#include "config.h" #include "cpudetect.h" #include "mp_msg.h" CpuCaps gCpuCaps; #ifdef HAVE_MALLOC_H #include #endif #include #ifdef ARCH_X86 #include #include #if defined (__NetBSD__) || defined(__OpenBSD__) #include #include #include #endif #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) #include #include #endif #ifdef __linux__ #include #endif #ifdef WIN32 #include #endif #ifdef __AMIGAOS4__ #include #endif //#define X86_FXSR_MAGIC /* Thanks to the FreeBSD project for some of this cpuid code, and * help understanding how to use it. Thanks to the Mesa * team for SSE support detection and more cpu detect code. */ /* I believe this code works. However, it has only been used on a PII and PIII */ static void check_os_katmai_support( void ); #if 1 // return TRUE if cpuid supported static int has_cpuid(void) { long a, c; // code from libavcodec: __asm__ __volatile__ ( /* See if CPUID instruction is supported ... */ /* ... Get copies of EFLAGS into eax and ecx */ "pushf\n\t" "pop %0\n\t" "mov %0, %1\n\t" /* ... Toggle the ID bit in one copy and store */ /* to the EFLAGS reg */ "xor $0x200000, %0\n\t" "push %0\n\t" "popf\n\t" /* ... Get the (hopefully modified) EFLAGS */ "pushf\n\t" "pop %0\n\t" : "=a" (a), "=c" (c) : : "cc" ); return (a!=c); } #endif static void do_cpuid(unsigned int ax, unsigned int *p) { #if 0 __asm __volatile( "cpuid;" : "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax) ); #else // code from libavcodec: __asm __volatile ("mov %%"REG_b", %%"REG_S"\n\t" "cpuid\n\t" "xchg %%"REG_b", %%"REG_S : "=a" (p[0]), "=S" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax)); #endif } void GetCpuCaps( CpuCaps *caps) { unsigned int regs[4]; unsigned int regs2[4]; memset(caps, 0, sizeof(*caps)); caps->isX86=1; caps->cl_size=32; /* default */ if (!has_cpuid()) { mp_msg(MSGT_CPUDETECT,MSGL_WARN,"CPUID not supported!??? (maybe an old 486?)\n"); return; } do_cpuid(0x00000000, regs); // get _max_ cpuid level and vendor name mp_msg(MSGT_CPUDETECT,MSGL_V,"CPU vendor name: %.4s%.4s%.4s max cpuid level: %d\n", (char*) (regs+1),(char*) (regs+3),(char*) (regs+2), regs[0]); if (regs[0]>=0x00000001) { char *tmpstr, *ptmpstr; unsigned cl_size; do_cpuid(0x00000001, regs2); caps->cpuType=(regs2[0] >> 8)&0xf; caps->cpuModel=(regs2[0] >> 4)&0xf; // see AMD64 Architecture Programmer's Manual, Volume 3: General-purpose and // System Instructions, Table 3-2: Effective family computation, page 120. if(caps->cpuType==0xf){ // use extended family (P4, IA64, K8) caps->cpuType=0xf+((regs2[0]>>20)&255); } if(caps->cpuType==0xf || caps->cpuType==6) caps->cpuModel |= ((regs2[0]>>16)&0xf) << 4; caps->cpuStepping=regs2[0] & 0xf; // general feature flags: caps->hasTSC = (regs2[3] & (1 << 8 )) >> 8; // 0x0000010 caps->hasMMX = (regs2[3] & (1 << 23 )) >> 23; // 0x0800000 caps->hasSSE = (regs2[3] & (1 << 25 )) >> 25; // 0x2000000 caps->hasSSE2 = (regs2[3] & (1 << 26 )) >> 26; // 0x4000000 caps->hasMMX2 = caps->hasSSE; // SSE cpus supports mmxext too cl_size = ((regs2[1] >> 8) & 0xFF)*8; if(cl_size) caps->cl_size = cl_size; ptmpstr=tmpstr=GetCpuFriendlyName(regs, regs2); while(*ptmpstr == ' ') // strip leading spaces ptmpstr++; mp_msg(MSGT_CPUDETECT,MSGL_INFO,"CPU: %s ", ptmpstr); free(tmpstr); mp_msg(MSGT_CPUDETECT,MSGL_INFO,"(Family: %d, Model: %d, Stepping: %d)\n", caps->cpuType, caps->cpuModel, caps->cpuStepping); } do_cpuid(0x80000000, regs); if (regs[0]>=0x80000001) { mp_msg(MSGT_CPUDETECT,MSGL_V,"extended cpuid-level: %d\n",regs[0]&0x7FFFFFFF); do_cpuid(0x80000001, regs2); caps->hasMMX |= (regs2[3] & (1 << 23 )) >> 23; // 0x0800000 caps->hasMMX2 |= (regs2[3] & (1 << 22 )) >> 22; // 0x400000 caps->has3DNow = (regs2[3] & (1 << 31 )) >> 31; //0x80000000 caps->has3DNowExt = (regs2[3] & (1 << 30 )) >> 30; } if(regs[0]>=0x80000006) { do_cpuid(0x80000006, regs2); mp_msg(MSGT_CPUDETECT,MSGL_V,"extended cache-info: %d\n",regs2[2]&0x7FFFFFFF); caps->cl_size = regs2[2] & 0xFF; } mp_msg(MSGT_CPUDETECT,MSGL_V,"Detected cache-line size is %u bytes\n",caps->cl_size); #if 0 mp_msg(MSGT_CPUDETECT,MSGL_INFO,"cpudetect: MMX=%d MMX2=%d SSE=%d SSE2=%d 3DNow=%d 3DNowExt=%d\n", gCpuCaps.hasMMX, gCpuCaps.hasMMX2, gCpuCaps.hasSSE, gCpuCaps.hasSSE2, gCpuCaps.has3DNow, gCpuCaps.has3DNowExt ); #endif /* FIXME: Does SSE2 need more OS support, too? */ #if defined(__linux__) || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__NetBSD__) || defined(__CYGWIN__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__APPLE__) if (caps->hasSSE) check_os_katmai_support(); if (!caps->hasSSE) caps->hasSSE2 = 0; #else caps->hasSSE=0; caps->hasSSE2 = 0; #endif // caps->has3DNow=1; // caps->hasMMX2 = 0; // caps->hasMMX = 0; #ifndef HAVE_MMX if(caps->hasMMX) mp_msg(MSGT_CPUDETECT,MSGL_WARN,"MMX supported but disabled\n"); caps->hasMMX=0; #endif #ifndef HAVE_MMX2 if(caps->hasMMX2) mp_msg(MSGT_CPUDETECT,MSGL_WARN,"MMX2 supported but disabled\n"); caps->hasMMX2=0; #endif #ifndef HAVE_SSE if(caps->hasSSE) mp_msg(MSGT_CPUDETECT,MSGL_WARN,"SSE supported but disabled\n"); caps->hasSSE=0; #endif #ifndef HAVE_SSE2 if(caps->hasSSE2) mp_msg(MSGT_CPUDETECT,MSGL_WARN,"SSE2 supported but disabled\n"); caps->hasSSE2=0; #endif #ifndef HAVE_3DNOW if(caps->has3DNow) mp_msg(MSGT_CPUDETECT,MSGL_WARN,"3DNow supported but disabled\n"); caps->has3DNow=0; #endif #ifndef HAVE_3DNOWEX if(caps->has3DNowExt) mp_msg(MSGT_CPUDETECT,MSGL_WARN,"3DNowExt supported but disabled\n"); caps->has3DNowExt=0; #endif } #define CPUID_EXTFAMILY ((regs2[0] >> 20)&0xFF) /* 27..20 */ #define CPUID_EXTMODEL ((regs2[0] >> 16)&0x0F) /* 19..16 */ #define CPUID_TYPE ((regs2[0] >> 12)&0x04) /* 13..12 */ #define CPUID_FAMILY ((regs2[0] >> 8)&0x0F) /* 11..08 */ #define CPUID_MODEL ((regs2[0] >> 4)&0x0F) /* 07..04 */ #define CPUID_STEPPING ((regs2[0] >> 0)&0x0F) /* 03..00 */ char *GetCpuFriendlyName(unsigned int regs[], unsigned int regs2[]){ #include "cputable.h" /* get cpuname and cpuvendors */ char vendor[13]; char *retname; int i; if (NULL==(retname=malloc(256))) { mp_msg(MSGT_CPUDETECT,MSGL_FATAL,"Error: GetCpuFriendlyName() not enough memory\n"); exit(1); } sprintf(vendor,"%.4s%.4s%.4s",(char*)(regs+1),(char*)(regs+3),(char*)(regs+2)); do_cpuid(0x80000000,regs); if (regs[0] >= 0x80000004) { // CPU has built-in namestring retname[0] = '\0'; for (i = 0x80000002; i <= 0x80000004; i++) { do_cpuid(i, regs); strncat(retname, (char*)regs, 16); } return retname; } for(i=0; imagic != 0xffff ) { /* Our signal context has the extended FPU state, so reset the * divide-by-zero exception mask and clear the divide-by-zero * exception bit. */ sc.fpstate->mxcsr |= 0x00000200; sc.fpstate->mxcsr &= 0xfffffffb; } else { /* If we ever get here, we're completely hosed. */ mp_msg(MSGT_CPUDETECT,MSGL_V, "\n\n" ); mp_msg(MSGT_CPUDETECT,MSGL_V, "SSE enabling test failed badly!" ); } } #endif /* __linux__ && _POSIX_SOURCE && X86_FXSR_MAGIC */ #ifdef WIN32 LONG CALLBACK win32_sig_handler_sse(EXCEPTION_POINTERS* ep) { if(ep->ExceptionRecord->ExceptionCode==EXCEPTION_ILLEGAL_INSTRUCTION){ mp_msg(MSGT_CPUDETECT,MSGL_V, "SIGILL, " ); ep->ContextRecord->Eip +=3; gCpuCaps.hasSSE=0; return EXCEPTION_CONTINUE_EXECUTION; } return EXCEPTION_CONTINUE_SEARCH; } #endif /* WIN32 */ /* If we're running on a processor that can do SSE, let's see if we * are allowed to or not. This will catch 2.4.0 or later kernels that * haven't been configured for a Pentium III but are running on one, * and RedHat patched 2.2 kernels that have broken exception handling * support for user space apps that do SSE. */ #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) #define SSE_SYSCTL_NAME "hw.instruction_sse" #elif defined(__APPLE__) #define SSE_SYSCTL_NAME "hw.optional.sse" #endif static void check_os_katmai_support( void ) { #ifdef ARCH_X86_64 gCpuCaps.hasSSE=1; gCpuCaps.hasSSE2=1; #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__APPLE__) int has_sse=0, ret; size_t len=sizeof(has_sse); ret = sysctlbyname(SSE_SYSCTL_NAME, &has_sse, &len, NULL, 0); if (ret || !has_sse) gCpuCaps.hasSSE=0; #elif defined(__NetBSD__) || defined (__OpenBSD__) #if __NetBSD_Version__ >= 105250000 || (defined __OpenBSD__) int has_sse, has_sse2, ret, mib[2]; size_t varlen; mib[0] = CTL_MACHDEP; mib[1] = CPU_SSE; varlen = sizeof(has_sse); mp_msg(MSGT_CPUDETECT,MSGL_V, "Testing OS support for SSE... " ); ret = sysctl(mib, 2, &has_sse, &varlen, NULL, 0); if (ret < 0 || !has_sse) { gCpuCaps.hasSSE=0; mp_msg(MSGT_CPUDETECT,MSGL_V, "no!\n" ); } else { gCpuCaps.hasSSE=1; mp_msg(MSGT_CPUDETECT,MSGL_V, "yes!\n" ); } mib[1] = CPU_SSE2; varlen = sizeof(has_sse2); mp_msg(MSGT_CPUDETECT,MSGL_V, "Testing OS support for SSE2... " ); ret = sysctl(mib, 2, &has_sse2, &varlen, NULL, 0); if (ret < 0 || !has_sse2) { gCpuCaps.hasSSE2=0; mp_msg(MSGT_CPUDETECT,MSGL_V, "no!\n" ); } else { gCpuCaps.hasSSE2=1; mp_msg(MSGT_CPUDETECT,MSGL_V, "yes!\n" ); } #else gCpuCaps.hasSSE = 0; mp_msg(MSGT_CPUDETECT,MSGL_WARN, "No OS support for SSE, disabling to be safe.\n" ); #endif #elif defined(WIN32) LPTOP_LEVEL_EXCEPTION_FILTER exc_fil; if ( gCpuCaps.hasSSE ) { mp_msg(MSGT_CPUDETECT,MSGL_V, "Testing OS support for SSE... " ); exc_fil = SetUnhandledExceptionFilter(win32_sig_handler_sse); __asm __volatile ("xorps %xmm0, %xmm0"); SetUnhandledExceptionFilter(exc_fil); if ( gCpuCaps.hasSSE ) mp_msg(MSGT_CPUDETECT,MSGL_V, "yes.\n" ); else mp_msg(MSGT_CPUDETECT,MSGL_V, "no!\n" ); } #elif defined(__linux__) #if defined(_POSIX_SOURCE) && defined(X86_FXSR_MAGIC) struct sigaction saved_sigill; struct sigaction saved_sigfpe; /* Save the original signal handlers. */ sigaction( SIGILL, NULL, &saved_sigill ); sigaction( SIGFPE, NULL, &saved_sigfpe ); signal( SIGILL, (void (*)(int))sigill_handler_sse ); signal( SIGFPE, (void (*)(int))sigfpe_handler_sse ); /* Emulate test for OSFXSR in CR4. The OS will set this bit if it * supports the extended FPU save and restore required for SSE. If * we execute an SSE instruction on a PIII and get a SIGILL, the OS * doesn't support Streaming SIMD Exceptions, even if the processor * does. */ if ( gCpuCaps.hasSSE ) { mp_msg(MSGT_CPUDETECT,MSGL_V, "Testing OS support for SSE... " ); // __asm __volatile ("xorps %%xmm0, %%xmm0"); __asm __volatile ("xorps %xmm0, %xmm0"); if ( gCpuCaps.hasSSE ) { mp_msg(MSGT_CPUDETECT,MSGL_V, "yes.\n" ); } else { mp_msg(MSGT_CPUDETECT,MSGL_V, "no!\n" ); } } /* Emulate test for OSXMMEXCPT in CR4. The OS will set this bit if * it supports unmasked SIMD FPU exceptions. If we unmask the * exceptions, do a SIMD divide-by-zero and get a SIGILL, the OS * doesn't support unmasked SIMD FPU exceptions. If we get a SIGFPE * as expected, we're okay but we need to clean up after it. * * Are we being too stringent in our requirement that the OS support * unmasked exceptions? Certain RedHat 2.2 kernels enable SSE by * setting CR4.OSFXSR but don't support unmasked exceptions. Win98 * doesn't even support them. We at least know the user-space SSE * support is good in kernels that do support unmasked exceptions, * and therefore to be safe I'm going to leave this test in here. */ if ( gCpuCaps.hasSSE ) { mp_msg(MSGT_CPUDETECT,MSGL_V, "Testing OS support for SSE unmasked exceptions... " ); // test_os_katmai_exception_support(); if ( gCpuCaps.hasSSE ) { mp_msg(MSGT_CPUDETECT,MSGL_V, "yes.\n" ); } else { mp_msg(MSGT_CPUDETECT,MSGL_V, "no!\n" ); } } /* Restore the original signal handlers. */ sigaction( SIGILL, &saved_sigill, NULL ); sigaction( SIGFPE, &saved_sigfpe, NULL ); /* If we've gotten to here and the XMM CPUID bit is still set, we're * safe to go ahead and hook out the SSE code throughout Mesa. */ if ( gCpuCaps.hasSSE ) { mp_msg(MSGT_CPUDETECT,MSGL_V, "Tests of OS support for SSE passed.\n" ); } else { mp_msg(MSGT_CPUDETECT,MSGL_V, "Tests of OS support for SSE failed!\n" ); } #else /* We can't use POSIX signal handling to test the availability of * SSE, so we disable it by default. */ mp_msg(MSGT_CPUDETECT,MSGL_WARN, "Cannot test OS support for SSE, disabling to be safe.\n" ); gCpuCaps.hasSSE=0; #endif /* _POSIX_SOURCE && X86_FXSR_MAGIC */ #else /* Do nothing on other platforms for now. */ mp_msg(MSGT_CPUDETECT,MSGL_WARN, "Cannot test OS support for SSE, leaving disabled.\n" ); gCpuCaps.hasSSE=0; #endif /* __linux__ */ } #else /* ARCH_X86 */ #ifdef SYS_DARWIN #include #else #ifndef __AMIGAOS4__ #include #include static sigjmp_buf jmpbuf; static volatile sig_atomic_t canjump = 0; static void sigill_handler (int sig) { if (!canjump) { signal (sig, SIG_DFL); raise (sig); } canjump = 0; siglongjmp (jmpbuf, 1); } #endif //__AMIGAOS4__ #endif void GetCpuCaps( CpuCaps *caps) { caps->cpuType=0; caps->cpuModel=0; caps->cpuStepping=0; caps->hasMMX=0; caps->hasMMX2=0; caps->has3DNow=0; caps->has3DNowExt=0; caps->hasSSE=0; caps->hasSSE2=0; caps->isX86=0; caps->hasAltiVec = 0; #ifdef HAVE_ALTIVEC #ifdef SYS_DARWIN /* rip-off from ffmpeg altivec detection code. this code also appears on Apple's AltiVec pages. */ { int sels[2] = {CTL_HW, HW_VECTORUNIT}; int has_vu = 0; size_t len = sizeof(has_vu); int err; err = sysctl(sels, 2, &has_vu, &len, NULL, 0); if (err == 0) if (has_vu != 0) caps->hasAltiVec = 1; } #else /* SYS_DARWIN */ #ifdef __AMIGAOS4__ ULONG result = 0; GetCPUInfoTags(GCIT_VectorUnit, &result, TAG_DONE); if (result == VECTORTYPE_ALTIVEC) caps->hasAltiVec = 1; #else /* no Darwin, do it the brute-force way */ /* this is borrowed from the libmpeg2 library */ { signal (SIGILL, sigill_handler); if (sigsetjmp (jmpbuf, 1)) { signal (SIGILL, SIG_DFL); } else { canjump = 1; asm volatile ("mtspr 256, %0\n\t" "vand %%v0, %%v0, %%v0" : : "r" (-1)); signal (SIGILL, SIG_DFL); caps->hasAltiVec = 1; } } #endif //__AMIGAOS4__ #endif /* SYS_DARWIN */ mp_msg(MSGT_CPUDETECT,MSGL_INFO,"AltiVec %sfound\n", (caps->hasAltiVec ? "" : "not ")); #endif /* HAVE_ALTIVEC */ #ifdef ARCH_IA64 mp_msg(MSGT_CPUDETECT,MSGL_INFO,"CPU: Intel Itanium\n"); #endif #ifdef ARCH_SPARC mp_msg(MSGT_CPUDETECT,MSGL_INFO,"CPU: Sun Sparc\n"); #endif #ifdef ARCH_ARMV4L mp_msg(MSGT_CPUDETECT,MSGL_INFO,"CPU: ARM\n"); #endif #ifdef ARCH_POWERPC mp_msg(MSGT_CPUDETECT,MSGL_INFO,"CPU: PowerPC\n"); #endif #ifdef ARCH_ALPHA mp_msg(MSGT_CPUDETECT,MSGL_INFO,"CPU: Digital Alpha\n"); #endif #ifdef ARCH_SGI_MIPS mp_msg(MSGT_CPUDETECT,MSGL_INFO,"CPU: SGI MIPS\n"); #endif #ifdef ARCH_PA_RISC mp_msg(MSGT_CPUDETECT,MSGL_INFO,"CPU: Hewlett-Packard PA-RISC\n"); #endif #ifdef ARCH_S390 mp_msg(MSGT_CPUDETECT,MSGL_INFO,"CPU: IBM S/390\n"); #endif #ifdef ARCH_S390X mp_msg(MSGT_CPUDETECT,MSGL_INFO,"CPU: IBM S/390X\n"); #endif #ifdef ARCH_VAX mp_msg(MSGT_CPUDETECT,MSGL_INFO, "CPU: Digital VAX\n" ); #endif } #endif /* !ARCH_X86 */