/* * scaletempo audio filter * * scale tempo while maintaining pitch * (WSOLA technique with cross correlation) * inspired by SoundTouch library by Olli Parviainen * * basic algorithm * - produce 'stride' output samples per loop * - consume stride*scale input samples per loop * * to produce smoother transitions between strides, blend next overlap * samples from last stride with correlated samples of current input * * Copyright (c) 2007 Robert Juliano * * This file is part of MPlayer. * * MPlayer is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * MPlayer is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with MPlayer; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include "mpvcore/mp_common.h" #include "af.h" #include "mpvcore/m_option.h" // Data for specific instances of this filter typedef struct af_scaletempo_s { // stride float scale; float speed; int frames_stride; float frames_stride_scaled; float frames_stride_error; int bytes_per_frame; int bytes_stride; int bytes_queue; int bytes_queued; int bytes_to_slide; int8_t *buf_queue; // overlap int samples_overlap; int samples_standing; int bytes_overlap; int bytes_standing; void *buf_overlap; void *table_blend; void (*output_overlap)(struct af_scaletempo_s *s, void *out_buf, int bytes_off); // best overlap int frames_search; int num_channels; void *buf_pre_corr; void *table_window; int (*best_overlap_offset)(struct af_scaletempo_s *s); // command line float scale_nominal; float ms_stride; float percent_overlap; float ms_search; int speed_opt; short speed_tempo; short speed_pitch; } af_scaletempo_t; static int fill_queue(struct af_instance *af, struct mp_audio *data, int offset) { af_scaletempo_t *s = af->priv; int bytes_in = mp_audio_psize(data) - offset; int offset_unchanged = offset; if (s->bytes_to_slide > 0) { if (s->bytes_to_slide < s->bytes_queued) { int bytes_move = s->bytes_queued - s->bytes_to_slide; memmove(s->buf_queue, s->buf_queue + s->bytes_to_slide, bytes_move); s->bytes_to_slide = 0; s->bytes_queued = bytes_move; } else { int bytes_skip; s->bytes_to_slide -= s->bytes_queued; bytes_skip = MPMIN(s->bytes_to_slide, bytes_in); s->bytes_queued = 0; s->bytes_to_slide -= bytes_skip; offset += bytes_skip; bytes_in -= bytes_skip; } } if (bytes_in > 0) { int bytes_copy = MPMIN(s->bytes_queue - s->bytes_queued, bytes_in); assert(bytes_copy >= 0); memcpy(s->buf_queue + s->bytes_queued, (int8_t *)data->planes[0] + offset, bytes_copy); s->bytes_queued += bytes_copy; offset += bytes_copy; } return offset - offset_unchanged; } #define UNROLL_PADDING (4 * 4) static int best_overlap_offset_float(af_scaletempo_t *s) { float best_corr = INT_MIN; int best_off = 0; float *pw = s->table_window; float *po = s->buf_overlap; po += s->num_channels; float *ppc = s->buf_pre_corr; for (int i = s->num_channels; i < s->samples_overlap; i++) *ppc++ = *pw++ **po++; float *search_start = (float *)s->buf_queue + s->num_channels; for (int off = 0; off < s->frames_search; off++) { float corr = 0; float *ps = search_start; ppc = s->buf_pre_corr; for (int i = s->num_channels; i < s->samples_overlap; i++) corr += *ppc++ **ps++; if (corr > best_corr) { best_corr = corr; best_off = off; } search_start += s->num_channels; } return best_off * 4 * s->num_channels; } static int best_overlap_offset_s16(af_scaletempo_t *s) { int64_t best_corr = INT64_MIN; int best_off = 0; int32_t *pw = s->table_window; int16_t *po = s->buf_overlap; po += s->num_channels; int32_t *ppc = s->buf_pre_corr; for (long i = s->num_channels; i < s->samples_overlap; i++) *ppc++ = (*pw++ **po++) >> 15; int16_t *search_start = (int16_t *)s->buf_queue + s->num_channels; for (int off = 0; off < s->frames_search; off++) { int64_t corr = 0; int16_t *ps = search_start; ppc = s->buf_pre_corr; ppc += s->samples_overlap - s->num_channels; ps += s->samples_overlap - s->num_channels; long i = -(s->samples_overlap - s->num_channels); do { corr += ppc[i + 0] * ps[i + 0]; corr += ppc[i + 1] * ps[i + 1]; corr += ppc[i + 2] * ps[i + 2]; corr += ppc[i + 3] * ps[i + 3]; i += 4; } while (i < 0); if (corr > best_corr) { best_corr = corr; best_off = off; } search_start += s->num_channels; } return best_off * 2 * s->num_channels; } static void output_overlap_float(af_scaletempo_t *s, void *buf_out, int bytes_off) { float *pout = buf_out; float *pb = s->table_blend; float *po = s->buf_overlap; float *pin = (float *)(s->buf_queue + bytes_off); for (int i = 0; i < s->samples_overlap; i++) { *pout++ = *po - *pb++ *(*po - *pin++); po++; } } static void output_overlap_s16(af_scaletempo_t *s, void *buf_out, int bytes_off) { int16_t *pout = buf_out; int32_t *pb = s->table_blend; int16_t *po = s->buf_overlap; int16_t *pin = (int16_t *)(s->buf_queue + bytes_off); for (int i = 0; i < s->samples_overlap; i++) { *pout++ = *po - ((*pb++ *(*po - *pin++)) >> 16); po++; } } // Filter data through filter static struct mp_audio *play(struct af_instance *af, struct mp_audio *data) { af_scaletempo_t *s = af->priv; if (s->scale == 1.0) { af->delay = 0; return data; } mp_audio_realloc_min(af->data, ((int)(data->samples / s->frames_stride_scaled) + 1) * s->frames_stride); int offset_in = fill_queue(af, data, 0); int8_t *pout = af->data->planes[0]; while (s->bytes_queued >= s->bytes_queue) { int ti; float tf; int bytes_off = 0; // output stride if (s->output_overlap) { if (s->best_overlap_offset) bytes_off = s->best_overlap_offset(s); s->output_overlap(s, pout, bytes_off); } memcpy(pout + s->bytes_overlap, s->buf_queue + bytes_off + s->bytes_overlap, s->bytes_standing); pout += s->bytes_stride; // input stride memcpy(s->buf_overlap, s->buf_queue + bytes_off + s->bytes_stride, s->bytes_overlap); tf = s->frames_stride_scaled + s->frames_stride_error; ti = (int)tf; s->frames_stride_error = tf - ti; s->bytes_to_slide = ti * s->bytes_per_frame; offset_in += fill_queue(af, data, offset_in); } // This filter can have a negative delay when scale > 1: // output corresponding to some length of input can be decided and written // after receiving only a part of that input. af->delay = s->bytes_queued - s->bytes_to_slide; data->planes[0] = af->data->planes[0]; data->samples = (pout - (int8_t *)af->data->planes[0]) / af->data->sstride; return data; } // Initialization and runtime control static int control(struct af_instance *af, int cmd, void *arg) { af_scaletempo_t *s = af->priv; switch (cmd) { case AF_CONTROL_REINIT: { struct mp_audio *data = (struct mp_audio *)arg; float srate = data->rate / 1000; int nch = data->nch; int use_int = 0; mp_msg(MSGT_AFILTER, MSGL_V, "[scaletempo] %.3f speed * %.3f scale_nominal = %.3f\n", s->speed, s->scale_nominal, s->scale); mp_audio_force_interleaved_format(data); mp_audio_copy_config(af->data, data); if (s->scale == 1.0) { if (s->speed_tempo && s->speed_pitch) return AF_DETACH; af->delay = 0; af->mul = 1; return af_test_output(af, data); } if (data->format == AF_FORMAT_S16_NE) { use_int = 1; } else { mp_audio_set_format(af->data, AF_FORMAT_FLOAT_NE); } int bps = af->data->bps; s->frames_stride = srate * s->ms_stride; s->bytes_stride = s->frames_stride * bps * nch; s->frames_stride_scaled = s->scale * s->frames_stride; int bytes_stride_scaled = s->scale * s->bytes_stride; s->frames_stride_error = 0; af->mul = (double)s->bytes_stride / bytes_stride_scaled; af->delay = 0; int frames_overlap = s->frames_stride * s->percent_overlap; if (frames_overlap <= 0) { s->bytes_standing = s->bytes_stride; s->samples_standing = s->bytes_standing / bps; s->output_overlap = NULL; s->bytes_overlap = 0; } else { s->samples_overlap = frames_overlap * nch; s->bytes_overlap = frames_overlap * nch * bps; s->bytes_standing = s->bytes_stride - s->bytes_overlap; s->samples_standing = s->bytes_standing / bps; s->buf_overlap = realloc(s->buf_overlap, s->bytes_overlap); s->table_blend = realloc(s->table_blend, s->bytes_overlap * 4); if (!s->buf_overlap || !s->table_blend) { mp_msg(MSGT_AFILTER, MSGL_FATAL, "[scaletempo] Out of memory\n"); return AF_ERROR; } memset(s->buf_overlap, 0, s->bytes_overlap); if (use_int) { int32_t *pb = s->table_blend; int64_t blend = 0; for (int i = 0; i < frames_overlap; i++) { int32_t v = blend / frames_overlap; for (int j = 0; j < nch; j++) *pb++ = v; blend += 65536; // 2^16 } s->output_overlap = output_overlap_s16; } else { float *pb = s->table_blend; for (int i = 0; i < frames_overlap; i++) { float v = i / (float)frames_overlap; for (int j = 0; j < nch; j++) *pb++ = v; } s->output_overlap = output_overlap_float; } } s->frames_search = (frames_overlap > 1) ? srate * s->ms_search : 0; if (s->frames_search <= 0) s->best_overlap_offset = NULL; else { if (use_int) { int64_t t = frames_overlap; int32_t n = 8589934588LL / (t * t); // 4 * (2^31 - 1) / t^2 s->buf_pre_corr = realloc(s->buf_pre_corr, s->bytes_overlap * 2 + UNROLL_PADDING); s->table_window = realloc(s->table_window, s->bytes_overlap * 2 - nch * bps * 2); if (!s->buf_pre_corr || !s->table_window) { mp_msg(MSGT_AFILTER, MSGL_FATAL, "[scaletempo] Out of memory\n"); return AF_ERROR; } memset((char *)s->buf_pre_corr + s->bytes_overlap * 2, 0, UNROLL_PADDING); int32_t *pw = s->table_window; for (int i = 1; i < frames_overlap; i++) { int32_t v = (i * (t - i) * n) >> 15; for (int j = 0; j < nch; j++) *pw++ = v; } s->best_overlap_offset = best_overlap_offset_s16; } else { s->buf_pre_corr = realloc(s->buf_pre_corr, s->bytes_overlap); s->table_window = realloc(s->table_window, s->bytes_overlap - nch * bps); if (!s->buf_pre_corr || !s->table_window) { mp_msg(MSGT_AFILTER, MSGL_FATAL, "[scaletempo] Out of memory\n"); return AF_ERROR; } float *pw = s->table_window; for (int i = 1; i < frames_overlap; i++) { float v = i * (frames_overlap - i); for (int j = 0; j < nch; j++) *pw++ = v; } s->best_overlap_offset = best_overlap_offset_float; } } s->bytes_per_frame = bps * nch; s->num_channels = nch; s->bytes_queue = (s->frames_search + s->frames_stride + frames_overlap) * bps * nch; s->buf_queue = realloc(s->buf_queue, s->bytes_queue + UNROLL_PADDING); if (!s->buf_queue) { mp_msg(MSGT_AFILTER, MSGL_FATAL, "[scaletempo] Out of memory\n"); return AF_ERROR; } s->bytes_queued = 0; s->bytes_to_slide = 0; mp_msg(MSGT_AFILTER, MSGL_DBG2, "[scaletempo] " "%.2f stride_in, %i stride_out, %i standing, " "%i overlap, %i search, %i queue, %s mode\n", s->frames_stride_scaled, (int)(s->bytes_stride / nch / bps), (int)(s->bytes_standing / nch / bps), (int)(s->bytes_overlap / nch / bps), s->frames_search, (int)(s->bytes_queue / nch / bps), (use_int ? "s16" : "float")); return af_test_output(af, (struct mp_audio *)arg); } case AF_CONTROL_PLAYBACK_SPEED | AF_CONTROL_SET: { if (s->speed_tempo) { if (s->speed_pitch) break; s->speed = *(double *)arg; s->scale = s->speed * s->scale_nominal; } else { if (s->speed_pitch) { s->speed = 1 / *(double *)arg; s->scale = s->speed * s->scale_nominal; break; } } return AF_OK; } case AF_CONTROL_SCALETEMPO_AMOUNT | AF_CONTROL_SET: { s->scale = *(float *)arg; s->scale = s->speed * s->scale_nominal; return AF_OK; } case AF_CONTROL_SCALETEMPO_AMOUNT | AF_CONTROL_GET: *(float *)arg = s->scale; return AF_OK; } return AF_UNKNOWN; } // Deallocate memory static void uninit(struct af_instance *af) { af_scaletempo_t *s = af->priv; free(s->buf_queue); free(s->buf_overlap); free(s->buf_pre_corr); free(s->table_blend); free(s->table_window); } #define SCALE_TEMPO 1 #define SCALE_PITCH 2 // Allocate memory and set function pointers static int af_open(struct af_instance *af) { af_scaletempo_t *s = af->priv; af->control = control; af->uninit = uninit; af->play = play; af->mul = 1; s->speed_tempo = !!(s->speed_opt & SCALE_TEMPO); s->speed_pitch = !!(s->speed_opt & SCALE_PITCH); s->scale = s->speed * s->scale_nominal; return AF_OK; } #define OPT_BASE_STRUCT af_scaletempo_t struct af_info af_info_scaletempo = { .info = "Scale audio tempo while maintaining pitch", .name = "scaletempo", .open = af_open, .priv_size = sizeof(af_scaletempo_t), .priv_defaults = &(const af_scaletempo_t) { .ms_stride = 60, .percent_overlap = .20, .ms_search = 14, .speed_opt = SCALE_TEMPO, .speed = 1.0, .scale_nominal = 1.0, }, .options = (const struct m_option[]) { OPT_FLOAT("scale", scale_nominal, M_OPT_MIN, .min = 0.01), OPT_FLOAT("stride", ms_stride, M_OPT_MIN, .min = 0.01), OPT_FLOAT("overlap", percent_overlap, M_OPT_RANGE, .min = 0, .max = 1), OPT_FLOAT("search", ms_search, M_OPT_MIN, .min = 0), OPT_CHOICE("speed", speed_opt, 0, ({"pitch", SCALE_PITCH}, {"tempo", SCALE_TEMPO}, {"none", 0}, {"both", SCALE_TEMPO | SCALE_PITCH})), {0} }, };