/* Straightforward (to be) optimized JPEG encoder for the YUV422 format * based on mjpeg code from ffmpeg. * * Copyright (c) 2002, Rik Snel * Parts from ffmpeg Copyright (c) 2000, 2001 Gerard Lantau * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * For an excellent introduction to the JPEG format, see: * http://www.ece.purdue.edu/~bourman/grad-labs/lab8/pdf/lab.pdf */ /* stuff from libavcodec/common.h */ #include #include #include #include "config.h" #ifdef USE_FASTMEMCPY #include "fastmemcpy.h" #endif #include "../mp_msg.h" #include "../libavcodec/common.h" #include "../libavcodec/dsputil.h" static int height, width, fields, cheap_upsample, qscale, bw = 0, first = 1; /* from dsputils.c */ static DCTELEM **blck; extern void (*av_fdct)(DCTELEM *b); static UINT8 zr_zigzag_direct[64] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 }; /* bit output */ static PutBitContext pb; /* from mpegvideo.c */ #define QMAT_SHIFT 25 #define QMAT_SHIFT_MMX 19 static const unsigned short aanscales[64] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; static unsigned int simple_mmx_permutation[64]={ 0x00, 0x08, 0x01, 0x09, 0x04, 0x0C, 0x05, 0x0D, 0x10, 0x18, 0x11, 0x19, 0x14, 0x1C, 0x15, 0x1D, 0x02, 0x0A, 0x03, 0x0B, 0x06, 0x0E, 0x07, 0x0F, 0x12, 0x1A, 0x13, 0x1B, 0x16, 0x1E, 0x17, 0x1F, 0x20, 0x28, 0x21, 0x29, 0x24, 0x2C, 0x25, 0x2D, 0x30, 0x38, 0x31, 0x39, 0x34, 0x3C, 0x35, 0x3D, 0x22, 0x2A, 0x23, 0x2B, 0x26, 0x2E, 0x27, 0x2F, 0x32, 0x3A, 0x33, 0x3B, 0x36, 0x3E, 0x37, 0x3F, }; #if 0 void block_permute(short int *block) { int tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; int i; for(i=0;i<8;i++) { tmp1 = block[1]; tmp2 = block[2]; tmp3 = block[3]; tmp4 = block[4]; tmp5 = block[5]; tmp6 = block[6]; block[1] = tmp2; block[2] = tmp4; block[3] = tmp6; block[4] = tmp1; block[5] = tmp3; block[6] = tmp5; block += 8; } } #endif static int q_intra_matrix[64]; static int dct_quantize(DCTELEM *block, int n, int qscale) { int i, j, level, last_non_zero, q; const int *qmat; av_fdct (block); /* we need this permutation so that we correct the IDCT permutation. will be moved into DCT code */ //block_permute(block); /*if (n < 4) q = s->y_dc_scale; else q = s->c_dc_scale; q = q << 3;*/ q = 64; /* note: block[0] is assumed to be positive */ block[0] = (block[0] + (q >> 1)) / q; i = 1; last_non_zero = 0; qmat = q_intra_matrix; for(;i<64;i++) { j = zr_zigzag_direct[i]; level = block[j]; level = level * qmat[j]; /* XXX: slight error for the low range. Test should be equivalent to (level <= -(1 << (QMAT_SHIFT - 3)) || level >= (1 << (QMAT_SHIFT - 3))) */ if (((level << (31 - (QMAT_SHIFT - 3))) >> (31 - (QMAT_SHIFT - 3))) != level) { level = level / (1 << (QMAT_SHIFT - 3)); /* XXX: currently, this code is not optimal. the range should be: mpeg1: -255..255 mpeg2: -2048..2047 h263: -128..127 mpeg4: -2048..2047 */ if (level > 255) level = 255; else if (level < -255) level = -255; block[j] = level; last_non_zero = i; } else { block[j] = 0; } } return last_non_zero; } static int dct_quantize_mmx(DCTELEM *block, int n, int qscale) { int i, j, level, last_non_zero, q; const int *qmat; DCTELEM *b = block; /*for (i = 0; i < 8; i++) { printf("%i %i %i %i %i %i %i %i\n", b[8*i], b[8*i+1], b[8*i+2], b[8*i+3], b[8*i+4], b[8*i+5], b[8*i+6], b[8*i+7]); }*/ av_fdct (block); /*for (i = 0; i < 8; i++) { printf("%i %i %i %i %i %i %i %i\n", b[8*i], b[8*i+1], b[8*i+2], b[8*i+3], b[8*i+4], b[8*i+5], b[8*i+6], b[8*i+7]); }*/ /* we need this permutation so that we correct the IDCT permutation. will be moved into DCT code */ //block_permute(block); //if (n < 2) q = 8; /*else q = 8;*/ /* note: block[0] is assumed to be positive */ block[0] = (block[0] + (q >> 1)) / q; i = 1; last_non_zero = 0; qmat = q_intra_matrix; for(;i<64;i++) { j = zr_zigzag_direct[i]; level = block[j]; level = level * qmat[j]; /* XXX: slight error for the low range. Test should be equivalent to (level <= -(1 << (QMAT_SHIFT_MMX - 3)) || level >= (1 << (QMAT_SHIFT_MMX - 3))) */ if (((level << (31 - (QMAT_SHIFT_MMX - 3))) >> (31 - (QMAT_SHIFT_MMX - 3))) != level) { level = level / (1 << (QMAT_SHIFT_MMX - 3)); /* XXX: currently, this code is not optimal. the range should be: mpeg1: -255..255 mpeg2: -2048..2047 h263: -128..127 mpeg4: -2048..2047 * jpeg: -1024..1023 11 bit */ if (level > 1023) level = 1023; else if (level < -1024) level = -1024; block[j] = level; last_non_zero = i; } else { block[j] = 0; } } /*for (i = 0; i < 8; i++) { printf("%i %i %i %i %i %i %i %i\n", b[8*i], b[8*i+1], b[8*i+2], b[8*i+3], b[8*i+4], b[8*i+5], b[8*i+6], b[8*i+7]); }*/ return last_non_zero; } static void convert_matrix(int *qmat, const unsigned short *quant_matrix, int qscale) { int i; if (av_fdct == jpeg_fdct_ifast) { for(i=0;i<64;i++) { /* 16 <= qscale * quant_matrix[i] <= 7905 */ /* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 */ qmat[i] = (int)(((unsigned long long)1 << (QMAT_SHIFT + 11)) / (aanscales[i] * qscale * quant_matrix[i])); } } else { for(i=0;i<64;i++) { /* We can safely suppose that 16 <= quant_matrix[i] <= 255 So 16 <= qscale * quant_matrix[i] <= 7905 so (1 << QMAT_SHIFT) / 16 >= qmat[i] >= (1 << QMAT_SHIFT) / 7905 */ qmat[i] = (1 << QMAT_SHIFT_MMX) / (qscale * quant_matrix[i]); } } } #define SOF0 0xC0 #define SOI 0xD8 #define EOI 0xD9 #define DQT 0xDB #define DHT 0xC4 #define SOS 0xDA /* this is almost the quantisation table, used for luminance and chrominance */ /*short int zr_default_intra_matrix[64] = { 16, 11, 10, 16, 24, 40, 51, 61, 12, 12, 14, 19, 26, 58, 60, 55, 14, 13, 16, 24, 40, 57, 69, 56, 14, 17, 22, 29, 51, 87, 80, 62, 18, 22, 37, 56, 68, 109, 103, 77, 24, 35, 55, 64, 81, 104, 113, 92, 49, 64, 78, 87, 103, 121, 120, 101, 72, 92, 95, 98, 112, 100, 103, 99 };*/ /* short int default_intra_matrix[64] = { 8, 16, 19, 22, 26, 27, 29, 34, 16, 16, 22, 24, 27, 29, 34, 37, 19, 22, 26, 27, 29, 34, 34, 38, 22, 22, 26, 27, 29, 34, 37, 40, 22, 26, 27, 29, 32, 35, 40, 48, 26, 27, 29, 32, 35, 40, 48, 58, 26, 27, 29, 34, 38, 46, 56, 69, 27, 29, 35, 38, 46, 56, 69, 83 }; */ extern short int default_intra_matrix[64]; static short int intra_matrix[64]; /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */ /* IMPORTANT: these are only valid for 8-bit data precision! */ static const unsigned char bits_dc_luminance[17] = { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; static const unsigned char val_dc_luminance[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; #if 0 static const unsigned char bits_dc_chrominance[17] = { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; static const unsigned char val_dc_chrominance[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; #endif static const unsigned char bits_ac_luminance[17] = { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; static const unsigned char val_ac_luminance[] = { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; #if 0 static const unsigned char bits_ac_chrominance[17] = { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; static const unsigned char val_ac_chrominance[] = { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; #endif static unsigned char huff_size_dc_luminance[12]; static unsigned short huff_code_dc_luminance[12]; #if 0 unsigned char huff_size_dc_chrominance[12]; unsigned short huff_code_dc_chrominance[12]; #endif static unsigned char huff_size_ac_luminance[256]; static unsigned short huff_code_ac_luminance[256]; #if 0 unsigned char huff_size_ac_chrominance[256]; unsigned short huff_code_ac_chrominance[256]; #endif static int last_dc[3]; static int block_last_index[4]; /* isn't this function nicer than the one in the libjpeg ? */ static void build_huffman_codes(unsigned char *huff_size, unsigned short *huff_code, const unsigned char *bits_table, const unsigned char *val_table) { int i, j, k,nb, code, sym; code = 0; k = 0; for(i=1;i<=16;i++) { nb = bits_table[i]; for(j=0;jbuf_ptr; put_bits(p, 16, 0); /* patched later */ size = 2; size += put_huffman_table(0, 0, bits_dc_luminance, val_dc_luminance); // size += put_huffman_table(0, 1, bits_dc_chrominance, val_dc_chrominance); ptr[0] = size >> 8; ptr[1] = size; put_marker(p, DHT); flush_put_bits(p); ptr = p->buf_ptr; put_bits(p, 16, 0); /* patched later */ size = 2; size += put_huffman_table(1, 0, bits_ac_luminance, val_ac_luminance); // size += put_huffman_table(1, 1, bits_ac_chrominance, val_ac_chrominance); ptr[0] = size >> 8; ptr[1] = size; } static void zr_mjpeg_picture_header() { put_marker(&pb, SOI); if (first) { jpeg_qtable_header(); jpeg_htable_header(); first = 0; } put_marker(&pb, SOF0); put_bits(&pb, 16, 17); put_bits(&pb, 8, 8); /* 8 bits/component */ put_bits(&pb, 16, height); put_bits(&pb, 16, width); put_bits(&pb, 8, 3); /* 3 components */ /* Y component */ put_bits(&pb, 8, 0); /* component number */ put_bits(&pb, 4, 2); /* H factor */ put_bits(&pb, 4, 1); /* V factor */ put_bits(&pb, 8, 0); /* select matrix */ /* Cb component */ put_bits(&pb, 8, 1); /* component number */ put_bits(&pb, 4, 1); /* H factor */ put_bits(&pb, 4, 1); /* V factor */ put_bits(&pb, 8, 0); /* select matrix */ /* Cr component */ put_bits(&pb, 8, 2); /* component number */ put_bits(&pb, 4, 1); /* H factor */ put_bits(&pb, 4, 1); /* V factor */ put_bits(&pb, 8, 0); /* select matrix */ /* scan header */ put_marker(&pb, SOS); put_bits(&pb, 16, 12); /* length */ put_bits(&pb, 8, 3); /* 3 components */ /* Y component */ put_bits(&pb, 8, 0); /* index */ put_bits(&pb, 4, 0); /* DC huffman table index */ put_bits(&pb, 4, 0); /* AC huffman table index */ /* Cb component */ put_bits(&pb, 8, 1); /* index */ put_bits(&pb, 4, 0); /* DC huffman table index */ put_bits(&pb, 4, 0); /* AC huffman table index */ /* Cr component */ put_bits(&pb, 8, 2); /* index */ put_bits(&pb, 4, 0); /* DC huffman table index */ put_bits(&pb, 4, 0); /* AC huffman table index */ put_bits(&pb, 8, 0); /* Ss (not used) */ put_bits(&pb, 8, 63); /* Se (not used) */ put_bits(&pb, 8, 0); /* (not used) */ } static void zr_flush_buffer(PutBitContext *s) { int size; if (s->write_data) { size = s->buf_ptr - s->buf; if (size > 0) s->write_data(s->opaque, s->buf, size); s->buf_ptr = s->buf; s->data_out_size += size; } } /* pad the end of the output stream with ones */ static void zr_jflush_put_bits(PutBitContext *s) { unsigned int b; s->bit_buf |= ~1U >> s->bit_cnt; /* set all the unused bits to one */ while (s->bit_cnt > 0) { b = s->bit_buf >> 24; *s->buf_ptr++ = b; if (b == 0xff) *s->buf_ptr++ = 0; s->bit_buf<<=8; s->bit_cnt-=8; } zr_flush_buffer(s); s->bit_cnt=0; s->bit_buf=0; } static void zr_mjpeg_picture_trailer() { zr_jflush_put_bits(&pb); put_marker(&pb, EOI); } static inline void encode_dc(int val, unsigned char *huff_size, unsigned short *huff_code) { int mant, nbits; if (val == 0) { // printf("dc val=0 "); jput_bits(&pb, huff_size[0], huff_code[0]); //printf("dc encoding %d %d\n", huff_size[0], huff_code[0]); } else { mant = val; if (val < 0) { val = -val; mant--; } /* compute the log (XXX: optimize) */ nbits = 0; while (val != 0) { val = val >> 1; nbits++; } /*nbits = av_log2(val);*/ //printf("dc "); jput_bits(&pb, huff_size[nbits], huff_code[nbits]); //printf("dc encoding %d %d\n", huff_size[nbits], huff_code[nbits]); //printf("dc "); jput_bits(&pb, nbits, mant & ((1 << nbits) - 1)); //printf("dc encoding %d %d\n", huff_size[nbits], huff_code[nbits]); } } static void encode_block(DCTELEM *b, int n) { int mant, nbits, code, i, j; int component, dc, run, last_index, val; unsigned char *huff_size_ac; unsigned short *huff_code_ac; /* DC coef */ component = (n <= 1 ? 0 : n - 2 + 1); dc = b[0]; /* overflow is impossible */ /*for (i = 0; i < 8; i++) { printf("%i %i %i %i %i %i %i %i\n", b[8*i], b[8*i+1], b[8*i+2], b[8*i+3], b[8*i+4], b[8+i*5], b[8+i*6], b[8+i*7]); }*/ val = dc - last_dc[component]; //if (n < 2) { encode_dc(val, huff_size_dc_luminance, huff_code_dc_luminance); huff_size_ac = huff_size_ac_luminance; huff_code_ac = huff_code_ac_luminance; //} else { // encode_dc(val, huff_size_dc_chrominance, huff_code_dc_chrominance); // huff_size_ac = huff_size_ac_chrominance; // huff_code_ac = huff_code_ac_chrominance; //} last_dc[component] = dc; /* AC coefs */ run = 0; last_index = block_last_index[n]; for(i=1;i<=last_index;i++) { j = zr_zigzag_direct[i]; val = b[j]; if (val == 0) { run++; } else { while (run >= 16) { //printf("ac 16 white "); jput_bits(&pb, huff_size_ac[0xf0], huff_code_ac[0xf0]); run -= 16; } mant = val; if (val < 0) { val = -val; mant--; } /* compute the log (XXX: optimize) */ nbits = 0; while (val != 0) { val = val >> 1; nbits++; } code = (run << 4) | nbits; //printf("ac "); jput_bits(&pb, huff_size_ac[code], huff_code_ac[code]); //printf("ac "); jput_bits(&pb, nbits, mant & ((1 << nbits) - 1)); run = 0; } } /* output EOB only if not already 64 values */ if (last_index < 63 || run != 0) { //printf("ac EOB "); jput_bits(&pb, huff_size_ac[0], huff_code_ac[0]); } } static void zr_mjpeg_encode_mb(DCTELEM **bla) { encode_block(*(bla), 0); encode_block(*(bla+1), 1); if (bw) { jput_bits(&pb, 12, 512+128+8+2); /* 2 times code for 'no color' * 001010001010 */ } else { encode_block(*(bla+2), 2); encode_block(*(bla+3), 3); } } static int mb_width, mb_height, mb_x, mb_y; static unsigned char *y_data, *u_data, *v_data; static int y_ps, u_ps, v_ps, y_rs, u_rs, v_rs; static char code[256*1024]; // 256kb! /* this function can take all kinds of YUV colorspaces * YV12, YVYU, UYVY. The necesary parameters must be set up by te caller * y_ps means "y pixel size", y_rs means "y row size". * For YUYV, for example, is u = y + 1, v = y + 3, y_ps = 2, u_ps = 4 * v_ps = 4, y_rs = u_rs = v_rs. * * The data is straightened out at the moment it is put in DCT * blocks, there are therefore no spurious memcopies involved */ /* Notice that w must be a multiple of 16 and h must be a multiple of * fields*8 */ /* We produce YUV422 jpegs, the colors must be subsampled horizontally, * if the colors are also subsampled vertically, then this function * performs cheap upsampling (better solution will be: a DCT that is * optimized in the case that every two rows are the same) */ /* cu = 0 means 'No cheap upsampling' * cu = 1 means 'perform cheap upsampling' */ void mjpeg_encoder_init(int w, int h, unsigned char* y, int y_psize, int y_rsize, unsigned char* u, int u_psize, int u_rsize, unsigned char* v, int v_psize, int v_rsize, int f, int cu, int q, int b) { int i; mp_msg(MSGT_VO, MSGL_V, "JPEnc init: %dx%d %p %d %d %p %d %d %p %d %d\n", w, h, y, y_psize, y_rsize, u, u_psize, u_rsize, v, v_psize, v_rsize); y_data = y; u_data = u; v_data = v; y_ps = y_psize; u_ps = u_psize; v_ps = v_psize; y_rs = y_rsize*f; u_rs = u_rsize*f; v_rs = v_rsize*f; width = w; height = h/f; fields = f; qscale = q; cheap_upsample = cu; mb_width = width/16; mb_height = height/8; bw = b; zr_mjpeg_init(); i = 0; intra_matrix[0] = default_intra_matrix[0]; for (i = 1; i < 64; i++) { intra_matrix[i] = (default_intra_matrix[i]*qscale) >> 3; } if ( #ifdef HAVE_MMX av_fdct != fdct_mmx && #endif av_fdct != jpeg_fdct_ifast) { /* libavcodec is probably not yet initialized */ av_fdct = jpeg_fdct_ifast; #ifdef HAVE_MMX dsputil_init_mmx(); #endif } convert_matrix(q_intra_matrix, intra_matrix, 8); blck = malloc(4*sizeof(DCTELEM*)); blck[0] = malloc(64*sizeof(DCTELEM)); blck[1] = malloc(64*sizeof(DCTELEM)); blck[2] = malloc(64*sizeof(DCTELEM)); blck[3] = malloc(64*sizeof(DCTELEM)); } int mjpeg_encode_frame(char *bufr, int field) { int i, j, k, l; short int *dest; unsigned char *source; /* initialize the buffer */ if (field == 1) { y_data += y_rs/2; u_data += u_rs/2; v_data += v_rs/2; } init_put_bits(&pb, bufr, 1024*256, NULL, NULL); zr_mjpeg_picture_header(); last_dc[0] = 128; last_dc[1] = 128; last_dc[2] = 128; mb_x = 0; mb_y = 0; for (mb_y = 0; mb_y < mb_height; mb_y++) { for (mb_x = 0; mb_x < mb_width; mb_x++) { //printf("Processing macroblock mb_x=%d, mb_y=%d, mb_width=%d, mb_height=%d, size=%d\n", mb_x, mb_y, mb_width, mb_height, pb.buf_ptr - pb.buf); /* fill 2 Y macroblocks and one U and one V */ source = mb_y * 8 * y_rs + 16 * y_ps * mb_x + y_data; dest = blck[0]; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { dest[j] = source[j*y_ps]; } dest += 8; source += y_rs; } source = mb_y * 8 * y_rs + (16*mb_x + 8)*y_ps + y_data; dest = blck[1]; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { dest[j] = source[j*y_ps]; } dest += 8; source += y_rs; } if (!bw) { if (cheap_upsample) { source = mb_y*4*u_rs + 8*mb_x*u_ps + u_data; dest = blck[2]; for (i = 0; i < 4; i++) { for (j = 0; j < 8; j++) { dest[j] = source[j*u_ps]; dest[j+8] = source[j*u_ps]; } dest += 16; source += u_rs; } source = mb_y*4*v_rs + 8*mb_x*v_ps + v_data; dest = blck[3]; for (i = 0; i < 4; i++) { for (j = 0; j < 8; j++) { dest[j] = source[j*v_ps]; dest[j+8] = source[j*v_ps]; } dest += 16; source += u_rs; } } else { source = mb_y*8*u_rs + 8*mb_x*u_ps + u_data; dest = blck[2]; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { dest[j] = source[j*u_ps]; } dest += 8; source += u_rs; } source = mb_y*8*v_rs + 8*mb_x*v_ps + v_data; dest = blck[3]; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { dest[j] = source[j*v_ps]; } dest += 8; source += u_rs; } } } /* so, **blck is filled now... */ for(i = 0; i < 2; i++) { if (av_fdct == jpeg_fdct_ifast) block_last_index[i] = dct_quantize(blck[i], i, qscale); else block_last_index[i] = dct_quantize_mmx(blck[i], i, qscale); } if (!bw) { for(i = 2; i < 4; i++) { if (av_fdct == jpeg_fdct_ifast) block_last_index[i] = dct_quantize(blck[i], i, qscale); else block_last_index[i] = dct_quantize_mmx(blck[i], i, qscale); } } zr_mjpeg_encode_mb(blck); } } emms_c(); zr_mjpeg_picture_trailer(); flush_put_bits(&pb); zr_mjpeg_close(); if (field == 1) { y_data -= y_rs/2; u_data -= u_rs/2; v_data -= v_rs/2; } return pb.buf_ptr - pb.buf; }