/* * parse.c * Copyright (C) 2000-2001 Michel Lespinasse * Copyright (C) 1999-2000 Aaron Holtzman * * This file is part of a52dec, a free ATSC A-52 stream decoder. * See http://liba52.sourceforge.net/ for updates. * * a52dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * a52dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include #include #include #include "a52.h" #include "a52_internal.h" #include "bitstream.h" #include "tables.h" #ifdef HAVE_MEMALIGN /* some systems have memalign() but no declaration for it */ void * memalign (size_t align, size_t size); #endif typedef struct { sample_t q1[2]; sample_t q2[2]; sample_t q4; int q1_ptr; int q2_ptr; int q4_ptr; } quantizer_t; static uint8_t halfrate[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3}; sample_t * a52_init (uint32_t mm_accel) { sample_t * samples; int i; imdct_init (mm_accel); downmix_accel_init(mm_accel); samples = memalign (16, 256 * 12 * sizeof (sample_t)); if (samples == NULL) return NULL; for (i = 0; i < 256 * 12; i++) samples[i] = 0; return samples; } int a52_syncinfo (uint8_t * buf, int * flags, int * sample_rate, int * bit_rate) { static int rate[] = { 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 576, 640}; static uint8_t lfeon[8] = {0x10, 0x10, 0x04, 0x04, 0x04, 0x01, 0x04, 0x01}; int frmsizecod; int bitrate; int half; int acmod; if ((buf[0] != 0x0b) || (buf[1] != 0x77)) /* syncword */ return 0; if (buf[5] >= 0x60) /* bsid >= 12 */ return 0; half = halfrate[buf[5] >> 3]; /* acmod, dsurmod and lfeon */ acmod = buf[6] >> 5; *flags = ((((buf[6] & 0xf8) == 0x50) ? A52_DOLBY : acmod) | ((buf[6] & lfeon[acmod]) ? A52_LFE : 0)); frmsizecod = buf[4] & 63; if (frmsizecod >= 38) return 0; bitrate = rate [frmsizecod >> 1]; *bit_rate = (bitrate * 1000) >> half; switch (buf[4] & 0xc0) { case 0: /* 48 KHz */ *sample_rate = 48000 >> half; return 4 * bitrate; case 0x40: *sample_rate = 44100 >> half; return 2 * (320 * bitrate / 147 + (frmsizecod & 1)); case 0x80: *sample_rate = 32000 >> half; return 6 * bitrate; default: return 0; } } int a52_frame (a52_state_t * state, uint8_t * buf, int * flags, sample_t * level, sample_t bias) { static sample_t clev[4] = {LEVEL_3DB, LEVEL_45DB, LEVEL_6DB, LEVEL_45DB}; static sample_t slev[4] = {LEVEL_3DB, LEVEL_6DB, 0, LEVEL_6DB}; int chaninfo; int acmod; state->fscod = buf[4] >> 6; state->halfrate = halfrate[buf[5] >> 3]; state->acmod = acmod = buf[6] >> 5; bitstream_set_ptr (buf + 6); bitstream_skip (3); /* skip acmod we already parsed */ if ((acmod == 2) && (bitstream_get (2) == 2)) /* dsurmod */ acmod = A52_DOLBY; if ((acmod & 1) && (acmod != 1)) state->clev = clev[bitstream_get (2)]; /* cmixlev */ if (acmod & 4) state->slev = slev[bitstream_get (2)]; /* surmixlev */ state->lfeon = bitstream_get (1); state->output = downmix_init (acmod, *flags, level, state->clev, state->slev); if (state->output < 0) return 1; if (state->lfeon && (*flags & A52_LFE)) state->output |= A52_LFE; *flags = state->output; /* the 2* compensates for differences in imdct */ state->dynrng = state->level = 2 * *level; state->bias = bias; state->dynrnge = 1; state->dynrngcall = NULL; chaninfo = !acmod; do { bitstream_skip (5); /* dialnorm */ if (bitstream_get (1)) /* compre */ bitstream_skip (8); /* compr */ if (bitstream_get (1)) /* langcode */ bitstream_skip (8); /* langcod */ if (bitstream_get (1)) /* audprodie */ bitstream_skip (7); /* mixlevel + roomtyp */ } while (chaninfo--); bitstream_skip (2); /* copyrightb + origbs */ if (bitstream_get (1)) /* timecod1e */ bitstream_skip (14); /* timecod1 */ if (bitstream_get (1)) /* timecod2e */ bitstream_skip (14); /* timecod2 */ if (bitstream_get (1)) { /* addbsie */ int addbsil; addbsil = bitstream_get (6); do { bitstream_skip (8); /* addbsi */ } while (addbsil--); } return 0; } void a52_dynrng (a52_state_t * state, sample_t (* call) (sample_t, void *), void * data) { state->dynrnge = 0; if (call) { state->dynrnge = 1; state->dynrngcall = call; state->dynrngdata = data; } } static int parse_exponents (int expstr, int ngrps, uint8_t exponent, uint8_t * dest) { int exps; while (ngrps--) { exps = bitstream_get (7); exponent += exp_1[exps]; if (exponent > 24) return 1; switch (expstr) { case EXP_D45: *(dest++) = exponent; *(dest++) = exponent; case EXP_D25: *(dest++) = exponent; case EXP_D15: *(dest++) = exponent; } exponent += exp_2[exps]; if (exponent > 24) return 1; switch (expstr) { case EXP_D45: *(dest++) = exponent; *(dest++) = exponent; case EXP_D25: *(dest++) = exponent; case EXP_D15: *(dest++) = exponent; } exponent += exp_3[exps]; if (exponent > 24) return 1; switch (expstr) { case EXP_D45: *(dest++) = exponent; *(dest++) = exponent; case EXP_D25: *(dest++) = exponent; case EXP_D15: *(dest++) = exponent; } } return 0; } static int parse_deltba (int8_t * deltba) { int deltnseg, deltlen, delta, j; memset (deltba, 0, 50); deltnseg = bitstream_get (3); j = 0; do { j += bitstream_get (5); deltlen = bitstream_get (4); delta = bitstream_get (3); delta -= (delta >= 4) ? 3 : 4; if (!deltlen) continue; if (j + deltlen >= 50) return 1; while (deltlen--) deltba[j++] = delta; } while (deltnseg--); return 0; } static inline int zero_snr_offsets (int nfchans, a52_state_t * state) { int i; if ((state->csnroffst) || (state->cplinu && state->cplba.fsnroffst) || (state->lfeon && state->lfeba.fsnroffst)) return 0; for (i = 0; i < nfchans; i++) if (state->ba[i].fsnroffst) return 0; return 1; } static inline int16_t dither_gen (void) { static uint16_t lfsr_state = 1; int16_t state; state = dither_lut[lfsr_state >> 8] ^ (lfsr_state << 8); lfsr_state = (uint16_t) state; return state; } static void coeff_get (sample_t * coeff, uint8_t * exp, int8_t * bap, quantizer_t * quantizer, sample_t level, int dither, int end) { int i; sample_t factor[25]; for (i = 0; i <= 24; i++) factor[i] = scale_factor[i] * level; for (i = 0; i < end; i++) { int bapi; bapi = bap[i]; switch (bapi) { case 0: if (dither) { coeff[i] = dither_gen() * LEVEL_3DB * factor[exp[i]]; continue; } else { coeff[i] = 0; continue; } case -1: if (quantizer->q1_ptr >= 0) { coeff[i] = quantizer->q1[quantizer->q1_ptr--] * factor[exp[i]]; continue; } else { int code; code = bitstream_get (5); quantizer->q1_ptr = 1; quantizer->q1[0] = q_1_2[code]; quantizer->q1[1] = q_1_1[code]; coeff[i] = q_1_0[code] * factor[exp[i]]; continue; } case -2: if (quantizer->q2_ptr >= 0) { coeff[i] = quantizer->q2[quantizer->q2_ptr--] * factor[exp[i]]; continue; } else { int code; code = bitstream_get (7); quantizer->q2_ptr = 1; quantizer->q2[0] = q_2_2[code]; quantizer->q2[1] = q_2_1[code]; coeff[i] = q_2_0[code] * factor[exp[i]]; continue; } case 3: coeff[i] = q_3[bitstream_get (3)] * factor[exp[i]]; continue; case -3: if (quantizer->q4_ptr == 0) { quantizer->q4_ptr = -1; coeff[i] = quantizer->q4 * factor[exp[i]]; continue; } else { int code; code = bitstream_get (7); quantizer->q4_ptr = 0; quantizer->q4 = q_4_1[code]; coeff[i] = q_4_0[code] * factor[exp[i]]; continue; } case 4: coeff[i] = q_5[bitstream_get (4)] * factor[exp[i]]; continue; default: coeff[i] = ((bitstream_get_2 (bapi) << (16 - bapi)) * factor[exp[i]]); } } } static void coeff_get_coupling (a52_state_t * state, int nfchans, sample_t * coeff, sample_t (* samples)[256], quantizer_t * quantizer, uint8_t dithflag[5]) { int sub_bnd, bnd, i, i_end, ch; int8_t * bap; uint8_t * exp; sample_t cplco[5]; bap = state->cpl_bap; exp = state->cpl_exp; sub_bnd = bnd = 0; i = state->cplstrtmant; while (i < state->cplendmant) { i_end = i + 12; while (state->cplbndstrc[sub_bnd++]) i_end += 12; for (ch = 0; ch < nfchans; ch++) cplco[ch] = state->cplco[ch][bnd] * coeff[ch]; bnd++; while (i < i_end) { sample_t cplcoeff; int bapi; bapi = bap[i]; switch (bapi) { case 0: cplcoeff = LEVEL_3DB * scale_factor[exp[i]]; for (ch = 0; ch < nfchans; ch++) if (state->chincpl[ch]) { if (dithflag[ch]) samples[ch][i] = (cplcoeff * cplco[ch] * dither_gen ()); else samples[ch][i] = 0; } i++; continue; case -1: if (quantizer->q1_ptr >= 0) { cplcoeff = quantizer->q1[quantizer->q1_ptr--]; break; } else { int code; code = bitstream_get (5); quantizer->q1_ptr = 1; quantizer->q1[0] = q_1_2[code]; quantizer->q1[1] = q_1_1[code]; cplcoeff = q_1_0[code]; break; } case -2: if (quantizer->q2_ptr >= 0) { cplcoeff = quantizer->q2[quantizer->q2_ptr--]; break; } else { int code; code = bitstream_get (7); quantizer->q2_ptr = 1; quantizer->q2[0] = q_2_2[code]; quantizer->q2[1] = q_2_1[code]; cplcoeff = q_2_0[code]; break; } case 3: cplcoeff = q_3[bitstream_get (3)]; break; case -3: if (quantizer->q4_ptr == 0) { quantizer->q4_ptr = -1; cplcoeff = quantizer->q4; break; } else { int code; code = bitstream_get (7); quantizer->q4_ptr = 0; quantizer->q4 = q_4_1[code]; cplcoeff = q_4_0[code]; break; } case 4: cplcoeff = q_5[bitstream_get (4)]; break; default: cplcoeff = bitstream_get_2 (bapi) << (16 - bapi); } cplcoeff *= scale_factor[exp[i]]; for (ch = 0; ch < nfchans; ch++) if (state->chincpl[ch]) samples[ch][i] = cplcoeff * cplco[ch]; i++; } } } int a52_block (a52_state_t * state, sample_t * samples) { static const uint8_t nfchans_tbl[] = {2, 1, 2, 3, 3, 4, 4, 5, 1, 1, 2}; static int rematrix_band[4] = {25, 37, 61, 253}; int i, nfchans, chaninfo; uint8_t cplexpstr, chexpstr[5], lfeexpstr, do_bit_alloc, done_cpl; uint8_t blksw[5], dithflag[5]; sample_t coeff[5]; int chanbias; quantizer_t quantizer; nfchans = nfchans_tbl[state->acmod]; for (i = 0; i < nfchans; i++) blksw[i] = bitstream_get (1); for (i = 0; i < nfchans; i++) dithflag[i] = bitstream_get (1); chaninfo = !(state->acmod); do { if (bitstream_get (1)) { /* dynrnge */ int dynrng; dynrng = bitstream_get_2 (8); if (state->dynrnge) { sample_t range; range = ((((dynrng & 0x1f) | 0x20) << 13) * scale_factor[3 - (dynrng >> 5)]); if (state->dynrngcall) range = state->dynrngcall (range, state->dynrngdata); state->dynrng = state->level * range; } } } while (chaninfo--); if (bitstream_get (1)) { /* cplstre */ state->cplinu = bitstream_get (1); if (state->cplinu) { static int bndtab[16] = {31, 35, 37, 39, 41, 42, 43, 44, 45, 45, 46, 46, 47, 47, 48, 48}; int cplbegf; int cplendf; int ncplsubnd; for (i = 0; i < nfchans; i++) state->chincpl[i] = bitstream_get (1); switch (state->acmod) { case 0: case 1: return 1; case 2: state->phsflginu = bitstream_get (1); } cplbegf = bitstream_get (4); cplendf = bitstream_get (4); if (cplendf + 3 - cplbegf < 0) return 1; state->ncplbnd = ncplsubnd = cplendf + 3 - cplbegf; state->cplstrtbnd = bndtab[cplbegf]; state->cplstrtmant = cplbegf * 12 + 37; state->cplendmant = cplendf * 12 + 73; for (i = 0; i < ncplsubnd - 1; i++) { state->cplbndstrc[i] = bitstream_get (1); state->ncplbnd -= state->cplbndstrc[i]; } state->cplbndstrc[i] = 0; /* last value is a sentinel */ } } if (state->cplinu) { int j, cplcoe; cplcoe = 0; for (i = 0; i < nfchans; i++) if (state->chincpl[i]) if (bitstream_get (1)) { /* cplcoe */ int mstrcplco, cplcoexp, cplcomant; cplcoe = 1; mstrcplco = 3 * bitstream_get (2); for (j = 0; j < state->ncplbnd; j++) { cplcoexp = bitstream_get (4); cplcomant = bitstream_get (4); if (cplcoexp == 15) cplcomant <<= 14; else cplcomant = (cplcomant | 0x10) << 13; state->cplco[i][j] = cplcomant * scale_factor[cplcoexp + mstrcplco]; } } if ((state->acmod == 2) && state->phsflginu && cplcoe) for (j = 0; j < state->ncplbnd; j++) if (bitstream_get (1)) /* phsflg */ state->cplco[1][j] = -state->cplco[1][j]; } if ((state->acmod == 2) && (bitstream_get (1))) { /* rematstr */ int end; end = (state->cplinu) ? state->cplstrtmant : 253; i = 0; do state->rematflg[i] = bitstream_get (1); while (rematrix_band[i++] < end); } cplexpstr = EXP_REUSE; lfeexpstr = EXP_REUSE; if (state->cplinu) cplexpstr = bitstream_get (2); for (i = 0; i < nfchans; i++) chexpstr[i] = bitstream_get (2); if (state->lfeon) lfeexpstr = bitstream_get (1); for (i = 0; i < nfchans; i++) if (chexpstr[i] != EXP_REUSE) { if (state->cplinu && state->chincpl[i]) state->endmant[i] = state->cplstrtmant; else { int chbwcod; chbwcod = bitstream_get (6); if (chbwcod > 60) return 1; state->endmant[i] = chbwcod * 3 + 73; } } do_bit_alloc = 0; if (cplexpstr != EXP_REUSE) { int cplabsexp, ncplgrps; do_bit_alloc = 64; ncplgrps = ((state->cplendmant - state->cplstrtmant) / (3 << (cplexpstr - 1))); cplabsexp = bitstream_get (4) << 1; if (parse_exponents (cplexpstr, ncplgrps, cplabsexp, state->cpl_exp + state->cplstrtmant)) return 1; } for (i = 0; i < nfchans; i++) if (chexpstr[i] != EXP_REUSE) { int grp_size, nchgrps; do_bit_alloc |= 1 << i; grp_size = 3 << (chexpstr[i] - 1); nchgrps = (state->endmant[i] + grp_size - 4) / grp_size; state->fbw_exp[i][0] = bitstream_get (4); if (parse_exponents (chexpstr[i], nchgrps, state->fbw_exp[i][0], state->fbw_exp[i] + 1)) return 1; bitstream_skip (2); /* gainrng */ } if (lfeexpstr != EXP_REUSE) { do_bit_alloc |= 32; state->lfe_exp[0] = bitstream_get (4); if (parse_exponents (lfeexpstr, 2, state->lfe_exp[0], state->lfe_exp + 1)) return 1; } if (bitstream_get (1)) { /* baie */ do_bit_alloc = -1; state->sdcycod = bitstream_get (2); state->fdcycod = bitstream_get (2); state->sgaincod = bitstream_get (2); state->dbpbcod = bitstream_get (2); state->floorcod = bitstream_get (3); } if (bitstream_get (1)) { /* snroffste */ do_bit_alloc = -1; state->csnroffst = bitstream_get (6); if (state->cplinu) { state->cplba.fsnroffst = bitstream_get (4); state->cplba.fgaincod = bitstream_get (3); } for (i = 0; i < nfchans; i++) { state->ba[i].fsnroffst = bitstream_get (4); state->ba[i].fgaincod = bitstream_get (3); } if (state->lfeon) { state->lfeba.fsnroffst = bitstream_get (4); state->lfeba.fgaincod = bitstream_get (3); } } if ((state->cplinu) && (bitstream_get (1))) { /* cplleake */ do_bit_alloc |= 64; state->cplfleak = 2304 - (bitstream_get (3) << 8); state->cplsleak = 2304 - (bitstream_get (3) << 8); } if (bitstream_get (1)) { /* deltbaie */ do_bit_alloc = -1; if (state->cplinu) state->cplba.deltbae = bitstream_get (2); for (i = 0; i < nfchans; i++) state->ba[i].deltbae = bitstream_get (2); if (state->cplinu && (state->cplba.deltbae == DELTA_BIT_NEW) && parse_deltba (state->cplba.deltba)) return 1; for (i = 0; i < nfchans; i++) if ((state->ba[i].deltbae == DELTA_BIT_NEW) && parse_deltba (state->ba[i].deltba)) return 1; } if (do_bit_alloc) { if (zero_snr_offsets (nfchans, state)) { memset (state->cpl_bap, 0, sizeof (state->cpl_bap)); memset (state->fbw_bap, 0, sizeof (state->fbw_bap)); memset (state->lfe_bap, 0, sizeof (state->lfe_bap)); } else { if (state->cplinu && (do_bit_alloc & 64)) bit_allocate (state, &state->cplba, state->cplstrtbnd, state->cplstrtmant, state->cplendmant, state->cplfleak, state->cplsleak, state->cpl_exp, state->cpl_bap); for (i = 0; i < nfchans; i++) if (do_bit_alloc & (1 << i)) bit_allocate (state, state->ba + i, 0, 0, state->endmant[i], 0, 0, state->fbw_exp[i], state->fbw_bap[i]); if (state->lfeon && (do_bit_alloc & 32)) { state->lfeba.deltbae = DELTA_BIT_NONE; bit_allocate (state, &state->lfeba, 0, 0, 7, 0, 0, state->lfe_exp, state->lfe_bap); } } } if (bitstream_get (1)) { /* skiple */ i = bitstream_get (9); /* skipl */ while (i--) bitstream_skip (8); } if (state->output & A52_LFE) samples += 256; /* shift for LFE channel */ chanbias = downmix_coeff (coeff, state->acmod, state->output, state->dynrng, state->clev, state->slev); quantizer.q1_ptr = quantizer.q2_ptr = quantizer.q4_ptr = -1; done_cpl = 0; for (i = 0; i < nfchans; i++) { int j; coeff_get (samples + 256 * i, state->fbw_exp[i], state->fbw_bap[i], &quantizer, coeff[i], dithflag[i], state->endmant[i]); if (state->cplinu && state->chincpl[i]) { if (!done_cpl) { done_cpl = 1; coeff_get_coupling (state, nfchans, coeff, (sample_t (*)[256])samples, &quantizer, dithflag); } j = state->cplendmant; } else j = state->endmant[i]; do (samples + 256 * i)[j] = 0; while (++j < 256); } if (state->acmod == 2) { int j, end, band; end = ((state->endmant[0] < state->endmant[1]) ? state->endmant[0] : state->endmant[1]); i = 0; j = 13; do { if (!state->rematflg[i]) { j = rematrix_band[i++]; continue; } band = rematrix_band[i++]; if (band > end) band = end; do { sample_t tmp0, tmp1; tmp0 = samples[j]; tmp1 = (samples+256)[j]; samples[j] = tmp0 + tmp1; (samples+256)[j] = tmp0 - tmp1; } while (++j < band); } while (j < end); } if (state->lfeon) { if (state->output & A52_LFE) { coeff_get (samples - 256, state->lfe_exp, state->lfe_bap, &quantizer, state->dynrng, 0, 7); for (i = 7; i < 256; i++) (samples-256)[i] = 0; imdct_512 (samples - 256, samples + 1536 - 256, state->bias); } else { /* just skip the LFE coefficients */ coeff_get (samples + 1280, state->lfe_exp, state->lfe_bap, &quantizer, 0, 0, 7); } } i = 0; if (nfchans_tbl[state->output & A52_CHANNEL_MASK] < nfchans) for (i = 1; i < nfchans; i++) if (blksw[i] != blksw[0]) break; if (i < nfchans) { if (samples[2 * 1536 - 1] == (sample_t)0x776b6e21) { samples[2 * 1536 - 1] = 0; upmix (samples + 1536, state->acmod, state->output); } for (i = 0; i < nfchans; i++) { sample_t bias; bias = 0; if (!(chanbias & (1 << i))) bias = state->bias; if (coeff[i]) { if (blksw[i]) imdct_256 (samples + 256 * i, samples + 1536 + 256 * i, bias); else imdct_512 (samples + 256 * i, samples + 1536 + 256 * i, bias); } else { int j; for (j = 0; j < 256; j++) (samples + 256 * i)[j] = bias; } } downmix (samples, state->acmod, state->output, state->bias, state->clev, state->slev); } else { nfchans = nfchans_tbl[state->output & A52_CHANNEL_MASK]; downmix (samples, state->acmod, state->output, 0, state->clev, state->slev); if (samples[2 * 1536 - 1] != (sample_t)0x776b6e21) { downmix (samples + 1536, state->acmod, state->output, 0, state->clev, state->slev); samples[2 * 1536 - 1] = (sample_t)0x776b6e21; } if (blksw[0]) for (i = 0; i < nfchans; i++) imdct_256 (samples + 256 * i, samples + 1536 + 256 * i, state->bias); else for (i = 0; i < nfchans; i++) imdct_512 (samples + 256 * i, samples + 1536 + 256 * i, state->bias); } return 0; }