/* * Equalizer filter, implementation of a 10 band time domain graphic * equalizer using IIR filters. The IIR filters are implemented using a * Direct Form II approach, but has been modified (b1 == 0 always) to * save computation. * * Copyright (C) 2001 Anders Johansson ajh@atri.curtin.edu.au * * This file is part of mpv. * * mpv is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * mpv is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with mpv. If not, see . */ #include #include #include #include #include "common/common.h" #include "af.h" #define L 2 // Storage for filter taps #define KM 10 // Max number of bands #define Q 1.2247449 /* Q value for band-pass filters 1.2247=(3/2)^(1/2) gives 4dB suppression @ Fc*2 and Fc/2 */ /* Center frequencies for band-pass filters The different frequency bands are: nr. center frequency 0 31.25 Hz 1 62.50 Hz 2 125.0 Hz 3 250.0 Hz 4 500.0 Hz 5 1.000 kHz 6 2.000 kHz 7 4.000 kHz 8 8.000 kHz 9 16.00 kHz */ #define CF {31.25,62.5,125,250,500,1000,2000,4000,8000,16000} // Maximum and minimum gain for the bands #define G_MAX +12.0 #define G_MIN -12.0 // Data for specific instances of this filter typedef struct af_equalizer_s { float a[KM][L]; // A weights float b[KM][L]; // B weights float wq[AF_NCH][KM][L]; // Circular buffer for W data float g[AF_NCH][KM]; // Gain factor for each channel and band int K; // Number of used eq bands int channels; // Number of channels float gain_factor; // applied at output to avoid clipping double p[KM]; } af_equalizer_t; // 2nd order Band-pass Filter design static void bp2(float* a, float* b, float fc, float q){ double th= 2.0 * M_PI * fc; double C = (1.0 - tan(th*q/2.0))/(1.0 + tan(th*q/2.0)); a[0] = (1.0 + C) * cos(th); a[1] = -1 * C; b[0] = (1.0 - C)/2.0; b[1] = -1.0050; } // Initialization and runtime control static int control(struct af_instance* af, int cmd, void* arg) { af_equalizer_t* s = (af_equalizer_t*)af->priv; switch(cmd){ case AF_CONTROL_REINIT:{ int k =0, i =0; float F[KM] = CF; s->gain_factor=0.0; // Sanity check if(!arg) return AF_ERROR; mp_audio_copy_config(af->data, (struct mp_audio*)arg); mp_audio_set_format(af->data, AF_FORMAT_FLOAT); // Calculate number of active filters s->K=KM; while(F[s->K-1] > (float)af->data->rate/2.2) s->K--; if(s->K != KM) MP_INFO(af, "Limiting the number of filters to" " %i due to low sample rate.\n",s->K); // Generate filter taps for(k=0;kK;k++) bp2(s->a[k],s->b[k],F[k]/((float)af->data->rate),Q); // Calculate how much this plugin adds to the overall time delay af->delay = 2.0 / (double)af->data->rate; // Calculate gain factor to prevent clipping at output for(k=0;kgain_factor < s->g[k][i]) s->gain_factor=s->g[k][i]; } } s->gain_factor=log10(s->gain_factor + 1.0) * 20.0; if(s->gain_factor > 0.0) { s->gain_factor=0.1+(s->gain_factor/12.0); }else{ s->gain_factor=1; } return af_test_output(af,arg); } } return AF_UNKNOWN; } static int filter(struct af_instance* af, struct mp_audio* data) { struct mp_audio* c = data; // Current working data if (!c) return 0; af_equalizer_t* s = (af_equalizer_t*)af->priv; // Setup uint32_t ci = af->data->nch; // Index for channels uint32_t nch = af->data->nch; // Number of channels if (af_make_writeable(af, data) < 0) { talloc_free(data); return -1; } while(ci--){ float* g = s->g[ci]; // Gain factor float* in = ((float*)c->planes[0])+ci; float* out = ((float*)c->planes[0])+ci; float* end = in + c->samples*c->nch; // Block loop end while(in < end){ register int k = 0; // Frequency band index register float yt = *in; // Current input sample in+=nch; // Run the filters for(;kK;k++){ // Pointer to circular buffer wq register float* wq = s->wq[ci][k]; // Calculate output from AR part of current filter register float w=yt*s->b[k][0] + wq[0]*s->a[k][0] + wq[1]*s->a[k][1]; // Calculate output form MA part of current filter yt+=(w + wq[1]*s->b[k][1])*g[k]; // Update circular buffer wq[1] = wq[0]; wq[0] = w; } // Calculate output *out=yt*s->gain_factor; out+=nch; } } af_add_output_frame(af, data); return 0; } // Allocate memory and set function pointers static int af_open(struct af_instance* af){ af->control=control; af->filter_frame = filter; af_equalizer_t *priv = af->priv; for(int i=0;ig[i][j] = pow(10.0,MPCLAMP(priv->p[j],G_MIN,G_MAX)/20.0)-1.0; } } return AF_OK; } #define OPT_BASE_STRUCT af_equalizer_t const struct af_info af_info_equalizer = { .info = "Equalizer audio filter", .name = "equalizer", .flags = AF_FLAGS_NOT_REENTRANT, .open = af_open, .priv_size = sizeof(af_equalizer_t), .options = (const struct m_option[]) { #define BAND(n) OPT_DOUBLE("e" #n, p[n], 0) BAND(0), BAND(1), BAND(2), BAND(3), BAND(4), BAND(5), BAND(6), BAND(7), BAND(8), BAND(9), {0} }, };