/* * Copyright (C) 2001 Anders Johansson ajh@atri.curtin.edu.au * * This file is part of MPlayer. * * MPlayer is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * MPlayer is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with MPlayer; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ /* Calculates a number of window functions. The following window functions are currently implemented: Boxcar, Triang, Hanning, Hamming, Blackman, Flattop and Kaiser. In the function call n is the number of filter taps and w the buffer in which the filter coefficients will be stored. */ #include #include "dsp.h" /* // Boxcar // // n window length // w buffer for the window parameters */ void af_window_boxcar(int n, FLOAT_TYPE* w) { int i; // Calculate window coefficients for (i=0 ; i> 1; int i; // Calculate window coefficients for (i=0 ; i= BIZ_EPSILON * sum); return sum; } /* // Kaiser // // n window length // w buffer for the window parameters // b beta parameter of Kaiser window, Beta >= 1 // // Beta trades the rejection of the low pass filter against the // transition width from passband to stop band. Larger Beta means a // slower transition and greater stop band rejection. See Rabiner and // Gold (Theory and Application of DSP) under Kaiser windows for more // about Beta. The following table from Rabiner and Gold gives some // feel for the effect of Beta: // // All ripples in dB, width of transition band = D*N where N = window // length // // BETA D PB RIP SB RIP // 2.120 1.50 +-0.27 -30 // 3.384 2.23 0.0864 -40 // 4.538 2.93 0.0274 -50 // 5.658 3.62 0.00868 -60 // 6.764 4.32 0.00275 -70 // 7.865 5.0 0.000868 -80 // 8.960 5.7 0.000275 -90 // 10.056 6.4 0.000087 -100 */ void af_window_kaiser(int n, FLOAT_TYPE* w, FLOAT_TYPE b) { FLOAT_TYPE tmp; FLOAT_TYPE k1 = 1.0/besselizero(b); int k2 = 1 - (n & 1); int end = (n + 1) >> 1; int i; // Calculate window coefficients for (i=0 ; i