 bytes than dont :), reduces the chance of // crossing a cache line if(d<3) funnyCode[fragmentLength*i/4 + 1]= 0x6E; funnyCode[fragmentLength*(i+4)/4]= RET; } xpos+=xInc; } } #endif // ARCH_X86 //FIXME remove void SwScale_Init(){ } static void globalInit(){ // generating tables: int i; for(i=0; i<768; i++){ int c= MIN(MAX(i-256, 0), 255); clip_table[i]=c; yuvtab_2568[c]= clip_yuvtab_2568[i]=(0x2568*(c-16))+(256<<13); yuvtab_3343[c]= clip_yuvtab_3343[i]=0x3343*(c-128); yuvtab_0c92[c]= clip_yuvtab_0c92[i]=-0x0c92*(c-128); yuvtab_1a1e[c]= clip_yuvtab_1a1e[i]=-0x1a1e*(c-128); yuvtab_40cf[c]= clip_yuvtab_40cf[i]=0x40cf*(c-128); } for(i=0; i<768; i++) { int v= clip_table[i]; clip_table16b[i]= v>>3; clip_table16g[i]= (v<<3)&0x07E0; clip_table16r[i]= (v<<8)&0xF800; clip_table15b[i]= v>>3; clip_table15g[i]= (v<<2)&0x03E0; clip_table15r[i]= (v<<7)&0x7C00; } cpuCaps= gCpuCaps; #ifdef RUNTIME_CPUDETECT #ifdef CAN_COMPILE_X86_ASM // ordered per speed fasterst first if(gCpuCaps.hasMMX2) swScale= swScale_MMX2; else if(gCpuCaps.has3DNow) swScale= swScale_3DNow; else if(gCpuCaps.hasMMX) swScale= swScale_MMX; else swScale= swScale_C; #else swScale= swScale_C; cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0; #endif #else //RUNTIME_CPUDETECT #ifdef HAVE_MMX2 swScale= swScale_MMX2; cpuCaps.has3DNow = 0; #elif defined (HAVE_3DNOW) swScale= swScale_3DNow; cpuCaps.hasMMX2 = 0; #elif defined (HAVE_MMX) swScale= swScale_MMX; cpuCaps.hasMMX2 = cpuCaps.has3DNow = 0; #else swScale= swScale_C; cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0; #endif #endif //!RUNTIME_CPUDETECT } SwsContext *getSwsContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter){ const int widthAlign= dstFormat==IMGFMT_YV12 ? 16 : 8; SwsContext *c; int i; SwsFilter dummyFilter= {NULL, NULL, NULL, NULL}; #ifdef ARCH_X86 if(gCpuCaps.hasMMX) asm volatile("emms\n\t"::: "memory"); #endif if(swScale==NULL) globalInit(); /* sanity check */ if(srcW<1 || srcH<1 || dstW<1 || dstH<1) return NULL; /* FIXME if(dstStride[0]%widthAlign !=0 ) { if(flags & SWS_PRINT_INFO) fprintf(stderr, "SwScaler: Warning: dstStride is not a multiple of %d!\n" "SwScaler: ->cannot do aligned memory acesses anymore\n", widthAlign); } */ if(!dstFilter) dstFilter= &dummyFilter; if(!srcFilter) srcFilter= &dummyFilter; c= memalign(64, sizeof(SwsContext)); memset(c, 0, sizeof(SwsContext)); c->srcW= srcW; c->srcH= srcH; c->dstW= dstW; c->dstH= dstH; c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW; c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH; c->flags= flags; c->dstFormat= dstFormat; c->srcFormat= srcFormat; if(cpuCaps.hasMMX2) { c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0; if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) { if(flags&SWS_PRINT_INFO) fprintf(stderr, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n"); } } else c->canMMX2BeUsed=0; // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst // but only for the FAST_BILINEAR mode otherwise do correct scaling // n-2 is the last chrominance sample available // this is not perfect, but noone shuld notice the difference, the more correct variant // would be like the vertical one, but that would require some special code for the // first and last pixel if(flags&SWS_FAST_BILINEAR) { if(c->canMMX2BeUsed) c->lumXInc+= 20; //we dont use the x86asm scaler if mmx is available else if(cpuCaps.hasMMX) c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20; } /* set chrXInc & chrDstW */ if((flags&SWS_FULL_UV_IPOL) && dstFormat!=IMGFMT_YV12) c->chrXInc= c->lumXInc>>1, c->chrDstW= dstW; else c->chrXInc= c->lumXInc, c->chrDstW= (dstW+1)>>1; /* set chrYInc & chrDstH */ if(dstFormat==IMGFMT_YV12) c->chrYInc= c->lumYInc, c->chrDstH= (dstH+1)>>1; else c->chrYInc= c->lumYInc>>1, c->chrDstH= dstH; /* precalculate horizontal scaler filter coefficients */ { const int filterAlign= cpuCaps.hasMMX ? 4 : 1; initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc, srcW , dstW, filterAlign, 1<<14, flags, srcFilter->lumH, dstFilter->lumH); initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc, (srcW+1)>>1, c->chrDstW, filterAlign, 1<<14, flags, srcFilter->chrH, dstFilter->chrH); #ifdef ARCH_X86 // cant downscale !!! if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) { initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode); initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode); } #endif } // Init Horizontal stuff /* precalculate vertical scaler filter coefficients */ initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc, srcH , dstH, 1, (1<<12)-4, flags, srcFilter->lumV, dstFilter->lumV); initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc, (srcH+1)>>1, c->chrDstH, 1, (1<<12)-4, flags, srcFilter->chrV, dstFilter->chrV); // Calculate Buffer Sizes so that they wont run out while handling these damn slices c->vLumBufSize= c->vLumFilterSize; c->vChrBufSize= c->vChrFilterSize; for(i=0; ichrDstH / dstH; int nextSlice= MAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1, ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<1)); nextSlice&= ~1; // Slices start at even boundaries if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice) c->vLumBufSize= nextSlice - c->vLumFilterPos[i ]; if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>1)) c->vChrBufSize= (nextSlice>>1) - c->vChrFilterPos[chrI]; } // allocate pixbufs (we use dynamic allocation because otherwise we would need to // allocate several megabytes to handle all possible cases) c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*)); c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*)); for(i=0; ivLumBufSize; i++) c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000); for(i=0; ivChrBufSize; i++) c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000); //try to avoid drawing green stuff between the right end and the stride end for(i=0; ivLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000); for(i=0; ivChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000); ASSERT(c->chrDstH <= dstH) // pack filter data for mmx code if(cpuCaps.hasMMX) { c->lumMmxFilter= (int16_t*)memalign(8, c->vLumFilterSize* dstH*4*sizeof(int16_t)); c->chrMmxFilter= (int16_t*)memalign(8, c->vChrFilterSize*c->chrDstH*4*sizeof(int16_t)); for(i=0; ivLumFilterSize*dstH; i++) c->lumMmxFilter[4*i]=c->lumMmxFilter[4*i+1]=c->lumMmxFilter[4*i+2]=c->lumMmxFilter[4*i+3]= c->vLumFilter[i]; for(i=0; ivChrFilterSize*c->chrDstH; i++) c->chrMmxFilter[4*i]=c->chrMmxFilter[4*i+1]=c->chrMmxFilter[4*i+2]=c->chrMmxFilter[4*i+3]= c->vChrFilter[i]; } if(flags&SWS_PRINT_INFO) { #ifdef DITHER1XBPP char *dither= " dithered"; #else char *dither= ""; #endif if(flags&SWS_FAST_BILINEAR) fprintf(stderr, "\nSwScaler: FAST_BILINEAR scaler "); else if(flags&SWS_BILINEAR) fprintf(stderr, "\nSwScaler: BILINEAR scaler "); else if(flags&SWS_BICUBIC) fprintf(stderr, "\nSwScaler: BICUBIC scaler "); else fprintf(stderr, "\nSwScaler: ehh flags invalid?! "); if(dstFormat==IMGFMT_BGR15) fprintf(stderr, "with%s BGR15 output ", dither); else if(dstFormat==IMGFMT_BGR16) fprintf(stderr, "with%s BGR16 output ", dither); else if(dstFormat==IMGFMT_BGR24) fprintf(stderr, "with BGR24 output "); else if(dstFormat==IMGFMT_BGR32) fprintf(stderr, "with BGR32 output "); else if(dstFormat==IMGFMT_YV12) fprintf(stderr, "with YV12 output "); else fprintf(stderr, "without output "); if(cpuCaps.hasMMX2) fprintf(stderr, "using MMX2\n"); else if(cpuCaps.has3DNow) fprintf(stderr, "using 3DNOW\n"); else if(cpuCaps.hasMMX) fprintf(stderr, "using MMX\n"); else fprintf(stderr, "using C\n"); } if((flags & SWS_PRINT_INFO) && verbose) { if(cpuCaps.hasMMX) { if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR)) printf("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n"); else { if(c->hLumFilterSize==4) printf("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n"); else if(c->hLumFilterSize==8) printf("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n"); else printf("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n"); if(c->hChrFilterSize==4) printf("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n"); else if(c->hChrFilterSize==8) printf("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n"); else printf("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n"); } } else { #ifdef ARCH_X86 printf("SwScaler: using X86-Asm scaler for horizontal scaling\n"); #else if(flags & SWS_FAST_BILINEAR) printf("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n"); else printf("SwScaler: using C scaler for horizontal scaling\n"); #endif } if(dstFormat==IMGFMT_YV12) { if(c->vLumFilterSize==1) printf("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12)\n", cpuCaps.hasMMX ? "MMX" : "C"); else printf("SwScaler: using n-tap %s scaler for vertical scaling (YV12)\n", cpuCaps.hasMMX ? "MMX" : "C"); } else { if(c->vLumFilterSize==1 && c->vChrFilterSize==2) printf("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n" "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",cpuCaps.hasMMX ? "MMX" : "C"); else if(c->vLumFilterSize==2 && c->vChrFilterSize==2) printf("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C"); else printf("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C"); } if(dstFormat==IMGFMT_BGR24) printf("SwScaler: using %s YV12->BGR24 Converter\n", cpuCaps.hasMMX2 ? "MMX2" : (cpuCaps.hasMMX ? "MMX" : "C")); else if(dstFormat==IMGFMT_BGR32) printf("SwScaler: using %s YV12->BGR32 Converter\n", cpuCaps.hasMMX ? "MMX" : "C"); else if(dstFormat==IMGFMT_BGR16) printf("SwScaler: using %s YV12->BGR16 Converter\n", cpuCaps.hasMMX ? "MMX" : "C"); else if(dstFormat==IMGFMT_BGR15) printf("SwScaler: using %s YV12->BGR15 Converter\n", cpuCaps.hasMMX ? "MMX" : "C"); printf("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH); } return c; } /** * returns a normalized gaussian curve used to filter stuff * quality=3 is high quality, lowwer is lowwer quality */ SwsVector *getGaussianVec(double variance, double quality){ const int length= (int)(variance*quality + 0.5) | 1; int i; double *coeff= memalign(sizeof(double), length*sizeof(double)); double middle= (length-1)*0.5; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; icoeff= coeff; vec->length= length; for(i=0; icoeff= coeff; vec->length= 1; return vec; } void normalizeVec(SwsVector *a, double height){ int i; double sum=0; double inv; for(i=0; ilength; i++) sum+= a->coeff[i]; inv= height/sum; for(i=0; ilength; i++) a->coeff[i]*= height; } void scaleVec(SwsVector *a, double scalar){ int i; for(i=0; ilength; i++) a->coeff[i]*= scalar; } static SwsVector *getConvVec(SwsVector *a, SwsVector *b){ int length= a->length + b->length - 1; double *coeff= memalign(sizeof(double), length*sizeof(double)); int i, j; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) { for(j=0; jlength; j++) { coeff[i+j]+= a->coeff[i]*b->coeff[j]; } } return vec; } static SwsVector *sumVec(SwsVector *a, SwsVector *b){ int length= MAX(a->length, b->length); double *coeff= memalign(sizeof(double), length*sizeof(double)); int i; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i]; return vec; } static SwsVector *diffVec(SwsVector *a, SwsVector *b){ int length= MAX(a->length, b->length); double *coeff= memalign(sizeof(double), length*sizeof(double)); int i; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; for(i=0; ilength; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i]; return vec; } /* shift left / or right if "shift" is negative */ static SwsVector *getShiftedVec(SwsVector *a, int shift){ int length= a->length + ABS(shift)*2; double *coeff= memalign(sizeof(double), length*sizeof(double)); int i, j; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= length; for(i=0; ilength; i++) { coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i]; } return vec; } void shiftVec(SwsVector *a, int shift){ SwsVector *shifted= getShiftedVec(a, shift); free(a->coeff); a->coeff= shifted->coeff; a->length= shifted->length; free(shifted); } void addVec(SwsVector *a, SwsVector *b){ SwsVector *sum= sumVec(a, b); free(a->coeff); a->coeff= sum->coeff; a->length= sum->length; free(sum); } void subVec(SwsVector *a, SwsVector *b){ SwsVector *diff= diffVec(a, b); free(a->coeff); a->coeff= diff->coeff; a->length= diff->length; free(diff); } void convVec(SwsVector *a, SwsVector *b){ SwsVector *conv= getConvVec(a, b); free(a->coeff); a->coeff= conv->coeff; a->length= conv->length; free(conv); } SwsVector *cloneVec(SwsVector *a){ double *coeff= memalign(sizeof(double), a->length*sizeof(double)); int i; SwsVector *vec= malloc(sizeof(SwsVector)); vec->coeff= coeff; vec->length= a->length; for(i=0; ilength; i++) coeff[i]= a->coeff[i]; return vec; } void printVec(SwsVector *a){ int i; double max=0; double min=0; double range; for(i=0; ilength; i++) if(a->coeff[i]>max) max= a->coeff[i]; for(i=0; ilength; i++) if(a->coeff[i]coeff[i]; range= max - min; for(i=0; ilength; i++) { int x= (int)((a->coeff[i]-min)*60.0/range +0.5); printf("%1.3f ", a->coeff[i]); for(;x>0; x--) printf(" "); printf("|\n"); } } void freeVec(SwsVector *a){ if(!a) return; if(a->coeff) free(a->coeff); a->coeff=NULL; a->length=0; free(a); } void freeSwsContext(SwsContext *c){ int i; if(!c) return; if(c->lumPixBuf) { for(i=0; ivLumBufSize*2; i++) { if(c->lumPixBuf[i]) free(c->lumPixBuf[i]); c->lumPixBuf[i]=NULL; } free(c->lumPixBuf); c->lumPixBuf=NULL; } if(c->chrPixBuf) { for(i=0; ivChrBufSize*2; i++) { if(c->chrPixBuf[i]) free(c->chrPixBuf[i]); c->chrPixBuf[i]=NULL; } free(c->chrPixBuf); c->chrPixBuf=NULL; } if(c->vLumFilter) free(c->vLumFilter); c->vLumFilter = NULL; if(c->vChrFilter) free(c->vChrFilter); c->vChrFilter = NULL; if(c->hLumFilter) free(c->hLumFilter); c->hLumFilter = NULL; if(c->hChrFilter) free(c->hChrFilter); c->hChrFilter = NULL; if(c->vLumFilterPos) free(c->vLumFilterPos); c->vLumFilterPos = NULL; if(c->vChrFilterPos) free(c->vChrFilterPos); c->vChrFilterPos = NULL; if(c->hLumFilterPos) free(c->hLumFilterPos); c->hLumFilterPos = NULL; if(c->hChrFilterPos) free(c->hChrFilterPos); c->hChrFilterPos = NULL; if(c->lumMmxFilter) free(c->lumMmxFilter); c->lumMmxFilter = NULL; if(c->chrMmxFilter) free(c->chrMmxFilter); c->chrMmxFilter = NULL; free(c); }