/** * \file vf_zrmjpeg.c * * \brief Does mjpeg encoding as required by the zrmjpeg filter as well * as by the zr video driver. */ /* * Copyright (C) 2005 Rik Snel , license GPL v2 or later * - based on vd_lavc.c by A'rpi (C) 2002-2003 * - parts from ffmpeg Copyright (c) 2000-2003 Fabrice Bellard * * This files includes a straightforward (to be) optimized JPEG encoder for * the YUV422 format, based on mjpeg code from ffmpeg. * * For an excellent introduction to the JPEG format, see: * http://www.ece.purdue.edu/~bouman/grad-labs/lab8/pdf/lab.pdf */ #include #include #include #include #include "config.h" #include "mp_msg.h" #include "img_format.h" #include "mp_image.h" #include "vf.h" /* We need this #define because we need ../libavcodec/common.h to #define * be2me_32, otherwise the linker will complain that it doesn't exist */ #define HAVE_AV_CONFIG_H #include "libavcodec/avcodec.h" #include "libavcodec/dsputil.h" #include "libavcodec/mpegvideo.h" //#include "jpeg_enc.h" /* this file is not present yet */ #undef malloc #undef free #undef realloc extern int avcodec_initialized; /* some convenient #define's, is this portable enough? */ /// Printout with vf_zrmjpeg: prefix at VERBOSE level #define VERBOSE(...) mp_msg(MSGT_DECVIDEO, MSGL_V, "vf_zrmjpeg: " __VA_ARGS__) /// Printout with vf_zrmjpeg: prefix at ERROR level #define ERROR(...) mp_msg(MSGT_DECVIDEO, MSGL_ERR, "vf_zrmjpeg: " __VA_ARGS__) /// Printout with vf_zrmjpeg: prefix at WARNING level #define WARNING(...) mp_msg(MSGT_DECVIDEO, MSGL_WARN, \ "vf_zrmjpeg: " __VA_ARGS__) // "local" flag in vd_ffmpeg.c. If not set, avcodec_init() et. al. need to be called // set when init is done, so that initialization is not done twice. extern int avcodec_initialized; /// structure copied from mjpeg.c /* zrmjpeg_encode_mb needs access to these tables for the black & white * option */ typedef struct MJpegContext { uint8_t huff_size_dc_luminance[12]; uint16_t huff_code_dc_luminance[12]; uint8_t huff_size_dc_chrominance[12]; uint16_t huff_code_dc_chrominance[12]; uint8_t huff_size_ac_luminance[256]; uint16_t huff_code_ac_luminance[256]; uint8_t huff_size_ac_chrominance[256]; uint16_t huff_code_ac_chrominance[256]; } MJpegContext; /// The get_pixels() routine to use. The real routine comes from dsputil static void (*get_pixels)(DCTELEM *restrict block, const uint8_t *pixels, int line_size); /* Begin excessive code duplication ************************************/ /* Code coming from mpegvideo.c and mjpeg.c in ../libavcodec ***********/ /// copy of the table in mpegvideo.c static const unsigned short aanscales[64] = { /**< precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; /// Precompute DCT quantizing matrix /** * This routine will precompute the combined DCT matrix with qscale * and DCT renorm needed by the MPEG encoder here. It is basically the * same as the routine with the same name in mpegvideo.c, except for * some coefficient changes. The matrix will be computed in two variations, * depending on the DCT version used. The second used by the MMX version of DCT. * * \param s MpegEncContext pointer * \param qmat[OUT] pointer to where the matrix is stored * \param qmat16[OUT] pointer to where matrix for MMX is stored. * This matrix is not permutated * and second 64 entries are bias * \param quant_matrix[IN] the quantizion matrix to use * \param bias bias for the quantizer * \param qmin minimum qscale value to set up for * \param qmax maximum qscale value to set up for * * Only rows between qmin and qmax will be populated in the matrix. * In this MJPEG encoder, only the value 8 for qscale is used. */ static void convert_matrix(MpegEncContext *s, int (*qmat)[64], uint16_t (*qmat16)[2][64], const uint16_t *quant_matrix, int bias, int qmin, int qmax) { int qscale; for(qscale = qmin; qscale <= qmax; qscale++) { int i; if (s->dsp.fdct == ff_jpeg_fdct_islow) { for (i = 0; i < 64; i++) { const int j = s->dsp.idct_permutation[i]; /* 16 <= qscale * quant_matrix[i] <= 7905 * 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 * (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) * >= (1<<36)/249205026 * 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */ qmat[qscale][i] = (int)((UINT64_C(1) << (QMAT_SHIFT-3))/ (qscale*quant_matrix[j])); } } else if (s->dsp.fdct == fdct_ifast) { for (i = 0; i < 64; i++) { const int j = s->dsp.idct_permutation[i]; /* 16 <= qscale * quant_matrix[i] <= 7905 * 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 * (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) * >= (1<<36)/249205026 * 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */ qmat[qscale][i] = (int)((UINT64_C(1) << (QMAT_SHIFT + 11))/(aanscales[i] *qscale * quant_matrix[j])); } } else { for (i = 0; i < 64; i++) { const int j = s->dsp.idct_permutation[i]; /* We can safely assume that 16 <= quant_matrix[i] <= 255 * So 16 <= qscale * quant_matrix[i] <= 7905 * so (1<<19) / 16 >= (1<<19) / (qscale * quant_matrix[i]) >= (1<<19) / 7905 * so 32768 >= (1<<19) / (qscale * quant_matrix[i]) >= 67 */ qmat[qscale][i] = (int)((UINT64_C(1) << QMAT_SHIFT_MMX) / (qscale *quant_matrix[j])); qmat16[qscale][0][i] = (1 << QMAT_SHIFT_MMX) /(qscale * quant_matrix[j]); if (qmat16[qscale][0][i] == 0 || qmat16[qscale][0][i] == 128*256) qmat16[qscale][0][i]=128*256-1; qmat16[qscale][1][i]=ROUNDED_DIV(bias <<(16-QUANT_BIAS_SHIFT), qmat16[qscale][0][i]); } } } } /// Emit the DC value into a MJPEG code sream /** * This routine is only intended to be used from encode_block * * \param s pointer to MpegEncContext structure * \param val the DC value to emit * \param huff_size pointer to huffman code size array * \param huff_code pointer to the code array corresponding to \a huff_size * * This routine is a clone of mjpeg_encode_dc */ static inline void encode_dc(MpegEncContext *s, int val, uint8_t *huff_size, uint16_t *huff_code) { int mant, nbits; if (val == 0) { put_bits(&s->pb, huff_size[0], huff_code[0]); } else { mant = val; if (val < 0) { val = -val; mant--; } nbits= av_log2_16bit(val) + 1; put_bits(&s->pb, huff_size[nbits], huff_code[nbits]); put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1)); } } /// Huffman encode and emit one DCT block into the MJPEG code stream /** * \param s pointer to MpegEncContext structure * \param block pointer to the DCT block to emit * \param n * * This routine is a duplicate of encode_block in mjpeg.c */ static void encode_block(MpegEncContext *s, DCTELEM *block, int n) { int mant, nbits, code, i, j; int component, dc, run, last_index, val; MJpegContext *m = s->mjpeg_ctx; uint8_t *huff_size_ac; uint16_t *huff_code_ac; /* DC coef */ component = (n <= 3 ? 0 : n - 4 + 1); dc = block[0]; /* overflow is impossible */ val = dc - s->last_dc[component]; if (n < 4) { encode_dc(s, val, m->huff_size_dc_luminance, m->huff_code_dc_luminance); huff_size_ac = m->huff_size_ac_luminance; huff_code_ac = m->huff_code_ac_luminance; } else { encode_dc(s, val, m->huff_size_dc_chrominance, m->huff_code_dc_chrominance); huff_size_ac = m->huff_size_ac_chrominance; huff_code_ac = m->huff_code_ac_chrominance; } s->last_dc[component] = dc; /* AC coefs */ run = 0; last_index = s->block_last_index[n]; for (i = 1; i <= last_index; i++) { j = s->intra_scantable.permutated[i]; val = block[j]; if (val == 0) run++; else { while (run >= 16) { put_bits(&s->pb, huff_size_ac[0xf0], huff_code_ac[0xf0]); run -= 16; } mant = val; if (val < 0) { val = -val; mant--; } nbits= av_log2_16bit(val) + 1; code = (run << 4) | nbits; put_bits(&s->pb, huff_size_ac[code], huff_code_ac[code]); put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1)); run = 0; } } /* output EOB only if not already 64 values */ if (last_index < 63 || run != 0) put_bits(&s->pb, huff_size_ac[0], huff_code_ac[0]); } /// clip overflowing DCT coefficients /** * If the computed DCT coefficients in a block overflow, this routine * will go through them and clip them to be in the valid range. * * \param s pointer to MpegEncContext * \param block pointer to DCT block to process * \param last_index index of the last non-zero coefficient in block * * The max and min level, which are clipped to, are stored in * s->min_qcoeff and s->max_qcoeff respectively. */ static inline void clip_coeffs(MpegEncContext *s, DCTELEM *block, int last_index) { int i; const int maxlevel= s->max_qcoeff; const int minlevel= s->min_qcoeff; for (i = 0; i <= last_index; i++) { const int j = s->intra_scantable.permutated[i]; int level = block[j]; if (level > maxlevel) level=maxlevel; else if(level < minlevel) level=minlevel; block[j]= level; } } /* End excessive code duplication **************************************/ typedef struct { struct MpegEncContext *s; int cheap_upsample; int bw; int y_rs; int u_rs; int v_rs; } jpeg_enc_t; // Huffman encode and emit one MCU of MJPEG code /** * \param j pointer to jpeg_enc_t structure * * This function huffman encodes one MCU, and emits the * resulting bitstream into the MJPEG code that is currently worked on. * * this function is a reproduction of the one in mjpeg, it includes two * changes, it allows for black&white encoding (it skips the U and V * macroblocks and it outputs the huffman code for 'no change' (dc) and * 'all zero' (ac)) and it takes 4 macroblocks (422) instead of 6 (420) */ static av_always_inline void zr_mjpeg_encode_mb(jpeg_enc_t *j) { MJpegContext *m = j->s->mjpeg_ctx; encode_block(j->s, j->s->block[0], 0); encode_block(j->s, j->s->block[1], 1); if (j->bw) { /* U */ put_bits(&j->s->pb, m->huff_size_dc_chrominance[0], m->huff_code_dc_chrominance[0]); put_bits(&j->s->pb, m->huff_size_ac_chrominance[0], m->huff_code_ac_chrominance[0]); /* V */ put_bits(&j->s->pb, m->huff_size_dc_chrominance[0], m->huff_code_dc_chrominance[0]); put_bits(&j->s->pb, m->huff_size_ac_chrominance[0], m->huff_code_ac_chrominance[0]); } else { /* we trick encode_block here so that it uses * chrominance huffman tables instead of luminance ones * (see the effect of second argument of encode_block) */ encode_block(j->s, j->s->block[2], 4); encode_block(j->s, j->s->block[3], 5); } } /// Fill one DCT MCU from planar storage /** * This routine will convert one MCU from YUYV planar storage into 4 * DCT macro blocks, converting from 8-bit format in the planar * storage to 16-bit format used in the DCT. * * \param j pointer to jpeg_enc structure, and also storage for DCT macro blocks * \param x pixel x-coordinate for the first pixel * \param y pixel y-coordinate for the first pixel * \param y_data pointer to the Y plane * \param u_data pointer to the U plane * \param v_data pointer to the V plane */ static av_always_inline void fill_block(jpeg_enc_t *j, int x, int y, unsigned char *y_data, unsigned char *u_data, unsigned char *v_data) { int i, k; short int *dest; unsigned char *source; // The first Y, Y0 get_pixels(j->s->block[0], y*8*j->y_rs + 16*x + y_data, j->y_rs); // The second Y, Y1 get_pixels(j->s->block[1], y*8*j->y_rs + 16*x + 8 + y_data, j->y_rs); if (!j->bw && j->cheap_upsample) { source = y * 4 * j->u_rs + 8*x + u_data; dest = j->s->block[2]; for (i = 0; i < 4; i++) { for (k = 0; k < 8; k++) { dest[k] = source[k]; // First row dest[k+8] = source[k]; // Duplicate to next row } dest += 16; source += j->u_rs; } source = y * 4 * j->v_rs + 8*x + v_data; dest = j->s->block[3]; for (i = 0; i < 4; i++) { for (k = 0; k < 8; k++) { dest[k] = source[k]; dest[k+8] = source[k]; } dest += 16; source += j->u_rs; } } else if (!j->bw && !j->cheap_upsample) { // U get_pixels(j->s->block[2], y*8*j->u_rs + 8*x + u_data, j->u_rs); // V get_pixels(j->s->block[3], y*8*j->v_rs + 8*x + v_data, j->v_rs); } } /** * \brief initialize mjpeg encoder * * This routine is to set up the parameters and initialize the mjpeg encoder. * It does all the initializations needed of lower level routines. * The formats accepted by this encoder is YUV422P and YUV420 * * \param w width in pixels of the image to encode, must be a multiple of 16 * \param h height in pixels of the image to encode, must be a multiple of 8 * \param y_rsize size of each plane row Y component * \param y_rsize size of each plane row U component * \param v_rsize size of each plane row V component * \param cu "cheap upsample". Set to 0 for YUV422 format, 1 for YUV420 format * when set to 1, the encoder will assume that there is only half th * number of rows of chroma information, and every chroma row is * duplicated. * \param q quality parameter for the mjpeg encode. Between 1 and 20 where 1 * is best quality and 20 is the worst quality. * \param b monochrome flag. When set to 1, the mjpeg output is monochrome. * In that case, the colour information is omitted, and actually the * colour planes are not touched. * * \returns an appropriately set up jpeg_enc_t structure * * The actual plane buffer addreses are passed by jpeg_enc_frame(). * * The encoder doesn't know anything about interlacing, the halve height * needs to be passed and the double rowstride. Which field gets encoded * is decided by what buffers are passed to mjpeg_encode_frame() */ static jpeg_enc_t *jpeg_enc_init(int w, int h, int y_rsize, int u_rsize, int v_rsize, int cu, int q, int b) { jpeg_enc_t *j; int i = 0; VERBOSE("JPEG encoder init: %dx%d %d %d %d cu=%d q=%d bw=%d\n", w, h, y_rsize, u_rsize, v_rsize, cu, q, b); j = av_mallocz(sizeof(jpeg_enc_t)); if (j == NULL) return NULL; j->s = av_mallocz(sizeof(MpegEncContext)); if (j->s == NULL) { av_free(j); return NULL; } /* info on how to access the pixels */ j->y_rs = y_rsize; j->u_rs = u_rsize; j->v_rs = v_rsize; j->s->width = w; // image width and height j->s->height = h; j->s->qscale = q; // Encoding quality j->s->out_format = FMT_MJPEG; j->s->intra_only = 1; // Generate only intra pictures for jpeg j->s->encoding = 1; // Set mode to encode j->s->pict_type = FF_I_TYPE; j->s->y_dc_scale = 8; j->s->c_dc_scale = 8; /* * This sets up the MCU (Minimal Code Unit) number * of appearances of the various component * for the SOF0 table in the generated MJPEG. * The values are not used for anything else. * The current setup is simply YUV422, with two horizontal Y components * for every UV component. */ //FIXME j->s->mjpeg_write_tables = 1; // setup to write tables j->s->mjpeg_vsample[0] = 1; // 1 appearance of Y vertically j->s->mjpeg_vsample[1] = 1; // 1 appearance of U vertically j->s->mjpeg_vsample[2] = 1; // 1 appearance of V vertically j->s->mjpeg_hsample[0] = 2; // 2 appearances of Y horizontally j->s->mjpeg_hsample[1] = 1; // 1 appearance of U horizontally j->s->mjpeg_hsample[2] = 1; // 1 appearance of V horizontally j->cheap_upsample = cu; j->bw = b; // Is this needed? /* if libavcodec is used by the decoder then we must not * initialize again, but if it is not initialized then we must * initialize it here. */ if (!avcodec_initialized) { avcodec_init(); avcodec_register_all(); avcodec_initialized=1; } // Build mjpeg huffman code tables, setting up j->s->mjpeg_ctx if (ff_mjpeg_encode_init(j->s) < 0) { av_free(j->s); av_free(j); return NULL; } /* alloc bogus avctx to keep MPV_common_init from segfaulting */ j->s->avctx = avcodec_alloc_context(); if (j->s->avctx == NULL) { av_free(j->s); av_free(j); return NULL; } // Set some a minimum amount of default values that are needed // Indicates that we should generated normal MJPEG j->s->avctx->codec_id = CODEC_ID_MJPEG; // Which DCT method to use. AUTO will select the fastest one j->s->avctx->dct_algo = FF_DCT_AUTO; j->s->intra_quant_bias= 1<<(QUANT_BIAS_SHIFT-1); //(a + x/2)/x j->s->avctx->thread_count = 1; /* make MPV_common_init allocate important buffers, like s->block * Also initializes dsputil */ if (MPV_common_init(j->s) < 0) { av_free(j->s); av_free(j); return NULL; } /* correct the value for sc->mb_height. MPV_common_init put other * values there */ j->s->mb_height = j->s->height/8; j->s->mb_intra = 1; // Init q matrix j->s->intra_matrix[0] = ff_mpeg1_default_intra_matrix[0]; for (i = 1; i < 64; i++) j->s->intra_matrix[i] = av_clip_uint8( (ff_mpeg1_default_intra_matrix[i]*j->s->qscale) >> 3); // precompute matrix convert_matrix(j->s, j->s->q_intra_matrix, j->s->q_intra_matrix16, j->s->intra_matrix, j->s->intra_quant_bias, 8, 8); /* Pick up the selection of the optimal get_pixels() routine * to use, which was done in MPV_common_init() */ get_pixels = j->s->dsp.get_pixels; return j; } /** * \brief mjpeg encode an image * * This routine will take a 3-plane YUV422 image and encoded it with MJPEG * base line format, as suitable as input for the Zoran hardare MJPEG chips. * * It requires that the \a j parameter points the structure set up by the * jpeg_enc_init() routine. * * \param j pointer to jpeg_enc_t structure as created by jpeg_enc_init() * \param y_data pointer to Y component plane, packed one byte/pixel * \param u_data pointer to U component plane, packed one byte per every * other pixel * \param v_data pointer to V component plane, packed one byte per every * other pixel * \param bufr pointer to the buffer where the mjpeg encoded code is stored * * \returns the number of bytes stored into \a bufr * * If \a j->s->mjpeg_write_tables is set, it will also emit the mjpeg tables, * otherwise it will just emit the data. The \a j->s->mjpeg_write_tables * variable will be reset to 0 by the routine. */ static int jpeg_enc_frame(jpeg_enc_t *j, uint8_t *y_data, uint8_t *u_data, uint8_t *v_data, uint8_t *bufr) { int mb_x, mb_y, overflow; /* initialize the buffer */ init_put_bits(&j->s->pb, bufr, 1024*256); // Emit the mjpeg header blocks ff_mjpeg_encode_picture_header(j->s); j->s->header_bits = put_bits_count(&j->s->pb); j->s->last_dc[0] = 128; j->s->last_dc[1] = 128; j->s->last_dc[2] = 128; for (mb_y = 0; mb_y < j->s->mb_height; mb_y++) { for (mb_x = 0; mb_x < j->s->mb_width; mb_x++) { /* * Fill one DCT block (8x8 pixels) from * 2 Y macroblocks and one U and one V */ fill_block(j, mb_x, mb_y, y_data, u_data, v_data); emms_c(); /* is this really needed? */ j->s->block_last_index[0] = j->s->dct_quantize(j->s, j->s->block[0], 0, 8, &overflow); if (overflow) clip_coeffs(j->s, j->s->block[0], j->s->block_last_index[0]); j->s->block_last_index[1] = j->s->dct_quantize(j->s, j->s->block[1], 1, 8, &overflow); if (overflow) clip_coeffs(j->s, j->s->block[1], j->s->block_last_index[1]); if (!j->bw) { j->s->block_last_index[4] = j->s->dct_quantize(j->s, j->s->block[2], 4, 8, &overflow); if (overflow) clip_coeffs(j->s, j->s->block[2], j->s->block_last_index[2]); j->s->block_last_index[5] = j->s->dct_quantize(j->s, j->s->block[3], 5, 8, &overflow); if (overflow) clip_coeffs(j->s, j->s->block[3], j->s->block_last_index[3]); } zr_mjpeg_encode_mb(j); } } emms_c(); ff_mjpeg_encode_picture_trailer(j->s); flush_put_bits(&j->s->pb); //FIXME //if (j->s->mjpeg_write_tables == 1) // j->s->mjpeg_write_tables = 0; return pbBufPtr(&(j->s->pb)) - j->s->pb.buf; } /// the real uninit routine /** * This is the real routine that does the uninit of the ZRMJPEG filter * * \param j pointer to jpeg_enc structure */ static void jpeg_enc_uninit(jpeg_enc_t *j) { ff_mjpeg_encode_close(j->s); av_free(j->s); av_free(j); } /// Private structure for ZRMJPEG filter struct vf_priv_s { jpeg_enc_t *j; unsigned char buf[256*1024]; int bw, fd, hdec, vdec; int fields; int y_stride; int c_stride; int quality; int maxwidth; int maxheight; }; /// vf CONFIGURE entry point for the ZRMJPEG filter /** * \param vf video filter instance pointer * \param width image source width in pixels * \param height image source height in pixels * \param d_width width of requested window, just a hint * \param d_height height of requested window, just a hint * \param flags vf filter flags * \param outfmt * * \returns returns 0 on error * * This routine will make the necessary hardware-related decisions for * the ZRMJPEG filter, do the initialization of the MJPEG encoder, and * then select one of the ZRJMJPEGIT or ZRMJPEGNI filters and then * arrange to dispatch to the config() entry pointer for the one * selected. */ static int config(struct vf_instance* vf, int width, int height, int d_width, int d_height, unsigned int flags, unsigned int outfmt){ struct vf_priv_s *priv = vf->priv; float aspect_decision; int stretchx, stretchy, err = 0, maxstretchx = 4; priv->fields = 1; VERBOSE("config() called\n"); if (priv->j) { VERBOSE("re-configuring, resetting JPEG encoder\n"); jpeg_enc_uninit(priv->j); priv->j = NULL; } aspect_decision = ((float)d_width/(float)d_height)/ ((float)width/(float)height); if (aspect_decision > 1.8 && aspect_decision < 2.2) { VERBOSE("should correct aspect by stretching x times 2, %d %d\n", 2*width, priv->maxwidth); if (2*width <= priv->maxwidth) { d_width = 2*width; d_height = height; maxstretchx = 2; } else { WARNING("unable to correct aspect by stretching, because resulting X will be too large, aspect correction by decimating y not yet implemented\n"); d_width = width; d_height = height; } /* prestretch movie */ } else { /* uncorrecting output for now */ d_width = width; d_height = height; } /* make the scaling decision * we are capable of stretching the image in the horizontal * direction by factors 1, 2 and 4 * we can stretch the image in the vertical direction by a * factor of 1 and 2 AND we must decide about interlacing */ if (d_width > priv->maxwidth/2 || height > priv->maxheight/2 || maxstretchx == 1) { stretchx = 1; stretchy = 1; priv->fields = 2; if (priv->vdec == 2) { priv->fields = 1; } else if (priv->vdec == 4) { priv->fields = 1; stretchy = 2; } if (priv->hdec > maxstretchx) { if (priv->fd) { WARNING("horizontal decimation too high, " "changing to %d (use fd to keep" " hdec=%d)\n", maxstretchx, priv->hdec); priv->hdec = maxstretchx; } } stretchx = priv->hdec; } else if (d_width > priv->maxwidth/4 || height > priv->maxheight/4 || maxstretchx == 2) { stretchx = 2; stretchy = 1; priv->fields = 1; if (priv->vdec == 2) { stretchy = 2; } else if (priv->vdec == 4) { if (!priv->fd) { WARNING("vertical decimation too high, " "changing to 2 (use fd to keep " "vdec=4)\n"); priv->vdec = 2; } stretchy = 2; } if (priv->hdec == 2) { stretchx = 4; } else if (priv->hdec == 4) { if (priv->fd) { WARNING("horizontal decimation too high, " "changing to 2 (use fd to keep " "hdec=4)\n"); priv->hdec = 2; } stretchx = 4; } } else { /* output image is maximally stretched */ stretchx = 4; stretchy = 2; priv->fields = 1; if (priv->vdec != 1 && !priv->fd) { WARNING("vertical decimation too high, changing to 1 " "(use fd to keep vdec=%d)\n", priv->vdec); priv->vdec = 1; } if (priv->hdec != 1 && !priv->fd) { WARNING("horizontal decimation too high, changing to 1 (use fd to keep hdec=%d)\n", priv->hdec); priv->hdec = 1; } } VERBOSE("generated JPEG's %dx%s%d%s, stretched to %dx%d\n", width/priv->hdec, (priv->fields == 2) ? "(" : "", height/(priv->vdec*priv->fields), (priv->fields == 2) ? "x2)" : "", (width/priv->hdec)*stretchx, (height/(priv->vdec*priv->fields))* stretchy*priv->fields); if ((width/priv->hdec)*stretchx > priv->maxwidth || (height/(priv->vdec*priv->fields))* stretchy*priv->fields > priv->maxheight) { ERROR("output dimensions too large (%dx%d), max (%dx%d) " "insert crop to fix\n", (width/priv->hdec)*stretchx, (height/(priv->vdec*priv->fields))* stretchy*priv->fields, priv->maxwidth, priv->maxheight); err = 1; } if (width%(16*priv->hdec) != 0) { ERROR("width must be a multiple of 16*hdec (%d), use expand\n", priv->hdec*16); err = 1; } if (height%(8*priv->fields*priv->vdec) != 0) { ERROR("height must be a multiple of 8*fields*vdec (%d)," " use expand\n", priv->vdec*priv->fields*8); err = 1; } if (err) return 0; priv->y_stride = width; priv->c_stride = width/2; priv->j = jpeg_enc_init(width, height/priv->fields, priv->fields*priv->y_stride, priv->fields*priv->c_stride, priv->fields*priv->c_stride, 1, priv->quality, priv->bw); if (!priv->j) return 0; return vf_next_config(vf, width, height, d_width, d_height, flags, (priv->fields == 2) ? IMGFMT_ZRMJPEGIT : IMGFMT_ZRMJPEGNI); } /// put_image entrypoint for the ZRMJPEG vf filter /*** * \param vf pointer to vf_instance * \param mpi pointer to mp_image_t structure * \param pts */ static int put_image(struct vf_instance* vf, mp_image_t *mpi, double pts){ struct vf_priv_s *priv = vf->priv; int size = 0; int i; mp_image_t* dmpi; for (i = 0; i < priv->fields; i++) size += jpeg_enc_frame(priv->j, mpi->planes[0] + i*priv->y_stride, mpi->planes[1] + i*priv->c_stride, mpi->planes[2] + i*priv->c_stride, priv->buf + size); dmpi = vf_get_image(vf->next, IMGFMT_ZRMJPEGNI, MP_IMGTYPE_EXPORT, 0, mpi->w, mpi->h); dmpi->planes[0] = (uint8_t*)priv->buf; dmpi->planes[1] = (uint8_t*)size; return vf_next_put_image(vf,dmpi, pts); } /// query_format entrypoint for the ZRMJPEG vf filter /*** * \param vf pointer to vf_instance * \param fmt image format to query for * * \returns 0 if image format in fmt is not supported * * Given the image format specified by \a fmt, this routine is called * to ask if the format is supported or not. */ static int query_format(struct vf_instance* vf, unsigned int fmt){ VERBOSE("query_format() called\n"); switch (fmt) { case IMGFMT_YV12: case IMGFMT_YUY2: /* strictly speaking the output format of * this filter will be known after config(), * but everything that supports IMGFMT_ZRMJPEGNI * should also support all other IMGFMT_ZRMJPEG* */ return vf_next_query_format(vf, IMGFMT_ZRMJPEGNI); } return 0; } /// vf UNINIT entry point for the ZRMJPEG filter /** * \param vf pointer to the vf instance structure */ static void uninit(vf_instance_t *vf) { struct vf_priv_s *priv = vf->priv; VERBOSE("uninit() called\n"); if (priv->j) jpeg_enc_uninit(priv->j); free(priv); } /// vf OPEN entry point for the ZRMJPEG filter /** * \param vf pointer to the vf instance structure * \param args the argument list string for the -vf zrmjpeg command * * \returns 0 for error, 1 for success * * This routine will do some basic initialization of local structures etc., * and then parse the command line arguments specific for the ZRMJPEG filter. */ static int open(vf_instance_t *vf, char* args){ struct vf_priv_s *priv; VERBOSE("open() called: args=\"%s\"\n", args); vf->config = config; vf->put_image = put_image; vf->query_format = query_format; vf->uninit = uninit; priv = vf->priv = calloc(sizeof(*priv), 1); if (!vf->priv) { ERROR("out of memory error\n"); return 0; } /* maximum displayable size by zoran card, these defaults * are for my own zoran card in PAL mode, these can be changed * by filter options. But... in an ideal world these values would * be queried from the vo device itself... */ priv->maxwidth = 768; priv->maxheight = 576; priv->quality = 2; priv->hdec = 1; priv->vdec = 1; /* if libavcodec is already initialized, we must not initialize it * again, but if it is not initialized then we mustinitialize it now. */ if (!avcodec_initialized) { /* we need to initialize libavcodec */ avcodec_init(); avcodec_register_all(); avcodec_initialized=1; } if (args) { char *arg, *tmp, *ptr, junk; int last = 0, input; /* save arguments, to be able to safely modify them */ arg = strdup(args); if (!arg) { ERROR("out of memory, this is bad\n"); return 0; } tmp = ptr = arg; do { while (*tmp != ':' && *tmp) tmp++; if (*tmp == ':') *tmp++ = '\0'; else last = 1; VERBOSE("processing filter option \"%s\"\n", ptr); /* These options deal with the maximum output * resolution of the zoran card. These should * be queried from the vo device, but it is currently * too difficult, so the user should tell the filter */ if (!strncmp("maxheight=", ptr, 10)) { if (sscanf(ptr+10, "%d%c", &input, &junk) != 1) ERROR( "error parsing parameter to \"maxheight=\", \"%s\", ignoring\n" , ptr + 10); else { priv->maxheight = input; VERBOSE("setting maxheight to %d\n", priv->maxheight); } } else if (!strncmp("quality=", ptr, 8)) { if (sscanf(ptr+8, "%d%c", &input, &junk) != 1) ERROR( "error parsing parameter to \"quality=\", \"%s\", ignoring\n" , ptr + 8); else if (input < 1 || input > 20) ERROR( "parameter to \"quality=\" out of range (1..20), %d\n", input); else { priv->quality = input; VERBOSE("setting JPEG quality to %d\n", priv->quality); } } else if (!strncmp("maxwidth=", ptr, 9)) { if (sscanf(ptr+9, "%d%c", &input, &junk) != 1) ERROR( "error parsing parameter to \"maxwidth=\", \"%s\", ignoring\n" , ptr + 9); else { priv->maxwidth = input; VERBOSE("setting maxwidth to %d\n", priv->maxwidth); } } else if (!strncmp("hdec=", ptr, 5)) { if (sscanf(ptr+5, "%d%c", &input, &junk) != 1) ERROR( "error parsing parameter to \"hdec=\", \"%s\", ignoring\n" , ptr + 9); else if (input != 1 && input != 2 && input != 4) ERROR( "illegal parameter to \"hdec=\", %d, should be 1, 2 or 4", input); else { priv->hdec = input; VERBOSE( "setting horizontal decimation to %d\n", priv->maxwidth); } } else if (!strncmp("vdec=", ptr, 5)) { if (sscanf(ptr+5, "%d%c", &input, &junk) != 1) ERROR( "error parsing parameter to \"vdec=\", \"%s\", ignoring\n" , ptr + 9); else if (input != 1 && input != 2 && input != 4) ERROR( "illegal parameter to \"vdec=\", %d, should be 1, 2 or 4", input); else { priv->vdec = input; VERBOSE( "setting vertical decimation to %d\n", priv->maxwidth); } } else if (!strcasecmp("dc10+-PAL", ptr) || !strcasecmp("dc10-PAL", ptr)) { priv->maxwidth = 768; priv->maxheight = 576; VERBOSE("setting DC10(+) PAL profile\n"); } else if (!strcasecmp("fd", ptr)) { priv->fd = 1; VERBOSE("forcing decimation\n"); } else if (!strcasecmp("nofd", ptr)) { priv->fd = 0; VERBOSE("decimate only if beautiful\n"); } else if (!strcasecmp("bw", ptr)) { priv->bw = 1; VERBOSE("setting black and white encoding\n"); } else if (!strcasecmp("color", ptr)) { priv->bw = 0; VERBOSE("setting color encoding\n"); } else if (!strcasecmp("dc10+-NTSC", ptr) || !strcasecmp("dc10-NTSC", ptr)) { priv->maxwidth = 640; priv->maxheight = 480; VERBOSE("setting DC10(+) NTSC profile\n"); } else if (!strcasecmp("buz-PAL", ptr) || !strcasecmp("lml33-PAL", ptr)) { priv->maxwidth = 720; priv->maxheight = 576; VERBOSE("setting buz/lml33 PAL profile\n"); } else if (!strcasecmp("buz-NTSC", ptr) || !strcasecmp("lml33-NTSC", ptr)) { priv->maxwidth = 720; priv->maxheight = 480; VERBOSE("setting buz/lml33 NTSC profile\n"); } else { WARNING("ignoring unknown filter option " "\"%s\", or missing argument\n", ptr); } ptr = tmp; } while (!last); free(arg); } return 1; } const vf_info_t vf_info_zrmjpeg = { "realtime zoran MJPEG encoding", "zrmjpeg", "Rik Snel", "", open, NULL };