/* This is an ao2 plugin to do simple decoding of matrixed surround sound. This will provide a (basic) surround-sound effect from audio encoded for Dolby Surround, Pro Logic etc. * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. Original author: Steve Davies */ /* The principle: Make rear channels by extracting anti-phase data from the front channels, delay by 20msec and feed to rear in anti-phase */ // SPLITREAR: Define to decode two distinct rear channels - // this doesn't work so well in practice because // separation in a passive matrix is not high. // C (dialogue) to Ls and Rs 14dB or so - // so dialogue leaks to the rear. // Still - give it a try and send feedback. // comment this define for old behaviour of a single // surround sent to rear in anti-phase #define SPLITREAR #include #include #include #include #include "audio_out.h" #include "audio_plugin.h" #include "audio_plugin_internal.h" #include "afmt.h" #include "remez.h" #include "firfilter.c" static ao_info_t info = { "Surround decoder plugin", "surround", "Steve Davies ", "" }; LIBAO_PLUGIN_EXTERN(surround) // local data typedef struct pl_surround_s { int passthrough; // Just be a "NO-OP" int msecs; // Rear channel delay in milliseconds int16_t* databuf; // Output audio buffer int16_t* Ls_delaybuf; // circular buffer to be used for delaying Ls audio int16_t* Rs_delaybuf; // circular buffer to be used for delaying Rs audio int delaybuf_len; // delaybuf buffer length in samples int delaybuf_pos; // offset in buffer where we are reading/writing double* filter_coefs_surround; // FIR filter coefficients for surround sound 7kHz lowpass int rate; // input data rate int format; // input format int input_channels; // input channels } pl_surround_t; static pl_surround_t pl_surround={0,20,NULL,NULL,NULL,0,0,NULL,0,0,0}; // to set/get/query special features/parameters static int control(int cmd,void *arg){ switch(cmd){ case AOCONTROL_PLUGIN_SET_LEN: if (pl_surround.passthrough) return CONTROL_OK; //fprintf(stderr, "pl_surround: AOCONTROL_PLUGIN_SET_LEN with arg=%d\n", arg); //fprintf(stderr, "pl_surround: ao_plugin_data.len=%d\n", ao_plugin_data.len); // Allocate an output buffer if (pl_surround.databuf != NULL) { free(pl_surround.databuf); pl_surround.databuf = NULL; } // Allocate output buffer pl_surround.databuf = calloc(ao_plugin_data.len, 1); // Return back smaller len so we don't get overflowed... ao_plugin_data.len /= 2; return CONTROL_OK; } return -1; } // open & setup audio device // return: 1=success 0=fail static int init(){ fprintf(stderr, "pl_surround: init input rate=%d, channels=%d\n", ao_plugin_data.rate, ao_plugin_data.channels); if (ao_plugin_data.channels != 2) { fprintf(stderr, "pl_surround: source audio must have 2 channels, using passthrough mode\n"); pl_surround.passthrough = 1; return 1; } if (ao_plugin_data.format != AFMT_S16_NE) { fprintf(stderr, "pl_surround: I'm dumb and can only handle AFMT_S16_NE audio format, using passthrough mode\n"); pl_surround.passthrough = 1; return 1; } pl_surround.passthrough = 0; /* Store info on input format to expect */ pl_surround.rate=ao_plugin_data.rate; pl_surround.format=ao_plugin_data.format; pl_surround.input_channels=ao_plugin_data.channels; // Input 2 channels, output will be 4 - tell ao_plugin ao_plugin_data.channels = 4; ao_plugin_data.sz_mult /= 2; // Figure out buffer space (in int16_ts) needed for the 15msec delay // Extra 31 samples allow for lowpass filter delay (taps-1) pl_surround.delaybuf_len = (pl_surround.rate * pl_surround.msecs / 1000) + 31; // Allocate delay buffers pl_surround.Ls_delaybuf=(void*)calloc(pl_surround.delaybuf_len,sizeof(int16_t)); pl_surround.Rs_delaybuf=(void*)calloc(pl_surround.delaybuf_len,sizeof(int16_t)); fprintf(stderr, "pl_surround: %dmsec surround delay, rate %d - buffers are %d bytes each\n", pl_surround.msecs,pl_surround.rate, pl_surround.delaybuf_len*sizeof(int16_t)); pl_surround.delaybuf_pos = 0; // Surround filer coefficients pl_surround.filter_coefs_surround = calc_coefficients_7kHz_lowpass(pl_surround.rate); //dump_filter_coefficients(pl_surround.filter_coefs_surround); //testfilter(pl_surround.filter_coefs_surround, 32, pl_surround.rate); return 1; } // close plugin static void uninit(){ // fprintf(stderr, "pl_surround: uninit called!\n"); if (pl_surround.passthrough) return; if(pl_surround.Ls_delaybuf) free(pl_surround.Ls_delaybuf); if(pl_surround.Rs_delaybuf) free(pl_surround.Rs_delaybuf); if(pl_surround.databuf) { free(pl_surround.databuf); pl_surround.databuf = NULL; } pl_surround.delaybuf_len=0; } // empty buffers static void reset() { if (pl_surround.passthrough) return; //fprintf(stderr, "pl_surround: reset called\n"); pl_surround.delaybuf_pos = 0; memset(pl_surround.Ls_delaybuf, 0, sizeof(int16_t)*pl_surround.delaybuf_len); memset(pl_surround.Rs_delaybuf, 0, sizeof(int16_t)*pl_surround.delaybuf_len); } // The beginnings of an active matrix... static double steering_matrix[][12] = { // LL RL LR RR LS RS LLs RLs LRs RRs LC RC {.707, .0, .0, .707, .5, -.5, .5878, -.3928, .3928, -.5878, .5, .5}, }; // Experimental moving average dominances //static int amp_L = 0, amp_R = 0, amp_C = 0, amp_S = 0; // processes 'ao_plugin_data.len' bytes of 'data' // called for every block of data static int play(){ int16_t *in, *out; int i, samples; double *matrix = steering_matrix[0]; // later we'll index based on detected dominance if (pl_surround.passthrough) return 1; // fprintf(stderr, "pl_surround: play %d bytes, %d samples\n", ao_plugin_data.len, samples); samples = ao_plugin_data.len / sizeof(int16_t) / pl_surround.input_channels; out = pl_surround.databuf; in = (int16_t *)ao_plugin_data.data; // Testing - place a 1kHz tone on Lt and Rt in anti-phase: should decode in S //sinewave(in, samples, pl_surround.input_channels, 1000, 0.0, pl_surround.rate); //sinewave(&in[1], samples, pl_surround.input_channels, 1000, PI, pl_surround.rate); for (i=0; i