/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** $Id$ **/ #include "common.h" #include "structs.h" #include "output.h" #include "decoder.h" #ifndef FIXED_POINT #include "dither.h" #define ftol(A,B) {tmp = *(int32_t*) & A - 0x4B7F8000; \ B = (int16_t)((tmp==(int16_t)tmp) ? tmp : (tmp>>31)^0x7FFF);} #define ROUND(x) ((x >= 0) ? (int32_t)floor((x) + 0.5) : (int32_t)ceil((x) + 0.5)) #define ROUND32(x) ROUND(x) #define ROUND64(x) (doubletmp = (x) + Dither.Add + (int64_t)0x001FFFFD80000000L, *(int64_t*)(&doubletmp) - (int64_t)0x433FFFFD80000000L) #define FLOAT_SCALE (1.0f/(1<<15)) dither_t Dither; double doubletmp; #define DM_MUL ((real_t)1.0/((real_t)1.0+(real_t)sqrt(2.0))) static INLINE real_t get_sample(real_t **input, uint8_t channel, uint16_t sample, uint8_t downMatrix, uint8_t *internal_channel) { if (downMatrix) { if (channel == 0) { return DM_MUL * (input[internal_channel[1]][sample] + input[internal_channel[0]][sample]/(real_t)sqrt(2.) + input[internal_channel[3]][sample]/(real_t)sqrt(2.)); } else { return DM_MUL * (input[internal_channel[2]][sample] + input[internal_channel[0]][sample]/(real_t)sqrt(2.) + input[internal_channel[4]][sample]/(real_t)sqrt(2.)); } } else { return input[internal_channel[channel]][sample]; } } void* output_to_PCM(faacDecHandle hDecoder, real_t **input, void *sample_buffer, uint8_t channels, uint16_t frame_len, uint8_t format) { uint8_t ch; uint16_t i, j = 0; uint8_t internal_channel; int16_t *short_sample_buffer = (int16_t*)sample_buffer; int32_t *int_sample_buffer = (int32_t*)sample_buffer; float32_t *float_sample_buffer = (float32_t*)sample_buffer; double *double_sample_buffer = (double*)sample_buffer; /* Copy output to a standard PCM buffer */ for (ch = 0; ch < channels; ch++) { internal_channel = hDecoder->internal_channel[ch]; switch (format) { case FAAD_FMT_16BIT: for(i = 0; i < frame_len; i++) { int32_t tmp; real_t ftemp; //real_t inp = input[internal_channel][i]; real_t inp = get_sample(input, ch, i, hDecoder->downMatrix, hDecoder->internal_channel); ftemp = inp + 0xff8000; ftol(ftemp, short_sample_buffer[(i*channels)+ch]); } break; case FAAD_FMT_16BIT_DITHER: for(i = 0; i < frame_len; i++, j++) { //real_t inp = input[internal_channel][i]; real_t inp = get_sample(input, ch, i, hDecoder->downMatrix, hDecoder->internal_channel); double Sum = inp * 65535.f; int64_t val; if(j > 31) j = 0; val = dither_output(1, 0, j, Sum, ch) / 65536; if (val > (1<<15)-1) val = (1<<15)-1; else if (val < -(1<<15)) val = -(1<<15); short_sample_buffer[(i*channels)+ch] = (int16_t)val; } break; case FAAD_FMT_16BIT_L_SHAPE: case FAAD_FMT_16BIT_M_SHAPE: case FAAD_FMT_16BIT_H_SHAPE: for(i = 0; i < frame_len; i++, j++) { //real_t inp = input[internal_channel][i]; real_t inp = get_sample(input, ch, i, hDecoder->downMatrix, hDecoder->internal_channel); double Sum = inp * 65535.f; int64_t val; if(j > 31) j = 0; val = dither_output(1, 1, j, Sum, ch) / 65536; if (val > (1<<15)-1) val = (1<<15)-1; else if (val < -(1<<15)) val = -(1<<15); short_sample_buffer[(i*channels)+ch] = (int16_t)val; } break; case FAAD_FMT_24BIT: for(i = 0; i < frame_len; i++) { //real_t inp = input[internal_channel][i]; real_t inp = get_sample(input, ch, i, hDecoder->downMatrix, hDecoder->internal_channel); if (inp > (1<<15)-1) inp = (1<<15)-1; else if (inp < -(1<<15)) inp = -(1<<15); int_sample_buffer[(i*channels)+ch] = ROUND(inp*(1<<8)); } break; case FAAD_FMT_32BIT: for(i = 0; i < frame_len; i++) { //real_t inp = input[internal_channel][i]; real_t inp = get_sample(input, ch, i, hDecoder->downMatrix, hDecoder->internal_channel); if (inp > (1<<15)-1) inp = (1<<15)-1; else if (inp < -(1<<15)) inp = -(1<<15); int_sample_buffer[(i*channels)+ch] = ROUND32(inp*(1<<16)); } break; case FAAD_FMT_FLOAT: for(i = 0; i < frame_len; i++) { //real_t inp = input[internal_channel][i]; real_t inp = get_sample(input, ch, i, hDecoder->downMatrix, hDecoder->internal_channel); float_sample_buffer[(i*channels)+ch] = inp*FLOAT_SCALE; } break; case FAAD_FMT_DOUBLE: for(i = 0; i < frame_len; i++) { //real_t inp = input[internal_channel][i]; real_t inp = get_sample(input, ch, i, hDecoder->downMatrix, hDecoder->internal_channel); double_sample_buffer[(i*channels)+ch] = (double)inp*FLOAT_SCALE; } break; } } return sample_buffer; } /* Dither output */ static int64_t dither_output(uint8_t dithering, uint8_t shapingtype, uint16_t i, double Sum, uint8_t k) { double Sum2; int64_t val; if(dithering) { if(!shapingtype) { double tmp = Random_Equi(Dither.Dither); Sum2 = tmp - (double)Dither.LastRandomNumber[k]; Dither.LastRandomNumber[k] = (int32_t)tmp; Sum2 = Sum += Sum2; val = ROUND64(Sum2)&Dither.Mask; } else { Sum2 = Random_Triangular(Dither.Dither) - scalar16(Dither.DitherHistory[k], Dither.FilterCoeff + i); Sum += Dither.DitherHistory[k][(-1-i)&15] = (float32_t)Sum2; Sum2 = Sum + scalar16(Dither.ErrorHistory[k], Dither.FilterCoeff + i ); val = ROUND64(Sum2)&Dither.Mask; Dither.ErrorHistory[k][(-1-i)&15] = (float)(Sum - val); } return val; } else return ROUND64 (Sum); } #else void* output_to_PCM(faacDecHandle hDecoder, real_t **input, void *sample_buffer, uint8_t channels, uint16_t frame_len, uint8_t format) { uint8_t ch; uint16_t i; int16_t *short_sample_buffer = (int16_t*)sample_buffer; /* Copy output to a standard PCM buffer */ for (ch = 0; ch < channels; ch++) { for(i = 0; i < frame_len; i++) { int32_t tmp = input[ch][i]; tmp += (1 << (REAL_BITS-1)); tmp >>= REAL_BITS; if (tmp > 0x7fff) tmp = 0x7fff; else if (tmp <= -32768) tmp = -32768; short_sample_buffer[(i*channels)+ch] = (int16_t)tmp; } } return sample_buffer; } #endif