/* * Copyright (C) 2006 Evgeniy Stepanov * * This file is part of libass. * * libass is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * libass is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with libass; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include FT_GLYPH_H #include "ass_utils.h" #include "ass_bitmap.h" struct ass_synth_priv { int tmp_w, tmp_h; unsigned short *tmp; int g_r; int g_w; unsigned *g; unsigned *gt2; double radius; }; static const unsigned int maxcolor = 255; static const unsigned base = 256; static int generate_tables(ASS_SynthPriv *priv, double radius) { double A = log(1.0 / base) / (radius * radius * 2); int mx, i; double volume_diff, volume_factor = 0; unsigned volume; if (priv->radius == radius) return 0; else priv->radius = radius; priv->g_r = ceil(radius); priv->g_w = 2 * priv->g_r + 1; if (priv->g_r) { priv->g = realloc(priv->g, priv->g_w * sizeof(unsigned)); priv->gt2 = realloc(priv->gt2, 256 * priv->g_w * sizeof(unsigned)); if (priv->g == NULL || priv->gt2 == NULL) { return -1; } } if (priv->g_r) { // gaussian curve with volume = 256 for (volume_diff = 10000000; volume_diff > 0.0000001; volume_diff *= 0.5) { volume_factor += volume_diff; volume = 0; for (i = 0; i < priv->g_w; ++i) { priv->g[i] = (unsigned) (exp(A * (i - priv->g_r) * (i - priv->g_r)) * volume_factor + .5); volume += priv->g[i]; } if (volume > 256) volume_factor -= volume_diff; } volume = 0; for (i = 0; i < priv->g_w; ++i) { priv->g[i] = (unsigned) (exp(A * (i - priv->g_r) * (i - priv->g_r)) * volume_factor + .5); volume += priv->g[i]; } // gauss table: for (mx = 0; mx < priv->g_w; mx++) { for (i = 0; i < 256; i++) { priv->gt2[mx + i * priv->g_w] = i * priv->g[mx]; } } } return 0; } static void resize_tmp(ASS_SynthPriv *priv, int w, int h) { if (priv->tmp_w >= w && priv->tmp_h >= h) return; if (priv->tmp_w == 0) priv->tmp_w = 64; if (priv->tmp_h == 0) priv->tmp_h = 64; while (priv->tmp_w < w) priv->tmp_w *= 2; while (priv->tmp_h < h) priv->tmp_h *= 2; if (priv->tmp) free(priv->tmp); priv->tmp = malloc((priv->tmp_w + 1) * priv->tmp_h * sizeof(short)); } ASS_SynthPriv *ass_synth_init(double radius) { ASS_SynthPriv *priv = calloc(1, sizeof(ASS_SynthPriv)); generate_tables(priv, radius); return priv; } void ass_synth_done(ASS_SynthPriv *priv) { if (priv->tmp) free(priv->tmp); if (priv->g) free(priv->g); if (priv->gt2) free(priv->gt2); free(priv); } static Bitmap *alloc_bitmap(int w, int h) { Bitmap *bm; bm = calloc(1, sizeof(Bitmap)); bm->buffer = malloc(w * h); bm->w = w; bm->h = h; bm->left = bm->top = 0; return bm; } void ass_free_bitmap(Bitmap *bm) { if (bm) { if (bm->buffer) free(bm->buffer); free(bm); } } static Bitmap *copy_bitmap(const Bitmap *src) { Bitmap *dst = alloc_bitmap(src->w, src->h); dst->left = src->left; dst->top = src->top; memcpy(dst->buffer, src->buffer, src->w * src->h); return dst; } static int check_glyph_area(ASS_Library *library, FT_Glyph glyph) { FT_BBox bbox; long long dx, dy; FT_Glyph_Get_CBox(glyph, FT_GLYPH_BBOX_TRUNCATE, &bbox); dx = bbox.xMax - bbox.xMin; dy = bbox.yMax - bbox.yMin; if (dx * dy > 8000000) { ass_msg(library, MSGL_WARN, "Glyph bounding box too large: %dx%dpx", (int) dx, (int) dy); return 1; } else return 0; } static Bitmap *glyph_to_bitmap_internal(ASS_Library *library, FT_Glyph glyph, int bord) { FT_BitmapGlyph bg; FT_Bitmap *bit; Bitmap *bm; int w, h; unsigned char *src; unsigned char *dst; int i; int error; if (check_glyph_area(library, glyph)) return 0; error = FT_Glyph_To_Bitmap(&glyph, FT_RENDER_MODE_NORMAL, 0, 0); if (error) { ass_msg(library, MSGL_WARN, "FT_Glyph_To_Bitmap error %d", error); return 0; } bg = (FT_BitmapGlyph) glyph; bit = &(bg->bitmap); if (bit->pixel_mode != FT_PIXEL_MODE_GRAY) { ass_msg(library, MSGL_WARN, "Unsupported pixel mode: %d", (int) (bit->pixel_mode)); FT_Done_Glyph(glyph); return 0; } w = bit->width; h = bit->rows; bm = alloc_bitmap(w + 2 * bord, h + 2 * bord); memset(bm->buffer, 0, bm->w * bm->h); bm->left = bg->left - bord; bm->top = -bg->top - bord; src = bit->buffer; dst = bm->buffer + bord + bm->w * bord; for (i = 0; i < h; ++i) { memcpy(dst, src, w); src += bit->pitch; dst += bm->w; } FT_Done_Glyph(glyph); return bm; } /** * \brief fix outline bitmap * * The glyph bitmap is subtracted from outline bitmap. This way looks much * better in some cases. */ static void fix_outline(Bitmap *bm_g, Bitmap *bm_o) { int x, y; const int l = bm_o->left > bm_g->left ? bm_o->left : bm_g->left; const int t = bm_o->top > bm_g->top ? bm_o->top : bm_g->top; const int r = bm_o->left + bm_o->w < bm_g->left + bm_g->w ? bm_o->left + bm_o->w : bm_g->left + bm_g->w; const int b = bm_o->top + bm_o->h < bm_g->top + bm_g->h ? bm_o->top + bm_o->h : bm_g->top + bm_g->h; unsigned char *g = bm_g->buffer + (t - bm_g->top) * bm_g->w + (l - bm_g->left); unsigned char *o = bm_o->buffer + (t - bm_o->top) * bm_o->w + (l - bm_o->left); for (y = 0; y < b - t; ++y) { for (x = 0; x < r - l; ++x) { unsigned char c_g, c_o; c_g = g[x]; c_o = o[x]; o[x] = (c_o > c_g) ? c_o - (c_g / 2) : 0; } g += bm_g->w; o += bm_o->w; } } /** * \brief Shift a bitmap by the fraction of a pixel in x and y direction * expressed in 26.6 fixed point */ static void shift_bitmap(unsigned char *buf, int w, int h, int shift_x, int shift_y) { int x, y, b; // Shift in x direction if (shift_x > 0) { for (y = 0; y < h; y++) { for (x = w - 1; x > 0; x--) { b = (buf[x + y * w - 1] * shift_x) >> 6; buf[x + y * w - 1] -= b; buf[x + y * w] += b; } } } else if (shift_x < 0) { shift_x = -shift_x; for (y = 0; y < h; y++) { for (x = 0; x < w - 1; x++) { b = (buf[x + y * w + 1] * shift_x) >> 6; buf[x + y * w + 1] -= b; buf[x + y * w] += b; } } } // Shift in y direction if (shift_y > 0) { for (x = 0; x < w; x++) { for (y = h - 1; y > 0; y--) { b = (buf[x + (y - 1) * w] * shift_y) >> 6; buf[x + (y - 1) * w] -= b; buf[x + y * w] += b; } } } else if (shift_y < 0) { shift_y = -shift_y; for (x = 0; x < w; x++) { for (y = 0; y < h - 1; y++) { b = (buf[x + (y + 1) * w] * shift_y) >> 6; buf[x + (y + 1) * w] -= b; buf[x + y * w] += b; } } } } /* * Gaussian blur. An fast pure C implementation from MPlayer. */ static void ass_gauss_blur(unsigned char *buffer, unsigned short *tmp2, int width, int height, int stride, int *m2, int r, int mwidth) { int x, y; unsigned char *s = buffer; unsigned short *t = tmp2 + 1; for (y = 0; y < height; y++) { memset(t - 1, 0, (width + 1) * sizeof(short)); for (x = 0; x < r; x++) { const int src = s[x]; if (src) { register unsigned short *dstp = t + x - r; int mx; unsigned *m3 = (unsigned *) (m2 + src * mwidth); for (mx = r - x; mx < mwidth; mx++) { dstp[mx] += m3[mx]; } } } for (; x < width - r; x++) { const int src = s[x]; if (src) { register unsigned short *dstp = t + x - r; int mx; unsigned *m3 = (unsigned *) (m2 + src * mwidth); for (mx = 0; mx < mwidth; mx++) { dstp[mx] += m3[mx]; } } } for (; x < width; x++) { const int src = s[x]; if (src) { register unsigned short *dstp = t + x - r; int mx; const int x2 = r + width - x; unsigned *m3 = (unsigned *) (m2 + src * mwidth); for (mx = 0; mx < x2; mx++) { dstp[mx] += m3[mx]; } } } s += stride; t += width + 1; } t = tmp2; for (x = 0; x < width; x++) { for (y = 0; y < r; y++) { unsigned short *srcp = t + y * (width + 1) + 1; int src = *srcp; if (src) { register unsigned short *dstp = srcp - 1 + width + 1; const int src2 = (src + 128) >> 8; unsigned *m3 = (unsigned *) (m2 + src2 * mwidth); int mx; *srcp = 128; for (mx = r - 1; mx < mwidth; mx++) { *dstp += m3[mx]; dstp += width + 1; } } } for (; y < height - r; y++) { unsigned short *srcp = t + y * (width + 1) + 1; int src = *srcp; if (src) { register unsigned short *dstp = srcp - 1 - r * (width + 1); const int src2 = (src + 128) >> 8; unsigned *m3 = (unsigned *) (m2 + src2 * mwidth); int mx; *srcp = 128; for (mx = 0; mx < mwidth; mx++) { *dstp += m3[mx]; dstp += width + 1; } } } for (; y < height; y++) { unsigned short *srcp = t + y * (width + 1) + 1; int src = *srcp; if (src) { const int y2 = r + height - y; register unsigned short *dstp = srcp - 1 - r * (width + 1); const int src2 = (src + 128) >> 8; unsigned *m3 = (unsigned *) (m2 + src2 * mwidth); int mx; *srcp = 128; for (mx = 0; mx < y2; mx++) { *dstp += m3[mx]; dstp += width + 1; } } } t++; } t = tmp2; s = buffer; for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { s[x] = t[x] >> 8; } s += stride; t += width + 1; } } /** * \brief Blur with [[1,2,1]. [2,4,2], [1,2,1]] kernel * This blur is the same as the one employed by vsfilter. */ static void be_blur(unsigned char *buf, int w, int h) { unsigned int x, y; unsigned int old_sum, new_sum; for (y = 0; y < h; y++) { old_sum = 2 * buf[y * w]; for (x = 0; x < w - 1; x++) { new_sum = buf[y * w + x] + buf[y * w + x + 1]; buf[y * w + x] = (old_sum + new_sum) >> 2; old_sum = new_sum; } } for (x = 0; x < w; x++) { old_sum = 2 * buf[x]; for (y = 0; y < h - 1; y++) { new_sum = buf[y * w + x] + buf[(y + 1) * w + x]; buf[y * w + x] = (old_sum + new_sum) >> 2; old_sum = new_sum; } } } int glyph_to_bitmap(ASS_Library *library, ASS_SynthPriv *priv_blur, FT_Glyph glyph, FT_Glyph outline_glyph, Bitmap **bm_g, Bitmap **bm_o, Bitmap **bm_s, int be, double blur_radius, FT_Vector shadow_offset, int border_style) { blur_radius *= 2; int bbord = be > 0 ? sqrt(2 * be) : 0; int gbord = blur_radius > 0.0 ? blur_radius + 1 : 0; int bord = FFMAX(bbord, gbord); if (bord == 0 && (shadow_offset.x || shadow_offset.y)) bord = 1; assert(bm_g && bm_o && bm_s); *bm_g = *bm_o = *bm_s = 0; if (glyph) *bm_g = glyph_to_bitmap_internal(library, glyph, bord); if (!*bm_g) return 1; if (outline_glyph) { *bm_o = glyph_to_bitmap_internal(library, outline_glyph, bord); if (!*bm_o) { return 1; } } // Apply box blur (multiple passes, if requested) while (be--) { if (*bm_o) be_blur((*bm_o)->buffer, (*bm_o)->w, (*bm_o)->h); else be_blur((*bm_g)->buffer, (*bm_g)->w, (*bm_g)->h); } // Apply gaussian blur if (blur_radius > 0.0) { if (*bm_o) resize_tmp(priv_blur, (*bm_o)->w, (*bm_o)->h); else resize_tmp(priv_blur, (*bm_g)->w, (*bm_g)->h); generate_tables(priv_blur, blur_radius); if (*bm_o) ass_gauss_blur((*bm_o)->buffer, priv_blur->tmp, (*bm_o)->w, (*bm_o)->h, (*bm_o)->w, (int *) priv_blur->gt2, priv_blur->g_r, priv_blur->g_w); else ass_gauss_blur((*bm_g)->buffer, priv_blur->tmp, (*bm_g)->w, (*bm_g)->h, (*bm_g)->w, (int *) priv_blur->gt2, priv_blur->g_r, priv_blur->g_w); } // Create shadow and fix outline as needed if (*bm_o && border_style != 3) { *bm_s = copy_bitmap(*bm_o); fix_outline(*bm_g, *bm_o); } else if (*bm_o) { *bm_s = copy_bitmap(*bm_o); } else *bm_s = copy_bitmap(*bm_g); assert(bm_s); shift_bitmap((*bm_s)->buffer, (*bm_s)->w,(*bm_s)->h, shadow_offset.x, shadow_offset.y); return 0; }