/* aclib - advanced C library ;) This file contains functions which improve and expand standard C-library */ #ifndef HAVE_SSE2 /* P3 processor has only one SSE decoder so can execute only 1 sse insn per cpu clock, but it has 3 mmx decoders (include load/store unit) and executes 3 mmx insns per cpu clock. P4 processor has some chances, but after reading: http://www.emulators.com/pentium4.htm I have doubts. Anyway SSE2 version of this code can be written better. */ #undef HAVE_SSE #endif /* This part of code was taken by me from Linux-2.4.3 and slightly modified for MMX, MMX2, SSE instruction set. I have done it since linux uses page aligned blocks but mplayer uses weakly ordered data and original sources can not speedup them. Only using PREFETCHNTA and MOVNTQ together have effect! >From IA-32 Intel Architecture Software Developer's Manual Volume 1, Order Number 245470: "10.4.6. Cacheability Control, Prefetch, and Memory Ordering Instructions" Data referenced by a program can be temporal (data will be used again) or non-temporal (data will be referenced once and not reused in the immediate future). To make efficient use of the processor's caches, it is generally desirable to cache temporal data and not cache non-temporal data. Overloading the processor's caches with non-temporal data is sometimes referred to as "polluting the caches". The non-temporal data is written to memory with Write-Combining semantics. The PREFETCHh instructions permits a program to load data into the processor at a suggested cache level, so that it is closer to the processors load and store unit when it is needed. If the data is already present in a level of the cache hierarchy that is closer to the processor, the PREFETCHh instruction will not result in any data movement. But we should you PREFETCHNTA: Non-temporal data fetch data into location close to the processor, minimizing cache pollution. The MOVNTQ (store quadword using non-temporal hint) instruction stores packed integer data from an MMX register to memory, using a non-temporal hint. The MOVNTPS (store packed single-precision floating-point values using non-temporal hint) instruction stores packed floating-point data from an XMM register to memory, using a non-temporal hint. The SFENCE (Store Fence) instruction controls write ordering by creating a fence for memory store operations. This instruction guarantees that the results of every store instruction that precedes the store fence in program order is globally visible before any store instruction that follows the fence. The SFENCE instruction provides an efficient way of ensuring ordering between procedures that produce weakly-ordered data and procedures that consume that data. If you have questions please contact with me: Nick Kurshev: nickols_k@mail.ru. */ // 3dnow memcpy support from kernel 2.4.2 // by Pontscho/fresh!mindworkz #undef HAVE_ONLY_MMX1 #if defined(HAVE_MMX) && !defined(HAVE_MMX2) && !defined(HAVE_3DNOW) && !defined(HAVE_SSE) /* means: mmx v.1. Note: Since we added alignment of destinition it speedups of memory copying on PentMMX, Celeron-1 and P2 upto 12% versus standard (non MMX-optimized) version. Note: on K6-2+ it speedups memory copying upto 25% and on K7 and P3 about 500% (5 times). */ #define HAVE_ONLY_MMX1 #endif #undef HAVE_K6_2PLUS #if !defined( HAVE_MMX2) && defined( HAVE_3DNOW) #define HAVE_K6_2PLUS #endif /* for small memory blocks (<256 bytes) this version is faster */ #define small_memcpy(to,from,n)\ {\ register unsigned long int dummy;\ __asm__ __volatile__(\ "rep; movsb"\ :"=&D"(to), "=&S"(from), "=&c"(dummy)\ /* It's most portable way to notify compiler */\ /* that edi, esi and ecx are clobbered in asm block. */\ /* Thanks to A'rpi for hint!!! */\ :"0" (to), "1" (from),"2" (n)\ : "memory");\ } #undef MMREG_SIZE #ifdef HAVE_SSE #define MMREG_SIZE 16 #else #define MMREG_SIZE 64 //8 #endif #undef PREFETCH #undef EMMS #ifdef HAVE_MMX2 #define PREFETCH "prefetchnta" #elif defined ( HAVE_3DNOW ) #define PREFETCH "prefetch" #else #define PREFETCH " # nop" #endif /* On K6 femms is faster of emms. On K7 femms is directly mapped on emms. */ #ifdef HAVE_3DNOW #define EMMS "femms" #else #define EMMS "emms" #endif #undef MOVNTQ #ifdef HAVE_MMX2 #define MOVNTQ "movntq" #else #define MOVNTQ "movq" #endif #undef MIN_LEN #ifdef HAVE_ONLY_MMX1 #define MIN_LEN 0x800 /* 2K blocks */ #else #define MIN_LEN 0x40 /* 64-byte blocks */ #endif static void * RENAME(fast_memcpy)(void * to, const void * from, size_t len) { void *retval; size_t i; retval = to; #ifdef STATISTICS { static int freq[33]; static int t=0; int i; for(i=0; len>(1<= MIN_LEN) { register unsigned long int delta; /* Align destinition to MMREG_SIZE -boundary */ delta = ((unsigned long int)to)&(MMREG_SIZE-1); if(delta) { delta=MMREG_SIZE-delta; len -= delta; small_memcpy(to, from, delta); } i = len >> 6; /* len/64 */ len&=63; /* This algorithm is top effective when the code consequently reads and writes blocks which have size of cache line. Size of cache line is processor-dependent. It will, however, be a minimum of 32 bytes on any processors. It would be better to have a number of instructions which perform reading and writing to be multiple to a number of processor's decoders, but it's not always possible. */ #ifdef HAVE_SSE /* Only P3 (may be Cyrix3) */ if(((unsigned long)from) & 15) /* if SRC is misaligned */ for(; i>0; i--) { __asm__ __volatile__ ( PREFETCH" 320(%0)\n" "movups (%0), %%xmm0\n" "movups 16(%0), %%xmm1\n" "movups 32(%0), %%xmm2\n" "movups 48(%0), %%xmm3\n" "movntps %%xmm0, (%1)\n" "movntps %%xmm1, 16(%1)\n" "movntps %%xmm2, 32(%1)\n" "movntps %%xmm3, 48(%1)\n" :: "r" (from), "r" (to) : "memory"); from=((const unsigned char *) from)+64; to=((unsigned char *)to)+64; } else /* Only if SRC is aligned on 16-byte boundary. It allows to use movaps instead of movups, which required data to be aligned or a general-protection exception (#GP) is generated. */ for(; i>0; i--) { __asm__ __volatile__ ( PREFETCH" 320(%0)\n" "movaps (%0), %%xmm0\n" "movaps 16(%0), %%xmm1\n" "movaps 32(%0), %%xmm2\n" "movaps 48(%0), %%xmm3\n" "movntps %%xmm0, (%1)\n" "movntps %%xmm1, 16(%1)\n" "movntps %%xmm2, 32(%1)\n" "movntps %%xmm3, 48(%1)\n" :: "r" (from), "r" (to) : "memory"); from=((const unsigned char *)from)+64; to=((unsigned char *)to)+64; } #else // Align destination at BLOCK_SIZE boundary for(; ((int)to & (BLOCK_SIZE-1)) && i>0; i--) { __asm__ __volatile__ ( #ifndef HAVE_ONLY_MMX1 PREFETCH" 320(%0)\n" #endif "movq (%0), %%mm0\n" "movq 8(%0), %%mm1\n" "movq 16(%0), %%mm2\n" "movq 24(%0), %%mm3\n" "movq 32(%0), %%mm4\n" "movq 40(%0), %%mm5\n" "movq 48(%0), %%mm6\n" "movq 56(%0), %%mm7\n" MOVNTQ" %%mm0, (%1)\n" MOVNTQ" %%mm1, 8(%1)\n" MOVNTQ" %%mm2, 16(%1)\n" MOVNTQ" %%mm3, 24(%1)\n" MOVNTQ" %%mm4, 32(%1)\n" MOVNTQ" %%mm5, 40(%1)\n" MOVNTQ" %%mm6, 48(%1)\n" MOVNTQ" %%mm7, 56(%1)\n" :: "r" (from), "r" (to) : "memory"); from=((const unsigned char *)from)+64; to=((unsigned char *)to)+64; } // printf(" %d %d\n", (int)from&1023, (int)to&1023); // Pure Assembly cuz gcc is a bit unpredictable ;) if(i>=BLOCK_SIZE/64) asm volatile( "xor %%"REG_a", %%"REG_a" \n\t" ASMALIGN(4) "1: \n\t" "movl (%0, %%"REG_a"), %%ebx \n\t" "movl 32(%0, %%"REG_a"), %%ebx \n\t" "movl 64(%0, %%"REG_a"), %%ebx \n\t" "movl 96(%0, %%"REG_a"), %%ebx \n\t" "add $128, %%"REG_a" \n\t" "cmp %3, %%"REG_a" \n\t" " jb 1b \n\t" "xor %%"REG_a", %%"REG_a" \n\t" ASMALIGN(4) "2: \n\t" "movq (%0, %%"REG_a"), %%mm0\n" "movq 8(%0, %%"REG_a"), %%mm1\n" "movq 16(%0, %%"REG_a"), %%mm2\n" "movq 24(%0, %%"REG_a"), %%mm3\n" "movq 32(%0, %%"REG_a"), %%mm4\n" "movq 40(%0, %%"REG_a"), %%mm5\n" "movq 48(%0, %%"REG_a"), %%mm6\n" "movq 56(%0, %%"REG_a"), %%mm7\n" MOVNTQ" %%mm0, (%1, %%"REG_a")\n" MOVNTQ" %%mm1, 8(%1, %%"REG_a")\n" MOVNTQ" %%mm2, 16(%1, %%"REG_a")\n" MOVNTQ" %%mm3, 24(%1, %%"REG_a")\n" MOVNTQ" %%mm4, 32(%1, %%"REG_a")\n" MOVNTQ" %%mm5, 40(%1, %%"REG_a")\n" MOVNTQ" %%mm6, 48(%1, %%"REG_a")\n" MOVNTQ" %%mm7, 56(%1, %%"REG_a")\n" "add $64, %%"REG_a" \n\t" "cmp %3, %%"REG_a" \n\t" "jb 2b \n\t" #if CONFUSION_FACTOR > 0 // a few percent speedup on out of order executing CPUs "mov %5, %%"REG_a" \n\t" "2: \n\t" "movl (%0), %%ebx \n\t" "movl (%0), %%ebx \n\t" "movl (%0), %%ebx \n\t" "movl (%0), %%ebx \n\t" "dec %%"REG_a" \n\t" " jnz 2b \n\t" #endif "xor %%"REG_a", %%"REG_a" \n\t" "add %3, %0 \n\t" "add %3, %1 \n\t" "sub %4, %2 \n\t" "cmp %4, %2 \n\t" " jae 1b \n\t" : "+r" (from), "+r" (to), "+r" (i) : "r" ((long)BLOCK_SIZE), "i" (BLOCK_SIZE/64), "i" ((long)CONFUSION_FACTOR) : "%"REG_a, "%ebx" ); for(; i>0; i--) { __asm__ __volatile__ ( #ifndef HAVE_ONLY_MMX1 PREFETCH" 320(%0)\n" #endif "movq (%0), %%mm0\n" "movq 8(%0), %%mm1\n" "movq 16(%0), %%mm2\n" "movq 24(%0), %%mm3\n" "movq 32(%0), %%mm4\n" "movq 40(%0), %%mm5\n" "movq 48(%0), %%mm6\n" "movq 56(%0), %%mm7\n" MOVNTQ" %%mm0, (%1)\n" MOVNTQ" %%mm1, 8(%1)\n" MOVNTQ" %%mm2, 16(%1)\n" MOVNTQ" %%mm3, 24(%1)\n" MOVNTQ" %%mm4, 32(%1)\n" MOVNTQ" %%mm5, 40(%1)\n" MOVNTQ" %%mm6, 48(%1)\n" MOVNTQ" %%mm7, 56(%1)\n" :: "r" (from), "r" (to) : "memory"); from=((const unsigned char *)from)+64; to=((unsigned char *)to)+64; } #endif /* Have SSE */ #ifdef HAVE_MMX2 /* since movntq is weakly-ordered, a "sfence" * is needed to become ordered again. */ __asm__ __volatile__ ("sfence":::"memory"); #endif #ifndef HAVE_SSE /* enables to use FPU */ __asm__ __volatile__ (EMMS:::"memory"); #endif } /* * Now do the tail of the block */ if(len) small_memcpy(to, from, len); return retval; } /** * special copy routine for mem -> agp/pci copy (based upon fast_memcpy) */ static void * RENAME(mem2agpcpy)(void * to, const void * from, size_t len) { void *retval; size_t i; retval = to; #ifdef STATISTICS { static int freq[33]; static int t=0; int i; for(i=0; len>(1<= MIN_LEN) { register unsigned long int delta; /* Align destinition to MMREG_SIZE -boundary */ delta = ((unsigned long int)to)&7; if(delta) { delta=8-delta; len -= delta; small_memcpy(to, from, delta); } i = len >> 6; /* len/64 */ len &= 63; /* This algorithm is top effective when the code consequently reads and writes blocks which have size of cache line. Size of cache line is processor-dependent. It will, however, be a minimum of 32 bytes on any processors. It would be better to have a number of instructions which perform reading and writing to be multiple to a number of processor's decoders, but it's not always possible. */ for(; i>0; i--) { __asm__ __volatile__ ( PREFETCH" 320(%0)\n" "movq (%0), %%mm0\n" "movq 8(%0), %%mm1\n" "movq 16(%0), %%mm2\n" "movq 24(%0), %%mm3\n" "movq 32(%0), %%mm4\n" "movq 40(%0), %%mm5\n" "movq 48(%0), %%mm6\n" "movq 56(%0), %%mm7\n" MOVNTQ" %%mm0, (%1)\n" MOVNTQ" %%mm1, 8(%1)\n" MOVNTQ" %%mm2, 16(%1)\n" MOVNTQ" %%mm3, 24(%1)\n" MOVNTQ" %%mm4, 32(%1)\n" MOVNTQ" %%mm5, 40(%1)\n" MOVNTQ" %%mm6, 48(%1)\n" MOVNTQ" %%mm7, 56(%1)\n" :: "r" (from), "r" (to) : "memory"); from=((const unsigned char *)from)+64; to=((unsigned char *)to)+64; } #ifdef HAVE_MMX2 /* since movntq is weakly-ordered, a "sfence" * is needed to become ordered again. */ __asm__ __volatile__ ("sfence":::"memory"); #endif /* enables to use FPU */ __asm__ __volatile__ (EMMS:::"memory"); } /* * Now do the tail of the block */ if(len) small_memcpy(to, from, len); return retval; }