/* * imdct.c * Copyright (C) 2000-2002 Michel Lespinasse * Copyright (C) 1999-2000 Aaron Holtzman * * The ifft algorithms in this file have been largely inspired by Dan * Bernstein's work, djbfft, available at http://cr.yp.to/djbfft.html * * This file is part of a52dec, a free ATSC A-52 stream decoder. * See http://liba52.sourceforge.net/ for updates. * * Modified for use with MPlayer, changes contained in liba52_changes.diff. * detailed changelog at http://svn.mplayerhq.hu/mplayer/trunk/ * $Id$ * * a52dec is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * a52dec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * SSE optimizations from Michael Niedermayer (michaelni@gmx.at) * 3DNOW optimizations from Nick Kurshev * michael did port them from libac3 (untested, perhaps totally broken) * AltiVec optimizations from Romain Dolbeau (romain@dolbeau.org) */ #include "config.h" #include #include #ifdef LIBA52_DJBFFT #include #endif #ifndef M_PI #define M_PI 3.1415926535897932384626433832795029 #endif #include #include "a52.h" #include "a52_internal.h" #include "mm_accel.h" #include "mangle.h" void (*a52_imdct_512) (sample_t * data, sample_t * delay, sample_t bias); #ifdef RUNTIME_CPUDETECT #undef HAVE_3DNOWEX #endif typedef struct complex_s { sample_t real; sample_t imag; } complex_t; static const int pm128[128] attribute_used __attribute__((aligned(16))) = { 0, 16, 32, 48, 64, 80, 96, 112, 8, 40, 72, 104, 24, 56, 88, 120, 4, 20, 36, 52, 68, 84, 100, 116, 12, 28, 44, 60, 76, 92, 108, 124, 2, 18, 34, 50, 66, 82, 98, 114, 10, 42, 74, 106, 26, 58, 90, 122, 6, 22, 38, 54, 70, 86, 102, 118, 14, 46, 78, 110, 30, 62, 94, 126, 1, 17, 33, 49, 65, 81, 97, 113, 9, 41, 73, 105, 25, 57, 89, 121, 5, 21, 37, 53, 69, 85, 101, 117, 13, 29, 45, 61, 77, 93, 109, 125, 3, 19, 35, 51, 67, 83, 99, 115, 11, 43, 75, 107, 27, 59, 91, 123, 7, 23, 39, 55, 71, 87, 103, 119, 15, 31, 47, 63, 79, 95, 111, 127 }; static uint8_t attribute_used bit_reverse_512[] = { 0x00, 0x40, 0x20, 0x60, 0x10, 0x50, 0x30, 0x70, 0x08, 0x48, 0x28, 0x68, 0x18, 0x58, 0x38, 0x78, 0x04, 0x44, 0x24, 0x64, 0x14, 0x54, 0x34, 0x74, 0x0c, 0x4c, 0x2c, 0x6c, 0x1c, 0x5c, 0x3c, 0x7c, 0x02, 0x42, 0x22, 0x62, 0x12, 0x52, 0x32, 0x72, 0x0a, 0x4a, 0x2a, 0x6a, 0x1a, 0x5a, 0x3a, 0x7a, 0x06, 0x46, 0x26, 0x66, 0x16, 0x56, 0x36, 0x76, 0x0e, 0x4e, 0x2e, 0x6e, 0x1e, 0x5e, 0x3e, 0x7e, 0x01, 0x41, 0x21, 0x61, 0x11, 0x51, 0x31, 0x71, 0x09, 0x49, 0x29, 0x69, 0x19, 0x59, 0x39, 0x79, 0x05, 0x45, 0x25, 0x65, 0x15, 0x55, 0x35, 0x75, 0x0d, 0x4d, 0x2d, 0x6d, 0x1d, 0x5d, 0x3d, 0x7d, 0x03, 0x43, 0x23, 0x63, 0x13, 0x53, 0x33, 0x73, 0x0b, 0x4b, 0x2b, 0x6b, 0x1b, 0x5b, 0x3b, 0x7b, 0x07, 0x47, 0x27, 0x67, 0x17, 0x57, 0x37, 0x77, 0x0f, 0x4f, 0x2f, 0x6f, 0x1f, 0x5f, 0x3f, 0x7f}; static uint8_t fftorder[] = { 0,128, 64,192, 32,160,224, 96, 16,144, 80,208,240,112, 48,176, 8,136, 72,200, 40,168,232,104,248,120, 56,184, 24,152,216, 88, 4,132, 68,196, 36,164,228,100, 20,148, 84,212,244,116, 52,180, 252,124, 60,188, 28,156,220, 92, 12,140, 76,204,236,108, 44,172, 2,130, 66,194, 34,162,226, 98, 18,146, 82,210,242,114, 50,178, 10,138, 74,202, 42,170,234,106,250,122, 58,186, 26,154,218, 90, 254,126, 62,190, 30,158,222, 94, 14,142, 78,206,238,110, 46,174, 6,134, 70,198, 38,166,230,102,246,118, 54,182, 22,150,214, 86 }; static complex_t __attribute__((aligned(16))) buf[128]; /* Twiddle factor LUT */ static complex_t __attribute__((aligned(16))) w_1[1]; static complex_t __attribute__((aligned(16))) w_2[2]; static complex_t __attribute__((aligned(16))) w_4[4]; static complex_t __attribute__((aligned(16))) w_8[8]; static complex_t __attribute__((aligned(16))) w_16[16]; static complex_t __attribute__((aligned(16))) w_32[32]; static complex_t __attribute__((aligned(16))) w_64[64]; static complex_t __attribute__((aligned(16))) * w[7] = {w_1, w_2, w_4, w_8, w_16, w_32, w_64}; /* Twiddle factors for IMDCT */ static sample_t __attribute__((aligned(16))) xcos1[128]; static sample_t __attribute__((aligned(16))) xsin1[128]; #if defined(ARCH_X86) || defined(ARCH_X86_64) // NOTE: SSE needs 16byte alignment or it will segfault // static float __attribute__((aligned(16))) sseSinCos1c[256]; static float __attribute__((aligned(16))) sseSinCos1d[256]; static float attribute_used __attribute__((aligned(16))) ps111_1[4]={1,1,1,-1}; //static float __attribute__((aligned(16))) sseW0[4]; static float __attribute__((aligned(16))) sseW1[8]; static float __attribute__((aligned(16))) sseW2[16]; static float __attribute__((aligned(16))) sseW3[32]; static float __attribute__((aligned(16))) sseW4[64]; static float __attribute__((aligned(16))) sseW5[128]; static float __attribute__((aligned(16))) sseW6[256]; static float __attribute__((aligned(16))) *sseW[7]= {NULL /*sseW0*/,sseW1,sseW2,sseW3,sseW4,sseW5,sseW6}; static float __attribute__((aligned(16))) sseWindow[512]; #endif /* Root values for IFFT */ static sample_t roots16[3]; static sample_t roots32[7]; static sample_t roots64[15]; static sample_t roots128[31]; /* Twiddle factors for IMDCT */ static complex_t pre1[128]; static complex_t post1[64]; static complex_t pre2[64]; static complex_t post2[32]; static sample_t a52_imdct_window[256]; static void (* ifft128) (complex_t * buf); static void (* ifft64) (complex_t * buf); static inline void ifft2 (complex_t * buf) { double r, i; r = buf[0].real; i = buf[0].imag; buf[0].real += buf[1].real; buf[0].imag += buf[1].imag; buf[1].real = r - buf[1].real; buf[1].imag = i - buf[1].imag; } static inline void ifft4 (complex_t * buf) { double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; tmp1 = buf[0].real + buf[1].real; tmp2 = buf[3].real + buf[2].real; tmp3 = buf[0].imag + buf[1].imag; tmp4 = buf[2].imag + buf[3].imag; tmp5 = buf[0].real - buf[1].real; tmp6 = buf[0].imag - buf[1].imag; tmp7 = buf[2].imag - buf[3].imag; tmp8 = buf[3].real - buf[2].real; buf[0].real = tmp1 + tmp2; buf[0].imag = tmp3 + tmp4; buf[2].real = tmp1 - tmp2; buf[2].imag = tmp3 - tmp4; buf[1].real = tmp5 + tmp7; buf[1].imag = tmp6 + tmp8; buf[3].real = tmp5 - tmp7; buf[3].imag = tmp6 - tmp8; } /* the basic split-radix ifft butterfly */ #define BUTTERFLY(a0,a1,a2,a3,wr,wi) do { \ tmp5 = a2.real * wr + a2.imag * wi; \ tmp6 = a2.imag * wr - a2.real * wi; \ tmp7 = a3.real * wr - a3.imag * wi; \ tmp8 = a3.imag * wr + a3.real * wi; \ tmp1 = tmp5 + tmp7; \ tmp2 = tmp6 + tmp8; \ tmp3 = tmp6 - tmp8; \ tmp4 = tmp7 - tmp5; \ a2.real = a0.real - tmp1; \ a2.imag = a0.imag - tmp2; \ a3.real = a1.real - tmp3; \ a3.imag = a1.imag - tmp4; \ a0.real += tmp1; \ a0.imag += tmp2; \ a1.real += tmp3; \ a1.imag += tmp4; \ } while (0) /* split-radix ifft butterfly, specialized for wr=1 wi=0 */ #define BUTTERFLY_ZERO(a0,a1,a2,a3) do { \ tmp1 = a2.real + a3.real; \ tmp2 = a2.imag + a3.imag; \ tmp3 = a2.imag - a3.imag; \ tmp4 = a3.real - a2.real; \ a2.real = a0.real - tmp1; \ a2.imag = a0.imag - tmp2; \ a3.real = a1.real - tmp3; \ a3.imag = a1.imag - tmp4; \ a0.real += tmp1; \ a0.imag += tmp2; \ a1.real += tmp3; \ a1.imag += tmp4; \ } while (0) /* split-radix ifft butterfly, specialized for wr=wi */ #define BUTTERFLY_HALF(a0,a1,a2,a3,w) do { \ tmp5 = (a2.real + a2.imag) * w; \ tmp6 = (a2.imag - a2.real) * w; \ tmp7 = (a3.real - a3.imag) * w; \ tmp8 = (a3.imag + a3.real) * w; \ tmp1 = tmp5 + tmp7; \ tmp2 = tmp6 + tmp8; \ tmp3 = tmp6 - tmp8; \ tmp4 = tmp7 - tmp5; \ a2.real = a0.real - tmp1; \ a2.imag = a0.imag - tmp2; \ a3.real = a1.real - tmp3; \ a3.imag = a1.imag - tmp4; \ a0.real += tmp1; \ a0.imag += tmp2; \ a1.real += tmp3; \ a1.imag += tmp4; \ } while (0) static inline void ifft8 (complex_t * buf) { double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; ifft4 (buf); ifft2 (buf + 4); ifft2 (buf + 6); BUTTERFLY_ZERO (buf[0], buf[2], buf[4], buf[6]); BUTTERFLY_HALF (buf[1], buf[3], buf[5], buf[7], roots16[1]); } static void ifft_pass (complex_t * buf, sample_t * weight, int n) { complex_t * buf1; complex_t * buf2; complex_t * buf3; double tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; int i; buf++; buf1 = buf + n; buf2 = buf + 2 * n; buf3 = buf + 3 * n; BUTTERFLY_ZERO (buf[-1], buf1[-1], buf2[-1], buf3[-1]); i = n - 1; do { BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0], weight[n], weight[2*i]); buf++; buf1++; buf2++; buf3++; weight++; } while (--i); } static void ifft16 (complex_t * buf) { ifft8 (buf); ifft4 (buf + 8); ifft4 (buf + 12); ifft_pass (buf, roots16 - 4, 4); } static void ifft32 (complex_t * buf) { ifft16 (buf); ifft8 (buf + 16); ifft8 (buf + 24); ifft_pass (buf, roots32 - 8, 8); } static void ifft64_c (complex_t * buf) { ifft32 (buf); ifft16 (buf + 32); ifft16 (buf + 48); ifft_pass (buf, roots64 - 16, 16); } static void ifft128_c (complex_t * buf) { ifft32 (buf); ifft16 (buf + 32); ifft16 (buf + 48); ifft_pass (buf, roots64 - 16, 16); ifft32 (buf + 64); ifft32 (buf + 96); ifft_pass (buf, roots128 - 32, 32); } void imdct_do_512 (sample_t * data, sample_t * delay, sample_t bias) { int i, k; sample_t t_r, t_i, a_r, a_i, b_r, b_i, w_1, w_2; const sample_t * window = a52_imdct_window; complex_t buf[128]; for (i = 0; i < 128; i++) { k = fftorder[i]; t_r = pre1[i].real; t_i = pre1[i].imag; buf[i].real = t_i * data[255-k] + t_r * data[k]; buf[i].imag = t_r * data[255-k] - t_i * data[k]; } ifft128 (buf); /* Post IFFT complex multiply plus IFFT complex conjugate*/ /* Window and convert to real valued signal */ for (i = 0; i < 64; i++) { /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */ t_r = post1[i].real; t_i = post1[i].imag; a_r = t_r * buf[i].real + t_i * buf[i].imag; a_i = t_i * buf[i].real - t_r * buf[i].imag; b_r = t_i * buf[127-i].real + t_r * buf[127-i].imag; b_i = t_r * buf[127-i].real - t_i * buf[127-i].imag; w_1 = window[2*i]; w_2 = window[255-2*i]; data[2*i] = delay[2*i] * w_2 - a_r * w_1 + bias; data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias; delay[2*i] = a_i; w_1 = window[2*i+1]; w_2 = window[254-2*i]; data[2*i+1] = delay[2*i+1] * w_2 + b_r * w_1 + bias; data[254-2*i] = delay[2*i+1] * w_1 - b_r * w_2 + bias; delay[2*i+1] = b_i; } } #ifdef HAVE_ALTIVEC #ifdef HAVE_ALTIVEC_H #include #endif // used to build registers permutation vectors (vcprm) // the 's' are for words in the _s_econd vector #define WORD_0 0x00,0x01,0x02,0x03 #define WORD_1 0x04,0x05,0x06,0x07 #define WORD_2 0x08,0x09,0x0a,0x0b #define WORD_3 0x0c,0x0d,0x0e,0x0f #define WORD_s0 0x10,0x11,0x12,0x13 #define WORD_s1 0x14,0x15,0x16,0x17 #define WORD_s2 0x18,0x19,0x1a,0x1b #define WORD_s3 0x1c,0x1d,0x1e,0x1f #ifdef __APPLE_CC__ #define vcprm(a,b,c,d) (const vector unsigned char)(WORD_ ## a, WORD_ ## b, WORD_ ## c, WORD_ ## d) #else #define vcprm(a,b,c,d) (const vector unsigned char){WORD_ ## a, WORD_ ## b, WORD_ ## c, WORD_ ## d} #endif // vcprmle is used to keep the same index as in the SSE version. // it's the same as vcprm, with the index inversed // ('le' is Little Endian) #define vcprmle(a,b,c,d) vcprm(d,c,b,a) // used to build inverse/identity vectors (vcii) // n is _n_egative, p is _p_ositive #define FLOAT_n -1. #define FLOAT_p 1. #ifdef __APPLE_CC__ #define vcii(a,b,c,d) (const vector float)(FLOAT_ ## a, FLOAT_ ## b, FLOAT_ ## c, FLOAT_ ## d) #else #define vcii(a,b,c,d) (const vector float){FLOAT_ ## a, FLOAT_ ## b, FLOAT_ ## c, FLOAT_ ## d} #endif #ifdef __APPLE_CC__ #define FOUROF(a) (a) #else #define FOUROF(a) {a,a,a,a} #endif void imdct_do_512_altivec(sample_t data[],sample_t delay[], sample_t bias) { int i; int k; int p,q; int m; long two_m; long two_m_plus_one; sample_t tmp_b_i; sample_t tmp_b_r; sample_t tmp_a_i; sample_t tmp_a_r; sample_t *data_ptr; sample_t *delay_ptr; sample_t *window_ptr; /* 512 IMDCT with source and dest data in 'data' */ /* Pre IFFT complex multiply plus IFFT cmplx conjugate & reordering*/ for( i=0; i < 128; i++) { /* z[i] = (X[256-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) ; */ int j= bit_reverse_512[i]; buf[i].real = (data[256-2*j-1] * xcos1[j]) - (data[2*j] * xsin1[j]); buf[i].imag = -1.0 * ((data[2*j] * xcos1[j]) + (data[256-2*j-1] * xsin1[j])); } /* 1. iteration */ for(i = 0; i < 128; i += 2) { #if 0 tmp_a_r = buf[i].real; tmp_a_i = buf[i].imag; tmp_b_r = buf[i+1].real; tmp_b_i = buf[i+1].imag; buf[i].real = tmp_a_r + tmp_b_r; buf[i].imag = tmp_a_i + tmp_b_i; buf[i+1].real = tmp_a_r - tmp_b_r; buf[i+1].imag = tmp_a_i - tmp_b_i; #else vector float temp, bufv; bufv = vec_ld(i << 3, (float*)buf); temp = vec_perm(bufv, bufv, vcprm(2,3,0,1)); bufv = vec_madd(bufv, vcii(p,p,n,n), temp); vec_st(bufv, i << 3, (float*)buf); #endif } /* 2. iteration */ // Note w[1]={{1,0}, {0,-1}} for(i = 0; i < 128; i += 4) { #if 0 tmp_a_r = buf[i].real; tmp_a_i = buf[i].imag; tmp_b_r = buf[i+2].real; tmp_b_i = buf[i+2].imag; buf[i].real = tmp_a_r + tmp_b_r; buf[i].imag = tmp_a_i + tmp_b_i; buf[i+2].real = tmp_a_r - tmp_b_r; buf[i+2].imag = tmp_a_i - tmp_b_i; tmp_a_r = buf[i+1].real; tmp_a_i = buf[i+1].imag; /* WARNING: im <-> re here ! */ tmp_b_r = buf[i+3].imag; tmp_b_i = buf[i+3].real; buf[i+1].real = tmp_a_r + tmp_b_r; buf[i+1].imag = tmp_a_i - tmp_b_i; buf[i+3].real = tmp_a_r - tmp_b_r; buf[i+3].imag = tmp_a_i + tmp_b_i; #else vector float buf01, buf23, temp1, temp2; buf01 = vec_ld((i + 0) << 3, (float*)buf); buf23 = vec_ld((i + 2) << 3, (float*)buf); buf23 = vec_perm(buf23,buf23,vcprm(0,1,3,2)); temp1 = vec_madd(buf23, vcii(p,p,p,n), buf01); temp2 = vec_madd(buf23, vcii(n,n,n,p), buf01); vec_st(temp1, (i + 0) << 3, (float*)buf); vec_st(temp2, (i + 2) << 3, (float*)buf); #endif } /* 3. iteration */ for(i = 0; i < 128; i += 8) { #if 0 tmp_a_r = buf[i].real; tmp_a_i = buf[i].imag; tmp_b_r = buf[i+4].real; tmp_b_i = buf[i+4].imag; buf[i].real = tmp_a_r + tmp_b_r; buf[i].imag = tmp_a_i + tmp_b_i; buf[i+4].real = tmp_a_r - tmp_b_r; buf[i+4].imag = tmp_a_i - tmp_b_i; tmp_a_r = buf[1+i].real; tmp_a_i = buf[1+i].imag; tmp_b_r = (buf[i+5].real + buf[i+5].imag) * w[2][1].real; tmp_b_i = (buf[i+5].imag - buf[i+5].real) * w[2][1].real; buf[1+i].real = tmp_a_r + tmp_b_r; buf[1+i].imag = tmp_a_i + tmp_b_i; buf[i+5].real = tmp_a_r - tmp_b_r; buf[i+5].imag = tmp_a_i - tmp_b_i; tmp_a_r = buf[i+2].real; tmp_a_i = buf[i+2].imag; /* WARNING re <-> im & sign */ tmp_b_r = buf[i+6].imag; tmp_b_i = - buf[i+6].real; buf[i+2].real = tmp_a_r + tmp_b_r; buf[i+2].imag = tmp_a_i + tmp_b_i; buf[i+6].real = tmp_a_r - tmp_b_r; buf[i+6].imag = tmp_a_i - tmp_b_i; tmp_a_r = buf[i+3].real; tmp_a_i = buf[i+3].imag; tmp_b_r = (buf[i+7].real - buf[i+7].imag) * w[2][3].imag; tmp_b_i = (buf[i+7].imag + buf[i+7].real) * w[2][3].imag; buf[i+3].real = tmp_a_r + tmp_b_r; buf[i+3].imag = tmp_a_i + tmp_b_i; buf[i+7].real = tmp_a_r - tmp_b_r; buf[i+7].imag = tmp_a_i - tmp_b_i; #else vector float buf01, buf23, buf45, buf67; buf01 = vec_ld((i + 0) << 3, (float*)buf); buf23 = vec_ld((i + 2) << 3, (float*)buf); tmp_b_r = (buf[i+5].real + buf[i+5].imag) * w[2][1].real; tmp_b_i = (buf[i+5].imag - buf[i+5].real) * w[2][1].real; buf[i+5].real = tmp_b_r; buf[i+5].imag = tmp_b_i; tmp_b_r = (buf[i+7].real - buf[i+7].imag) * w[2][3].imag; tmp_b_i = (buf[i+7].imag + buf[i+7].real) * w[2][3].imag; buf[i+7].real = tmp_b_r; buf[i+7].imag = tmp_b_i; buf23 = vec_ld((i + 2) << 3, (float*)buf); buf45 = vec_ld((i + 4) << 3, (float*)buf); buf67 = vec_ld((i + 6) << 3, (float*)buf); buf67 = vec_perm(buf67, buf67, vcprm(1,0,2,3)); vec_st(vec_add(buf01, buf45), (i + 0) << 3, (float*)buf); vec_st(vec_madd(buf67, vcii(p,n,p,p), buf23), (i + 2) << 3, (float*)buf); vec_st(vec_sub(buf01, buf45), (i + 4) << 3, (float*)buf); vec_st(vec_nmsub(buf67, vcii(p,n,p,p), buf23), (i + 6) << 3, (float*)buf); #endif } /* 4-7. iterations */ for (m=3; m < 7; m++) { two_m = (1 << m); two_m_plus_one = two_m<<1; for(i = 0; i < 128; i += two_m_plus_one) { for(k = 0; k < two_m; k+=2) { #if 0 int p = k + i; int q = p + two_m; tmp_a_r = buf[p].real; tmp_a_i = buf[p].imag; tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag; tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag; buf[p].real = tmp_a_r + tmp_b_r; buf[p].imag = tmp_a_i + tmp_b_i; buf[q].real = tmp_a_r - tmp_b_r; buf[q].imag = tmp_a_i - tmp_b_i; tmp_a_r = buf[(p + 1)].real; tmp_a_i = buf[(p + 1)].imag; tmp_b_r = buf[(q + 1)].real * w[m][(k + 1)].real - buf[(q + 1)].imag * w[m][(k + 1)].imag; tmp_b_i = buf[(q + 1)].imag * w[m][(k + 1)].real + buf[(q + 1)].real * w[m][(k + 1)].imag; buf[(p + 1)].real = tmp_a_r + tmp_b_r; buf[(p + 1)].imag = tmp_a_i + tmp_b_i; buf[(q + 1)].real = tmp_a_r - tmp_b_r; buf[(q + 1)].imag = tmp_a_i - tmp_b_i; #else int p = k + i; int q = p + two_m; vector float vecp, vecq, vecw, temp1, temp2, temp3, temp4; const vector float vczero = (const vector float)FOUROF(0.); // first compute buf[q] and buf[q+1] vecq = vec_ld(q << 3, (float*)buf); vecw = vec_ld(0, (float*)&(w[m][k])); temp1 = vec_madd(vecq, vecw, vczero); temp2 = vec_perm(vecq, vecq, vcprm(1,0,3,2)); temp2 = vec_madd(temp2, vecw, vczero); temp3 = vec_perm(temp1, temp2, vcprm(0,s0,2,s2)); temp4 = vec_perm(temp1, temp2, vcprm(1,s1,3,s3)); vecq = vec_madd(temp4, vcii(n,p,n,p), temp3); // then butterfly with buf[p] and buf[p+1] vecp = vec_ld(p << 3, (float*)buf); temp1 = vec_add(vecp, vecq); temp2 = vec_sub(vecp, vecq); vec_st(temp1, p << 3, (float*)buf); vec_st(temp2, q << 3, (float*)buf); #endif } } } /* Post IFFT complex multiply plus IFFT complex conjugate*/ for( i=0; i < 128; i+=4) { /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */ #if 0 tmp_a_r = buf[(i + 0)].real; tmp_a_i = -1.0 * buf[(i + 0)].imag; buf[(i + 0)].real = (tmp_a_r * xcos1[(i + 0)]) - (tmp_a_i * xsin1[(i + 0)]); buf[(i + 0)].imag = (tmp_a_r * xsin1[(i + 0)]) + (tmp_a_i * xcos1[(i + 0)]); tmp_a_r = buf[(i + 1)].real; tmp_a_i = -1.0 * buf[(i + 1)].imag; buf[(i + 1)].real = (tmp_a_r * xcos1[(i + 1)]) - (tmp_a_i * xsin1[(i + 1)]); buf[(i + 1)].imag = (tmp_a_r * xsin1[(i + 1)]) + (tmp_a_i * xcos1[(i + 1)]); tmp_a_r = buf[(i + 2)].real; tmp_a_i = -1.0 * buf[(i + 2)].imag; buf[(i + 2)].real = (tmp_a_r * xcos1[(i + 2)]) - (tmp_a_i * xsin1[(i + 2)]); buf[(i + 2)].imag = (tmp_a_r * xsin1[(i + 2)]) + (tmp_a_i * xcos1[(i + 2)]); tmp_a_r = buf[(i + 3)].real; tmp_a_i = -1.0 * buf[(i + 3)].imag; buf[(i + 3)].real = (tmp_a_r * xcos1[(i + 3)]) - (tmp_a_i * xsin1[(i + 3)]); buf[(i + 3)].imag = (tmp_a_r * xsin1[(i + 3)]) + (tmp_a_i * xcos1[(i + 3)]); #else vector float bufv_0, bufv_2, cosv, sinv, temp1, temp2; vector float temp0022, temp1133, tempCS01; const vector float vczero = (const vector float)FOUROF(0.); bufv_0 = vec_ld((i + 0) << 3, (float*)buf); bufv_2 = vec_ld((i + 2) << 3, (float*)buf); cosv = vec_ld(i << 2, xcos1); sinv = vec_ld(i << 2, xsin1); temp0022 = vec_perm(bufv_0, bufv_0, vcprm(0,0,2,2)); temp1133 = vec_perm(bufv_0, bufv_0, vcprm(1,1,3,3)); tempCS01 = vec_perm(cosv, sinv, vcprm(0,s0,1,s1)); temp1 = vec_madd(temp0022, tempCS01, vczero); tempCS01 = vec_perm(cosv, sinv, vcprm(s0,0,s1,1)); temp2 = vec_madd(temp1133, tempCS01, vczero); bufv_0 = vec_madd(temp2, vcii(p,n,p,n), temp1); vec_st(bufv_0, (i + 0) << 3, (float*)buf); /* idem with bufv_2 and high-order cosv/sinv */ temp0022 = vec_perm(bufv_2, bufv_2, vcprm(0,0,2,2)); temp1133 = vec_perm(bufv_2, bufv_2, vcprm(1,1,3,3)); tempCS01 = vec_perm(cosv, sinv, vcprm(2,s2,3,s3)); temp1 = vec_madd(temp0022, tempCS01, vczero); tempCS01 = vec_perm(cosv, sinv, vcprm(s2,2,s3,3)); temp2 = vec_madd(temp1133, tempCS01, vczero); bufv_2 = vec_madd(temp2, vcii(p,n,p,n), temp1); vec_st(bufv_2, (i + 2) << 3, (float*)buf); #endif } data_ptr = data; delay_ptr = delay; window_ptr = a52_imdct_window; /* Window and convert to real valued signal */ for(i=0; i< 64; i++) { *data_ptr++ = -buf[64+i].imag * *window_ptr++ + *delay_ptr++ + bias; *data_ptr++ = buf[64-i-1].real * *window_ptr++ + *delay_ptr++ + bias; } for(i=0; i< 64; i++) { *data_ptr++ = -buf[i].real * *window_ptr++ + *delay_ptr++ + bias; *data_ptr++ = buf[128-i-1].imag * *window_ptr++ + *delay_ptr++ + bias; } /* The trailing edge of the window goes into the delay line */ delay_ptr = delay; for(i=0; i< 64; i++) { *delay_ptr++ = -buf[64+i].real * *--window_ptr; *delay_ptr++ = buf[64-i-1].imag * *--window_ptr; } for(i=0; i<64; i++) { *delay_ptr++ = buf[i].imag * *--window_ptr; *delay_ptr++ = -buf[128-i-1].real * *--window_ptr; } } #endif // Stuff below this line is borrowed from libac3 #include "srfftp.h" #if defined(ARCH_X86) || defined(ARCH_X86_64) #ifndef HAVE_3DNOW #define HAVE_3DNOW 1 #endif #include "srfftp_3dnow.h" const i_cmplx_t x_plus_minus_3dnow __attribute__ ((aligned (8))) = {{ 0x00000000UL, 0x80000000UL }}; const i_cmplx_t x_minus_plus_3dnow __attribute__ ((aligned (8))) = {{ 0x80000000UL, 0x00000000UL }}; const complex_t HSQRT2_3DNOW __attribute__ ((aligned (8))) = { 0.707106781188, 0.707106781188 }; #undef HAVE_3DNOWEX #include "imdct_3dnow.h" #define HAVE_3DNOWEX #include "imdct_3dnow.h" void imdct_do_512_sse(sample_t data[],sample_t delay[], sample_t bias) { /* int i,k; int p,q;*/ int m; long two_m; long two_m_plus_one; long two_m_plus_one_shl3; complex_t *buf_offset; /* sample_t tmp_a_i; sample_t tmp_a_r; sample_t tmp_b_i; sample_t tmp_b_r;*/ sample_t *data_ptr; sample_t *delay_ptr; sample_t *window_ptr; /* 512 IMDCT with source and dest data in 'data' */ /* see the c version (dct_do_512()), its allmost identical, just in C */ /* Pre IFFT complex multiply plus IFFT cmplx conjugate */ /* Bit reversed shuffling */ asm volatile( "xor %%"REG_S", %%"REG_S" \n\t" "lea "MANGLE(bit_reverse_512)", %%"REG_a"\n\t" "mov $1008, %%"REG_D" \n\t" "push %%"REG_BP" \n\t" //use ebp without telling gcc ASMALIGN(4) "1: \n\t" "movlps (%0, %%"REG_S"), %%xmm0 \n\t" // XXXI "movhps 8(%0, %%"REG_D"), %%xmm0 \n\t" // RXXI "movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // XXXi "movhps (%0, %%"REG_D"), %%xmm1 \n\t" // rXXi "shufps $0x33, %%xmm1, %%xmm0 \n\t" // irIR "movaps "MANGLE(sseSinCos1c)"(%%"REG_S"), %%xmm2\n\t" "mulps %%xmm0, %%xmm2 \n\t" "shufps $0xB1, %%xmm0, %%xmm0 \n\t" // riRI "mulps "MANGLE(sseSinCos1d)"(%%"REG_S"), %%xmm0\n\t" "subps %%xmm0, %%xmm2 \n\t" "movzb (%%"REG_a"), %%"REG_d" \n\t" "movzb 1(%%"REG_a"), %%"REG_BP" \n\t" "movlps %%xmm2, (%1, %%"REG_d", 8) \n\t" "movhps %%xmm2, (%1, %%"REG_BP", 8) \n\t" "add $16, %%"REG_S" \n\t" "add $2, %%"REG_a" \n\t" // avoid complex addressing for P4 crap "sub $16, %%"REG_D" \n\t" "jnc 1b \n\t" "pop %%"REG_BP" \n\t"//no we didnt touch ebp *g* :: "b" (data), "c" (buf) : "%"REG_S, "%"REG_D, "%"REG_a, "%"REG_d ); /* FFT Merge */ /* unoptimized variant for (m=1; m < 7; m++) { if(m) two_m = (1 << m); else two_m = 1; two_m_plus_one = (1 << (m+1)); for(i = 0; i < 128; i += two_m_plus_one) { for(k = 0; k < two_m; k++) { p = k + i; q = p + two_m; tmp_a_r = buf[p].real; tmp_a_i = buf[p].imag; tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag; tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag; buf[p].real = tmp_a_r + tmp_b_r; buf[p].imag = tmp_a_i + tmp_b_i; buf[q].real = tmp_a_r - tmp_b_r; buf[q].imag = tmp_a_i - tmp_b_i; } } } */ /* 1. iteration */ // Note w[0][0]={1,0} asm volatile( "xorps %%xmm1, %%xmm1 \n\t" "xorps %%xmm2, %%xmm2 \n\t" "mov %0, %%"REG_S" \n\t" ASMALIGN(4) "1: \n\t" "movlps (%%"REG_S"), %%xmm0\n\t" //buf[p] "movlps 8(%%"REG_S"), %%xmm1\n\t" //buf[q] "movhps (%%"REG_S"), %%xmm0\n\t" //buf[p] "movhps 8(%%"REG_S"), %%xmm2\n\t" //buf[q] "addps %%xmm1, %%xmm0 \n\t" "subps %%xmm2, %%xmm0 \n\t" "movaps %%xmm0, (%%"REG_S")\n\t" "add $16, %%"REG_S" \n\t" "cmp %1, %%"REG_S" \n\t" " jb 1b \n\t" :: "g" (buf), "r" (buf + 128) : "%"REG_S ); /* 2. iteration */ // Note w[1]={{1,0}, {0,-1}} asm volatile( "movaps "MANGLE(ps111_1)", %%xmm7\n\t" // 1,1,1,-1 "mov %0, %%"REG_S" \n\t" ASMALIGN(4) "1: \n\t" "movaps 16(%%"REG_S"), %%xmm2 \n\t" //r2,i2,r3,i3 "shufps $0xB4, %%xmm2, %%xmm2 \n\t" //r2,i2,i3,r3 "mulps %%xmm7, %%xmm2 \n\t" //r2,i2,i3,-r3 "movaps (%%"REG_S"), %%xmm0 \n\t" //r0,i0,r1,i1 "movaps (%%"REG_S"), %%xmm1 \n\t" //r0,i0,r1,i1 "addps %%xmm2, %%xmm0 \n\t" "subps %%xmm2, %%xmm1 \n\t" "movaps %%xmm0, (%%"REG_S") \n\t" "movaps %%xmm1, 16(%%"REG_S") \n\t" "add $32, %%"REG_S" \n\t" "cmp %1, %%"REG_S" \n\t" " jb 1b \n\t" :: "g" (buf), "r" (buf + 128) : "%"REG_S ); /* 3. iteration */ /* Note sseW2+0={1,1,sqrt(2),sqrt(2)) Note sseW2+16={0,0,sqrt(2),-sqrt(2)) Note sseW2+32={0,0,-sqrt(2),-sqrt(2)) Note sseW2+48={1,-1,sqrt(2),-sqrt(2)) */ asm volatile( "movaps 48+"MANGLE(sseW2)", %%xmm6\n\t" "movaps 16+"MANGLE(sseW2)", %%xmm7\n\t" "xorps %%xmm5, %%xmm5 \n\t" "xorps %%xmm2, %%xmm2 \n\t" "mov %0, %%"REG_S" \n\t" ASMALIGN(4) "1: \n\t" "movaps 32(%%"REG_S"), %%xmm2 \n\t" //r4,i4,r5,i5 "movaps 48(%%"REG_S"), %%xmm3 \n\t" //r6,i6,r7,i7 "movaps "MANGLE(sseW2)", %%xmm4 \n\t" //r4,i4,r5,i5 "movaps 32+"MANGLE(sseW2)", %%xmm5\n\t" //r6,i6,r7,i7 "mulps %%xmm2, %%xmm4 \n\t" "mulps %%xmm3, %%xmm5 \n\t" "shufps $0xB1, %%xmm2, %%xmm2 \n\t" //i4,r4,i5,r5 "shufps $0xB1, %%xmm3, %%xmm3 \n\t" //i6,r6,i7,r7 "mulps %%xmm6, %%xmm3 \n\t" "mulps %%xmm7, %%xmm2 \n\t" "movaps (%%"REG_S"), %%xmm0 \n\t" //r0,i0,r1,i1 "movaps 16(%%"REG_S"), %%xmm1 \n\t" //r2,i2,r3,i3 "addps %%xmm4, %%xmm2 \n\t" "addps %%xmm5, %%xmm3 \n\t" "movaps %%xmm2, %%xmm4 \n\t" "movaps %%xmm3, %%xmm5 \n\t" "addps %%xmm0, %%xmm2 \n\t" "addps %%xmm1, %%xmm3 \n\t" "subps %%xmm4, %%xmm0 \n\t" "subps %%xmm5, %%xmm1 \n\t" "movaps %%xmm2, (%%"REG_S") \n\t" "movaps %%xmm3, 16(%%"REG_S") \n\t" "movaps %%xmm0, 32(%%"REG_S") \n\t" "movaps %%xmm1, 48(%%"REG_S") \n\t" "add $64, %%"REG_S" \n\t" "cmp %1, %%"REG_S" \n\t" " jb 1b \n\t" :: "g" (buf), "r" (buf + 128) : "%"REG_S ); /* 4-7. iterations */ for (m=3; m < 7; m++) { two_m = (1 << m); two_m_plus_one = two_m<<1; two_m_plus_one_shl3 = (two_m_plus_one<<3); buf_offset = buf+128; asm volatile( "mov %0, %%"REG_S" \n\t" ASMALIGN(4) "1: \n\t" "xor %%"REG_D", %%"REG_D" \n\t" // k "lea (%%"REG_S", %3), %%"REG_d" \n\t" "2: \n\t" "movaps (%%"REG_d", %%"REG_D"), %%xmm1 \n\t" "movaps (%4, %%"REG_D", 2), %%xmm2 \n\t" "mulps %%xmm1, %%xmm2 \n\t" "shufps $0xB1, %%xmm1, %%xmm1 \n\t" "mulps 16(%4, %%"REG_D", 2), %%xmm1 \n\t" "movaps (%%"REG_S", %%"REG_D"), %%xmm0 \n\t" "addps %%xmm2, %%xmm1 \n\t" "movaps %%xmm1, %%xmm2 \n\t" "addps %%xmm0, %%xmm1 \n\t" "subps %%xmm2, %%xmm0 \n\t" "movaps %%xmm1, (%%"REG_S", %%"REG_D") \n\t" "movaps %%xmm0, (%%"REG_d", %%"REG_D") \n\t" "add $16, %%"REG_D" \n\t" "cmp %3, %%"REG_D" \n\t" //FIXME (opt) count against 0 "jb 2b \n\t" "add %2, %%"REG_S" \n\t" "cmp %1, %%"REG_S" \n\t" " jb 1b \n\t" :: "g" (buf), "m" (buf_offset), "m" (two_m_plus_one_shl3), "r" (two_m<<3), "r" (sseW[m]) : "%"REG_S, "%"REG_D, "%"REG_d ); } /* Post IFFT complex multiply plus IFFT complex conjugate*/ asm volatile( "mov $-1024, %%"REG_S" \n\t" ASMALIGN(4) "1: \n\t" "movaps (%0, %%"REG_S"), %%xmm0 \n\t" "movaps (%0, %%"REG_S"), %%xmm1 \n\t" "shufps $0xB1, %%xmm0, %%xmm0 \n\t" "mulps 1024+"MANGLE(sseSinCos1c)"(%%"REG_S"), %%xmm1\n\t" "mulps 1024+"MANGLE(sseSinCos1d)"(%%"REG_S"), %%xmm0\n\t" "addps %%xmm1, %%xmm0 \n\t" "movaps %%xmm0, (%0, %%"REG_S") \n\t" "add $16, %%"REG_S" \n\t" " jnz 1b \n\t" :: "r" (buf+128) : "%"REG_S ); data_ptr = data; delay_ptr = delay; window_ptr = a52_imdct_window; /* Window and convert to real valued signal */ asm volatile( "xor %%"REG_D", %%"REG_D" \n\t" // 0 "xor %%"REG_S", %%"REG_S" \n\t" // 0 "movss %3, %%xmm2 \n\t" // bias "shufps $0x00, %%xmm2, %%xmm2 \n\t" // bias, bias, ... ASMALIGN(4) "1: \n\t" "movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? A ? "movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? C ? "movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // ? D C ? "movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // ? B A ? "shufps $0x99, %%xmm1, %%xmm0 \n\t" // D C B A "mulps "MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t" "addps (%2, %%"REG_S"), %%xmm0 \n\t" "addps %%xmm2, %%xmm0 \n\t" "movaps %%xmm0, (%1, %%"REG_S") \n\t" "add $16, %%"REG_S" \n\t" "sub $16, %%"REG_D" \n\t" "cmp $512, %%"REG_S" \n\t" " jb 1b \n\t" :: "r" (buf+64), "r" (data_ptr), "r" (delay_ptr), "m" (bias) : "%"REG_S, "%"REG_D ); data_ptr+=128; delay_ptr+=128; // window_ptr+=128; asm volatile( "mov $1024, %%"REG_D" \n\t" // 512 "xor %%"REG_S", %%"REG_S" \n\t" // 0 "movss %3, %%xmm2 \n\t" // bias "shufps $0x00, %%xmm2, %%xmm2 \n\t" // bias, bias, ... ASMALIGN(4) "1: \n\t" "movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? ? A "movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? ? C "movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // D ? ? C "movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // B ? ? A "shufps $0xCC, %%xmm1, %%xmm0 \n\t" // D C B A "mulps 512+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t" "addps (%2, %%"REG_S"), %%xmm0 \n\t" "addps %%xmm2, %%xmm0 \n\t" "movaps %%xmm0, (%1, %%"REG_S") \n\t" "add $16, %%"REG_S" \n\t" "sub $16, %%"REG_D" \n\t" "cmp $512, %%"REG_S" \n\t" " jb 1b \n\t" :: "r" (buf), "r" (data_ptr), "r" (delay_ptr), "m" (bias) : "%"REG_S, "%"REG_D ); data_ptr+=128; // window_ptr+=128; /* The trailing edge of the window goes into the delay line */ delay_ptr = delay; asm volatile( "xor %%"REG_D", %%"REG_D" \n\t" // 0 "xor %%"REG_S", %%"REG_S" \n\t" // 0 ASMALIGN(4) "1: \n\t" "movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? ? A "movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? ? C "movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // D ? ? C "movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // B ? ? A "shufps $0xCC, %%xmm1, %%xmm0 \n\t" // D C B A "mulps 1024+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t" "movaps %%xmm0, (%1, %%"REG_S") \n\t" "add $16, %%"REG_S" \n\t" "sub $16, %%"REG_D" \n\t" "cmp $512, %%"REG_S" \n\t" " jb 1b \n\t" :: "r" (buf+64), "r" (delay_ptr) : "%"REG_S, "%"REG_D ); delay_ptr+=128; // window_ptr-=128; asm volatile( "mov $1024, %%"REG_D" \n\t" // 1024 "xor %%"REG_S", %%"REG_S" \n\t" // 0 ASMALIGN(4) "1: \n\t" "movlps (%0, %%"REG_S"), %%xmm0 \n\t" // ? ? A ? "movlps 8(%0, %%"REG_S"), %%xmm1 \n\t" // ? ? C ? "movhps -16(%0, %%"REG_D"), %%xmm1 \n\t" // ? D C ? "movhps -8(%0, %%"REG_D"), %%xmm0 \n\t" // ? B A ? "shufps $0x99, %%xmm1, %%xmm0 \n\t" // D C B A "mulps 1536+"MANGLE(sseWindow)"(%%"REG_S"), %%xmm0\n\t" "movaps %%xmm0, (%1, %%"REG_S") \n\t" "add $16, %%"REG_S" \n\t" "sub $16, %%"REG_D" \n\t" "cmp $512, %%"REG_S" \n\t" " jb 1b \n\t" :: "r" (buf), "r" (delay_ptr) : "%"REG_S, "%"REG_D ); } #endif // ARCH_X86 || ARCH_X86_64 void a52_imdct_256(sample_t * data, sample_t * delay, sample_t bias) { int i, k; sample_t t_r, t_i, a_r, a_i, b_r, b_i, c_r, c_i, d_r, d_i, w_1, w_2; const sample_t * window = a52_imdct_window; complex_t buf1[64], buf2[64]; /* Pre IFFT complex multiply plus IFFT cmplx conjugate */ for (i = 0; i < 64; i++) { k = fftorder[i]; t_r = pre2[i].real; t_i = pre2[i].imag; buf1[i].real = t_i * data[254-k] + t_r * data[k]; buf1[i].imag = t_r * data[254-k] - t_i * data[k]; buf2[i].real = t_i * data[255-k] + t_r * data[k+1]; buf2[i].imag = t_r * data[255-k] - t_i * data[k+1]; } ifft64 (buf1); ifft64 (buf2); /* Post IFFT complex multiply */ /* Window and convert to real valued signal */ for (i = 0; i < 32; i++) { /* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */ t_r = post2[i].real; t_i = post2[i].imag; a_r = t_r * buf1[i].real + t_i * buf1[i].imag; a_i = t_i * buf1[i].real - t_r * buf1[i].imag; b_r = t_i * buf1[63-i].real + t_r * buf1[63-i].imag; b_i = t_r * buf1[63-i].real - t_i * buf1[63-i].imag; c_r = t_r * buf2[i].real + t_i * buf2[i].imag; c_i = t_i * buf2[i].real - t_r * buf2[i].imag; d_r = t_i * buf2[63-i].real + t_r * buf2[63-i].imag; d_i = t_r * buf2[63-i].real - t_i * buf2[63-i].imag; w_1 = window[2*i]; w_2 = window[255-2*i]; data[2*i] = delay[2*i] * w_2 - a_r * w_1 + bias; data[255-2*i] = delay[2*i] * w_1 + a_r * w_2 + bias; delay[2*i] = c_i; w_1 = window[128+2*i]; w_2 = window[127-2*i]; data[128+2*i] = delay[127-2*i] * w_2 + a_i * w_1 + bias; data[127-2*i] = delay[127-2*i] * w_1 - a_i * w_2 + bias; delay[127-2*i] = c_r; w_1 = window[2*i+1]; w_2 = window[254-2*i]; data[2*i+1] = delay[2*i+1] * w_2 - b_i * w_1 + bias; data[254-2*i] = delay[2*i+1] * w_1 + b_i * w_2 + bias; delay[2*i+1] = d_r; w_1 = window[129+2*i]; w_2 = window[126-2*i]; data[129+2*i] = delay[126-2*i] * w_2 + b_r * w_1 + bias; data[126-2*i] = delay[126-2*i] * w_1 - b_r * w_2 + bias; delay[126-2*i] = d_i; } } static double besselI0 (double x) { double bessel = 1; int i = 100; do bessel = bessel * x / (i * i) + 1; while (--i); return bessel; } void a52_imdct_init (uint32_t mm_accel) { int i, j, k; double sum; /* compute imdct window - kaiser-bessel derived window, alpha = 5.0 */ sum = 0; for (i = 0; i < 256; i++) { sum += besselI0 (i * (256 - i) * (5 * M_PI / 256) * (5 * M_PI / 256)); a52_imdct_window[i] = sum; } sum++; for (i = 0; i < 256; i++) a52_imdct_window[i] = sqrt (a52_imdct_window[i] / sum); for (i = 0; i < 3; i++) roots16[i] = cos ((M_PI / 8) * (i + 1)); for (i = 0; i < 7; i++) roots32[i] = cos ((M_PI / 16) * (i + 1)); for (i = 0; i < 15; i++) roots64[i] = cos ((M_PI / 32) * (i + 1)); for (i = 0; i < 31; i++) roots128[i] = cos ((M_PI / 64) * (i + 1)); for (i = 0; i < 64; i++) { k = fftorder[i] / 2 + 64; pre1[i].real = cos ((M_PI / 256) * (k - 0.25)); pre1[i].imag = sin ((M_PI / 256) * (k - 0.25)); } for (i = 64; i < 128; i++) { k = fftorder[i] / 2 + 64; pre1[i].real = -cos ((M_PI / 256) * (k - 0.25)); pre1[i].imag = -sin ((M_PI / 256) * (k - 0.25)); } for (i = 0; i < 64; i++) { post1[i].real = cos ((M_PI / 256) * (i + 0.5)); post1[i].imag = sin ((M_PI / 256) * (i + 0.5)); } for (i = 0; i < 64; i++) { k = fftorder[i] / 4; pre2[i].real = cos ((M_PI / 128) * (k - 0.25)); pre2[i].imag = sin ((M_PI / 128) * (k - 0.25)); } for (i = 0; i < 32; i++) { post2[i].real = cos ((M_PI / 128) * (i + 0.5)); post2[i].imag = sin ((M_PI / 128) * (i + 0.5)); } for (i = 0; i < 128; i++) { xcos1[i] = -cos ((M_PI / 2048) * (8 * i + 1)); xsin1[i] = -sin ((M_PI / 2048) * (8 * i + 1)); } for (i = 0; i < 7; i++) { j = 1 << i; for (k = 0; k < j; k++) { w[i][k].real = cos (-M_PI * k / j); w[i][k].imag = sin (-M_PI * k / j); } } #if defined(ARCH_X86) || defined(ARCH_X86_64) for (i = 0; i < 128; i++) { sseSinCos1c[2*i+0]= xcos1[i]; sseSinCos1c[2*i+1]= -xcos1[i]; sseSinCos1d[2*i+0]= xsin1[i]; sseSinCos1d[2*i+1]= xsin1[i]; } for (i = 1; i < 7; i++) { j = 1 << i; for (k = 0; k < j; k+=2) { sseW[i][4*k + 0] = w[i][k+0].real; sseW[i][4*k + 1] = w[i][k+0].real; sseW[i][4*k + 2] = w[i][k+1].real; sseW[i][4*k + 3] = w[i][k+1].real; sseW[i][4*k + 4] = -w[i][k+0].imag; sseW[i][4*k + 5] = w[i][k+0].imag; sseW[i][4*k + 6] = -w[i][k+1].imag; sseW[i][4*k + 7] = w[i][k+1].imag; //we multiply more or less uninitalized numbers so we need to use exactly 0.0 if(k==0) { // sseW[i][4*k + 0]= sseW[i][4*k + 1]= 1.0; sseW[i][4*k + 4]= sseW[i][4*k + 5]= 0.0; } if(2*k == j) { sseW[i][4*k + 0]= sseW[i][4*k + 1]= 0.0; // sseW[i][4*k + 4]= -(sseW[i][4*k + 5]= -1.0); } } } for(i=0; i<128; i++) { sseWindow[2*i+0]= -a52_imdct_window[2*i+0]; sseWindow[2*i+1]= a52_imdct_window[2*i+1]; } for(i=0; i<64; i++) { sseWindow[256 + 2*i+0]= -a52_imdct_window[254 - 2*i+1]; sseWindow[256 + 2*i+1]= a52_imdct_window[254 - 2*i+0]; sseWindow[384 + 2*i+0]= a52_imdct_window[126 - 2*i+1]; sseWindow[384 + 2*i+1]= -a52_imdct_window[126 - 2*i+0]; } #endif a52_imdct_512 = imdct_do_512; ifft128 = ifft128_c; ifft64 = ifft64_c; #if defined(ARCH_X86) || defined(ARCH_X86_64) if(mm_accel & MM_ACCEL_X86_SSE) { fprintf (stderr, "Using SSE optimized IMDCT transform\n"); a52_imdct_512 = imdct_do_512_sse; } else if(mm_accel & MM_ACCEL_X86_3DNOWEXT) { fprintf (stderr, "Using 3DNowEx optimized IMDCT transform\n"); a52_imdct_512 = imdct_do_512_3dnowex; } else if(mm_accel & MM_ACCEL_X86_3DNOW) { fprintf (stderr, "Using 3DNow optimized IMDCT transform\n"); a52_imdct_512 = imdct_do_512_3dnow; } else #endif // ARCH_X86 || ARCH_X86_64 #ifdef HAVE_ALTIVEC if (mm_accel & MM_ACCEL_PPC_ALTIVEC) { fprintf(stderr, "Using AltiVec optimized IMDCT transform\n"); a52_imdct_512 = imdct_do_512_altivec; } else #endif #ifdef LIBA52_DJBFFT if (mm_accel & MM_ACCEL_DJBFFT) { fprintf (stderr, "Using djbfft for IMDCT transform\n"); ifft128 = (void (*) (complex_t *)) fftc4_un128; ifft64 = (void (*) (complex_t *)) fftc4_un64; } else #endif { fprintf (stderr, "No accelerated IMDCT transform found\n"); } }