/* * parse.c * Copyright (C) 2000-2002 Michel Lespinasse * Copyright (C) 1999-2000 Aaron Holtzman * * This file is part of a52dec, a free ATSC A-52 stream decoder. * See http://liba52.sourceforge.net/ for updates. * * Modified for use with MPlayer, changes contained in liba52_changes.diff. * detailed changelog at http://svn.mplayerhq.hu/mplayer/trunk/ * $Id$ * * a52dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * a52dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include #include #include #include #include "a52.h" #include "a52_internal.h" #include "bitstream.h" #include "tables.h" #include "mm_accel.h" #include "libavutil/avutil.h" #if HAVE_MEMALIGN /* some systems have memalign() but no declaration for it */ void * memalign (size_t align, size_t size); #endif typedef struct { sample_t q1[2]; sample_t q2[2]; sample_t q4; int q1_ptr; int q2_ptr; int q4_ptr; } quantizer_t; static uint8_t halfrate[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3}; a52_state_t * a52_init (uint32_t mm_accel) { a52_state_t * state; int i; state = malloc (sizeof (a52_state_t)); if (state == NULL) return NULL; #if defined(__MINGW32__) && defined(HAVE_SSE) state->samples = av_malloc(256 * 12 * sizeof (sample_t)); #else state->samples = memalign (16, 256 * 12 * sizeof (sample_t)); #endif if(((int)state->samples%16) && (mm_accel&MM_ACCEL_X86_SSE)){ mm_accel &=~MM_ACCEL_X86_SSE; fprintf(stderr, "liba52: unable to get 16 byte aligned memory disabling usage of SSE instructions\n"); } if (state->samples == NULL) { free (state); return NULL; } for (i = 0; i < 256 * 12; i++) state->samples[i] = 0; state->downmixed = 1; state->lfsr_state = 1; a52_imdct_init (mm_accel); downmix_accel_init(mm_accel); return state; } sample_t * a52_samples (a52_state_t * state) { return state->samples; } int a52_syncinfo (uint8_t * buf, int * flags, int * sample_rate, int * bit_rate) { static int rate[] = { 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 576, 640}; static uint8_t lfeon[8] = {0x10, 0x10, 0x04, 0x04, 0x04, 0x01, 0x04, 0x01}; int frmsizecod; int bitrate; int half; int acmod; if ((buf[0] != 0x0b) || (buf[1] != 0x77)) /* syncword */ return 0; if (buf[5] >= 0x60) /* bsid >= 12 */ return 0; half = halfrate[buf[5] >> 3]; /* acmod, dsurmod and lfeon */ acmod = buf[6] >> 5; *flags = ((((buf[6] & 0xf8) == 0x50) ? A52_DOLBY : acmod) | ((buf[6] & lfeon[acmod]) ? A52_LFE : 0)); frmsizecod = buf[4] & 63; if (frmsizecod >= 38) return 0; bitrate = rate [frmsizecod >> 1]; *bit_rate = (bitrate * 1000) >> half; switch (buf[4] & 0xc0) { case 0: *sample_rate = 48000 >> half; return 4 * bitrate; case 0x40: *sample_rate = 44100 >> half; return 2 * (320 * bitrate / 147 + (frmsizecod & 1)); case 0x80: *sample_rate = 32000 >> half; return 6 * bitrate; default: return 0; } } int a52_frame (a52_state_t * state, uint8_t * buf, int * flags, sample_t * level, sample_t bias) { static sample_t clev[4] = {LEVEL_3DB, LEVEL_45DB, LEVEL_6DB, LEVEL_45DB}; static sample_t slev[4] = {LEVEL_3DB, LEVEL_6DB, 0, LEVEL_6DB}; int chaninfo; int acmod; state->fscod = buf[4] >> 6; state->halfrate = halfrate[buf[5] >> 3]; state->acmod = acmod = buf[6] >> 5; a52_bitstream_set_ptr (state, buf + 6); bitstream_skip (state, 3); /* skip acmod we already parsed */ if ((acmod == 2) && (bitstream_get (state, 2) == 2)) /* dsurmod */ acmod = A52_DOLBY; if ((acmod & 1) && (acmod != 1)) state->clev = clev[bitstream_get (state, 2)]; /* cmixlev */ if (acmod & 4) state->slev = slev[bitstream_get (state, 2)]; /* surmixlev */ state->lfeon = bitstream_get (state, 1); state->output = a52_downmix_init (acmod, *flags, level, state->clev, state->slev); if (state->output < 0) return 1; if (state->lfeon && (*flags & A52_LFE)) state->output |= A52_LFE; *flags = state->output; /* the 2* compensates for differences in imdct */ state->dynrng = state->level = 2 * *level; state->bias = bias; state->dynrnge = 1; state->dynrngcall = NULL; state->cplba.deltbae = DELTA_BIT_NONE; state->ba[0].deltbae = state->ba[1].deltbae = state->ba[2].deltbae = state->ba[3].deltbae = state->ba[4].deltbae = DELTA_BIT_NONE; chaninfo = !acmod; do { bitstream_skip (state, 5); /* dialnorm */ if (bitstream_get (state, 1)) /* compre */ bitstream_skip (state, 8); /* compr */ if (bitstream_get (state, 1)) /* langcode */ bitstream_skip (state, 8); /* langcod */ if (bitstream_get (state, 1)) /* audprodie */ bitstream_skip (state, 7); /* mixlevel + roomtyp */ } while (chaninfo--); bitstream_skip (state, 2); /* copyrightb + origbs */ if (bitstream_get (state, 1)) /* timecod1e */ bitstream_skip (state, 14); /* timecod1 */ if (bitstream_get (state, 1)) /* timecod2e */ bitstream_skip (state, 14); /* timecod2 */ if (bitstream_get (state, 1)) { /* addbsie */ int addbsil; addbsil = bitstream_get (state, 6); do { bitstream_skip (state, 8); /* addbsi */ } while (addbsil--); } return 0; } void a52_dynrng (a52_state_t * state, sample_t (* call) (sample_t, void *), void * data) { state->dynrnge = 0; if (call) { state->dynrnge = 1; state->dynrngcall = call; state->dynrngdata = data; } } static int parse_exponents (a52_state_t * state, int expstr, int ngrps, uint8_t exponent, uint8_t * dest) { int exps; while (ngrps--) { exps = bitstream_get (state, 7); exponent += exp_1[exps]; if (exponent > 24) return 1; switch (expstr) { case EXP_D45: *(dest++) = exponent; *(dest++) = exponent; case EXP_D25: *(dest++) = exponent; case EXP_D15: *(dest++) = exponent; } exponent += exp_2[exps]; if (exponent > 24) return 1; switch (expstr) { case EXP_D45: *(dest++) = exponent; *(dest++) = exponent; case EXP_D25: *(dest++) = exponent; case EXP_D15: *(dest++) = exponent; } exponent += exp_3[exps]; if (exponent > 24) return 1; switch (expstr) { case EXP_D45: *(dest++) = exponent; *(dest++) = exponent; case EXP_D25: *(dest++) = exponent; case EXP_D15: *(dest++) = exponent; } } return 0; } static int parse_deltba (a52_state_t * state, int8_t * deltba) { int deltnseg, deltlen, delta, j; memset (deltba, 0, 50); deltnseg = bitstream_get (state, 3); j = 0; do { j += bitstream_get (state, 5); deltlen = bitstream_get (state, 4); delta = bitstream_get (state, 3); delta -= (delta >= 4) ? 3 : 4; if (!deltlen) continue; if (j + deltlen >= 50) return 1; while (deltlen--) deltba[j++] = delta; } while (deltnseg--); return 0; } static inline int zero_snr_offsets (int nfchans, a52_state_t * state) { int i; if ((state->csnroffst) || (state->chincpl && state->cplba.bai >> 3) || /* cplinu, fsnroffst */ (state->lfeon && state->lfeba.bai >> 3)) /* fsnroffst */ return 0; for (i = 0; i < nfchans; i++) if (state->ba[i].bai >> 3) /* fsnroffst */ return 0; return 1; } static inline int16_t dither_gen (a52_state_t * state) { int16_t nstate; nstate = dither_lut[state->lfsr_state >> 8] ^ (state->lfsr_state << 8); state->lfsr_state = (uint16_t) nstate; return nstate; } static void coeff_get (a52_state_t * state, sample_t * coeff, expbap_t * expbap, quantizer_t * quantizer, sample_t level, int dither, int end) { int i; uint8_t * exp; int8_t * bap; sample_t factor[25]; for (i = 0; i <= 24; i++) factor[i] = scale_factor[i] * level; exp = expbap->exp; bap = expbap->bap; for (i = 0; i < end; i++) { int bapi; bapi = bap[i]; switch (bapi) { case 0: if (dither) { coeff[i] = dither_gen (state) * LEVEL_3DB * factor[exp[i]]; continue; } else { coeff[i] = 0; continue; } case -1: if (quantizer->q1_ptr >= 0) { coeff[i] = quantizer->q1[quantizer->q1_ptr--] * factor[exp[i]]; continue; } else { int code; code = bitstream_get (state, 5); quantizer->q1_ptr = 1; quantizer->q1[0] = q_1_2[code]; quantizer->q1[1] = q_1_1[code]; coeff[i] = q_1_0[code] * factor[exp[i]]; continue; } case -2: if (quantizer->q2_ptr >= 0) { coeff[i] = quantizer->q2[quantizer->q2_ptr--] * factor[exp[i]]; continue; } else { int code; code = bitstream_get (state, 7); quantizer->q2_ptr = 1; quantizer->q2[0] = q_2_2[code]; quantizer->q2[1] = q_2_1[code]; coeff[i] = q_2_0[code] * factor[exp[i]]; continue; } case 3: coeff[i] = q_3[bitstream_get (state, 3)] * factor[exp[i]]; continue; case -3: if (quantizer->q4_ptr == 0) { quantizer->q4_ptr = -1; coeff[i] = quantizer->q4 * factor[exp[i]]; continue; } else { int code; code = bitstream_get (state, 7); quantizer->q4_ptr = 0; quantizer->q4 = q_4_1[code]; coeff[i] = q_4_0[code] * factor[exp[i]]; continue; } case 4: coeff[i] = q_5[bitstream_get (state, 4)] * factor[exp[i]]; continue; default: coeff[i] = ((bitstream_get_2 (state, bapi) << (16 - bapi)) * factor[exp[i]]); } } } static void coeff_get_coupling (a52_state_t * state, int nfchans, sample_t * coeff, sample_t (* samples)[256], quantizer_t * quantizer, uint8_t dithflag[5]) { int cplbndstrc, bnd, i, i_end, ch; uint8_t * exp; int8_t * bap; sample_t cplco[5]; exp = state->cpl_expbap.exp; bap = state->cpl_expbap.bap; bnd = 0; cplbndstrc = state->cplbndstrc; i = state->cplstrtmant; while (i < state->cplendmant) { i_end = i + 12; while (cplbndstrc & 1) { cplbndstrc >>= 1; i_end += 12; } cplbndstrc >>= 1; for (ch = 0; ch < nfchans; ch++) cplco[ch] = state->cplco[ch][bnd] * coeff[ch]; bnd++; while (i < i_end) { sample_t cplcoeff; int bapi; bapi = bap[i]; switch (bapi) { case 0: cplcoeff = LEVEL_3DB * scale_factor[exp[i]]; for (ch = 0; ch < nfchans; ch++) if ((state->chincpl >> ch) & 1) { if (dithflag[ch]) samples[ch][i] = (cplcoeff * cplco[ch] * dither_gen (state)); else samples[ch][i] = 0; } i++; continue; case -1: if (quantizer->q1_ptr >= 0) { cplcoeff = quantizer->q1[quantizer->q1_ptr--]; break; } else { int code; code = bitstream_get (state, 5); quantizer->q1_ptr = 1; quantizer->q1[0] = q_1_2[code]; quantizer->q1[1] = q_1_1[code]; cplcoeff = q_1_0[code]; break; } case -2: if (quantizer->q2_ptr >= 0) { cplcoeff = quantizer->q2[quantizer->q2_ptr--]; break; } else { int code; code = bitstream_get (state, 7); quantizer->q2_ptr = 1; quantizer->q2[0] = q_2_2[code]; quantizer->q2[1] = q_2_1[code]; cplcoeff = q_2_0[code]; break; } case 3: cplcoeff = q_3[bitstream_get (state, 3)]; break; case -3: if (quantizer->q4_ptr == 0) { quantizer->q4_ptr = -1; cplcoeff = quantizer->q4; break; } else { int code; code = bitstream_get (state, 7); quantizer->q4_ptr = 0; quantizer->q4 = q_4_1[code]; cplcoeff = q_4_0[code]; break; } case 4: cplcoeff = q_5[bitstream_get (state, 4)]; break; default: cplcoeff = bitstream_get_2 (state, bapi) << (16 - bapi); } cplcoeff *= scale_factor[exp[i]]; for (ch = 0; ch < nfchans; ch++) if ((state->chincpl >> ch) & 1) samples[ch][i] = cplcoeff * cplco[ch]; i++; } } } int a52_block (a52_state_t * state) { static const uint8_t nfchans_tbl[] = {2, 1, 2, 3, 3, 4, 4, 5, 1, 1, 2}; static int rematrix_band[4] = {25, 37, 61, 253}; int i, nfchans, chaninfo; uint8_t cplexpstr, chexpstr[5], lfeexpstr, do_bit_alloc, done_cpl; uint8_t blksw[5], dithflag[5]; sample_t coeff[5]; int chanbias; quantizer_t quantizer; sample_t * samples; nfchans = nfchans_tbl[state->acmod]; for (i = 0; i < nfchans; i++) blksw[i] = bitstream_get (state, 1); for (i = 0; i < nfchans; i++) dithflag[i] = bitstream_get (state, 1); chaninfo = !state->acmod; do { if (bitstream_get (state, 1)) { /* dynrnge */ int dynrng; dynrng = bitstream_get_2 (state, 8); if (state->dynrnge) { sample_t range; range = ((((dynrng & 0x1f) | 0x20) << 13) * scale_factor[3 - (dynrng >> 5)]); if (state->dynrngcall) range = state->dynrngcall (range, state->dynrngdata); state->dynrng = state->level * range; } } } while (chaninfo--); if (bitstream_get (state, 1)) { /* cplstre */ state->chincpl = 0; if (bitstream_get (state, 1)) { /* cplinu */ static uint8_t bndtab[16] = {31, 35, 37, 39, 41, 42, 43, 44, 45, 45, 46, 46, 47, 47, 48, 48}; int cplbegf; int cplendf; int ncplsubnd; for (i = 0; i < nfchans; i++) state->chincpl |= bitstream_get (state, 1) << i; switch (state->acmod) { case 0: case 1: return 1; case 2: state->phsflginu = bitstream_get (state, 1); } cplbegf = bitstream_get (state, 4); cplendf = bitstream_get (state, 4); if (cplendf + 3 - cplbegf < 0) return 1; state->ncplbnd = ncplsubnd = cplendf + 3 - cplbegf; state->cplstrtbnd = bndtab[cplbegf]; state->cplstrtmant = cplbegf * 12 + 37; state->cplendmant = cplendf * 12 + 73; state->cplbndstrc = 0; for (i = 0; i < ncplsubnd - 1; i++) if (bitstream_get (state, 1)) { state->cplbndstrc |= 1 << i; state->ncplbnd--; } } } if (state->chincpl) { /* cplinu */ int j, cplcoe; cplcoe = 0; for (i = 0; i < nfchans; i++) if ((state->chincpl) >> i & 1) if (bitstream_get (state, 1)) { /* cplcoe */ int mstrcplco, cplcoexp, cplcomant; cplcoe = 1; mstrcplco = 3 * bitstream_get (state, 2); for (j = 0; j < state->ncplbnd; j++) { cplcoexp = bitstream_get (state, 4); cplcomant = bitstream_get (state, 4); if (cplcoexp == 15) cplcomant <<= 14; else cplcomant = (cplcomant | 0x10) << 13; state->cplco[i][j] = cplcomant * scale_factor[cplcoexp + mstrcplco]; } } if ((state->acmod == 2) && state->phsflginu && cplcoe) for (j = 0; j < state->ncplbnd; j++) if (bitstream_get (state, 1)) /* phsflg */ state->cplco[1][j] = -state->cplco[1][j]; } if ((state->acmod == 2) && (bitstream_get (state, 1))) { /* rematstr */ int end; state->rematflg = 0; end = (state->chincpl) ? state->cplstrtmant : 253; /* cplinu */ i = 0; do state->rematflg |= bitstream_get (state, 1) << i; while (rematrix_band[i++] < end); } cplexpstr = EXP_REUSE; lfeexpstr = EXP_REUSE; if (state->chincpl) /* cplinu */ cplexpstr = bitstream_get (state, 2); for (i = 0; i < nfchans; i++) chexpstr[i] = bitstream_get (state, 2); if (state->lfeon) lfeexpstr = bitstream_get (state, 1); for (i = 0; i < nfchans; i++) if (chexpstr[i] != EXP_REUSE) { if ((state->chincpl >> i) & 1) state->endmant[i] = state->cplstrtmant; else { int chbwcod; chbwcod = bitstream_get (state, 6); if (chbwcod > 60) return 1; state->endmant[i] = chbwcod * 3 + 73; } } do_bit_alloc = 0; if (cplexpstr != EXP_REUSE) { int cplabsexp, ncplgrps; do_bit_alloc = 64; ncplgrps = ((state->cplendmant - state->cplstrtmant) / (3 << (cplexpstr - 1))); cplabsexp = bitstream_get (state, 4) << 1; if (parse_exponents (state, cplexpstr, ncplgrps, cplabsexp, state->cpl_expbap.exp + state->cplstrtmant)) return 1; } for (i = 0; i < nfchans; i++) if (chexpstr[i] != EXP_REUSE) { int grp_size, nchgrps; do_bit_alloc |= 1 << i; grp_size = 3 << (chexpstr[i] - 1); nchgrps = (state->endmant[i] + grp_size - 4) / grp_size; state->fbw_expbap[i].exp[0] = bitstream_get (state, 4); if (parse_exponents (state, chexpstr[i], nchgrps, state->fbw_expbap[i].exp[0], state->fbw_expbap[i].exp + 1)) return 1; bitstream_skip (state, 2); /* gainrng */ } if (lfeexpstr != EXP_REUSE) { do_bit_alloc |= 32; state->lfe_expbap.exp[0] = bitstream_get (state, 4); if (parse_exponents (state, lfeexpstr, 2, state->lfe_expbap.exp[0], state->lfe_expbap.exp + 1)) return 1; } if (bitstream_get (state, 1)) { /* baie */ do_bit_alloc = -1; state->bai = bitstream_get (state, 11); } if (bitstream_get (state, 1)) { /* snroffste */ do_bit_alloc = -1; state->csnroffst = bitstream_get (state, 6); if (state->chincpl) /* cplinu */ state->cplba.bai = bitstream_get (state, 7); for (i = 0; i < nfchans; i++) state->ba[i].bai = bitstream_get (state, 7); if (state->lfeon) state->lfeba.bai = bitstream_get (state, 7); } if ((state->chincpl) && (bitstream_get (state, 1))) { /* cplleake */ do_bit_alloc |= 64; state->cplfleak = 9 - bitstream_get (state, 3); state->cplsleak = 9 - bitstream_get (state, 3); } if (bitstream_get (state, 1)) { /* deltbaie */ do_bit_alloc = -1; if (state->chincpl) /* cplinu */ state->cplba.deltbae = bitstream_get (state, 2); for (i = 0; i < nfchans; i++) state->ba[i].deltbae = bitstream_get (state, 2); if (state->chincpl && /* cplinu */ (state->cplba.deltbae == DELTA_BIT_NEW) && parse_deltba (state, state->cplba.deltba)) return 1; for (i = 0; i < nfchans; i++) if ((state->ba[i].deltbae == DELTA_BIT_NEW) && parse_deltba (state, state->ba[i].deltba)) return 1; } if (do_bit_alloc) { if (zero_snr_offsets (nfchans, state)) { memset (state->cpl_expbap.bap, 0, sizeof (state->cpl_expbap.bap)); for (i = 0; i < nfchans; i++) memset (state->fbw_expbap[i].bap, 0, sizeof (state->fbw_expbap[i].bap)); memset (state->lfe_expbap.bap, 0, sizeof (state->lfe_expbap.bap)); } else { if (state->chincpl && (do_bit_alloc & 64)) /* cplinu */ a52_bit_allocate (state, &state->cplba, state->cplstrtbnd, state->cplstrtmant, state->cplendmant, state->cplfleak << 8, state->cplsleak << 8, &state->cpl_expbap); for (i = 0; i < nfchans; i++) if (do_bit_alloc & (1 << i)) a52_bit_allocate (state, state->ba + i, 0, 0, state->endmant[i], 0, 0, state->fbw_expbap +i); if (state->lfeon && (do_bit_alloc & 32)) { state->lfeba.deltbae = DELTA_BIT_NONE; a52_bit_allocate (state, &state->lfeba, 0, 0, 7, 0, 0, &state->lfe_expbap); } } } if (bitstream_get (state, 1)) { /* skiple */ i = bitstream_get (state, 9); /* skipl */ while (i--) bitstream_skip (state, 8); } samples = state->samples; if (state->output & A52_LFE) samples += 256; /* shift for LFE channel */ chanbias = a52_downmix_coeff (coeff, state->acmod, state->output, state->dynrng, state->clev, state->slev); quantizer.q1_ptr = quantizer.q2_ptr = quantizer.q4_ptr = -1; done_cpl = 0; for (i = 0; i < nfchans; i++) { int j; coeff_get (state, samples + 256 * i, state->fbw_expbap +i, &quantizer, coeff[i], dithflag[i], state->endmant[i]); if ((state->chincpl >> i) & 1) { if (!done_cpl) { done_cpl = 1; coeff_get_coupling (state, nfchans, coeff, (sample_t (*)[256])samples, &quantizer, dithflag); } j = state->cplendmant; } else j = state->endmant[i]; do (samples + 256 * i)[j] = 0; while (++j < 256); } if (state->acmod == 2) { int j, end, band, rematflg; end = ((state->endmant[0] < state->endmant[1]) ? state->endmant[0] : state->endmant[1]); i = 0; j = 13; rematflg = state->rematflg; do { if (! (rematflg & 1)) { rematflg >>= 1; j = rematrix_band[i++]; continue; } rematflg >>= 1; band = rematrix_band[i++]; if (band > end) band = end; do { sample_t tmp0, tmp1; tmp0 = samples[j]; tmp1 = (samples+256)[j]; samples[j] = tmp0 + tmp1; (samples+256)[j] = tmp0 - tmp1; } while (++j < band); } while (j < end); } if (state->lfeon) { if (state->output & A52_LFE) { coeff_get (state, samples - 256, &state->lfe_expbap, &quantizer, state->dynrng, 0, 7); for (i = 7; i < 256; i++) (samples-256)[i] = 0; a52_imdct_512 (samples - 256, samples + 1536 - 256, state->bias); } else { /* just skip the LFE coefficients */ coeff_get (state, samples + 1280, &state->lfe_expbap, &quantizer, 0, 0, 7); } } i = 0; if (nfchans_tbl[state->output & A52_CHANNEL_MASK] < nfchans) for (i = 1; i < nfchans; i++) if (blksw[i] != blksw[0]) break; if (i < nfchans) { if (state->downmixed) { state->downmixed = 0; a52_upmix (samples + 1536, state->acmod, state->output); } for (i = 0; i < nfchans; i++) { sample_t bias; bias = 0; if (!(chanbias & (1 << i))) bias = state->bias; if (coeff[i]) { if (blksw[i]) a52_imdct_256 (samples + 256 * i, samples + 1536 + 256 * i, bias); else a52_imdct_512 (samples + 256 * i, samples + 1536 + 256 * i, bias); } else { int j; for (j = 0; j < 256; j++) (samples + 256 * i)[j] = bias; } } a52_downmix (samples, state->acmod, state->output, state->bias, state->clev, state->slev); } else { nfchans = nfchans_tbl[state->output & A52_CHANNEL_MASK]; a52_downmix (samples, state->acmod, state->output, 0, state->clev, state->slev); if (!state->downmixed) { state->downmixed = 1; a52_downmix (samples + 1536, state->acmod, state->output, 0, state->clev, state->slev); } if (blksw[0]) for (i = 0; i < nfchans; i++) a52_imdct_256 (samples + 256 * i, samples + 1536 + 256 * i, state->bias); else for (i = 0; i < nfchans; i++) a52_imdct_512 (samples + 256 * i, samples + 1536 + 256 * i, state->bias); } return 0; } void a52_free (a52_state_t * state) { #if defined(__MINGW32__) && defined(HAVE_SSE) av_free (state->samples); #else free (state->samples); #endif free (state); }