/* Unified ADPCM Decoder for MPlayer This file is in charge of decoding all of the various ADPCM data formats that various entities have created. Details about the data formats can be found here: http://www.pcisys.net/~melanson/codecs/ (C) 2001 Mike Melanson */ #include "config.h" #include "bswap.h" #include "adpcm.h" #define BE_16(x) (be2me_16(*(unsigned short *)(x))) #define BE_32(x) (be2me_32(*(unsigned int *)(x))) #define LE_16(x) (le2me_16(*(unsigned short *)(x))) #define LE_32(x) (le2me_32(*(unsigned int *)(x))) // pertinent tables static int adpcm_step[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 }; //static int fox62_step[89] = static int fox62_step[] = { 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xf, 0x10, 0x12, 0x13, 0x15, 0x17, 0x1a, 0x1c, 0x1f, 0x22, 0x26, 0x29, 0x2e, 0x32, 0x37, 0x3d, 0x43, 0x4a, 0x51, 0x59, 0x62, 0x6c, 0x76, 0x82, 0x8f, 0x9e, 0xad, 0xbf, 0xd2, 0xe7, 0xfe, 0x117, 0x133, 0x152, 0x174, 0x199, 0x1c2, 0x1ef, 0x220, 0x256, 0x292, 0x2d4, 0x31d, 0x36c, 0x3c4, 0x424, 0x48e, 0x503, 0x583, 0x610, 0x6ac, 0x756, 0x812, 0x8e1, 0x9c4, 0xabe, 0x8d1, 0xcff, 0xe4c, 0xfba, 0x114d, 0x1308, 0x14ef, 0x1707, 0x1954, 0x1bdd, 0x1ea6, 0x21b7, 0x2516, 0x28cb, 0x2cdf, 0x315c, 0x364c, 0x3bba, 0x41b2, 0x4844, 0x4f7e, 0x5771, 0x6030, 0x69ce, 0x7463, 0x7FFF }; static int adpcm_index[16] = { -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8 }; static int fox62_extra_table[16] = { 1, 3, 5, 7, 9, 11, 13, 15, -1, -3, -5, -7, -9, -11, -13, -15 }; static int ms_adapt_table[] = { 230, 230, 230, 230, 307, 409, 512, 614, 768, 614, 512, 409, 307, 230, 230, 230 }; static int ms_adapt_coeff1[] = { 256, 512, 0, 192, 240, 460, 392 }; static int ms_adapt_coeff2[] = { 0, -256, 0, 64, 0, -208, -232 }; // useful macros // clamp a number between 0 and 88 #define CLAMP_0_TO_88(x) if (x < 0) x = 0; else if (x > 88) x = 88; // clamp a number within a signed 16-bit range #define CLAMP_S16(x) if (x < -32768) x = -32768; \ else if (x > 32767) x = 32767; // clamp a number above 16 #define CLAMP_ABOVE_16(x) if (x < 16) x = 16; // sign extend a 16-bit value #define SE_16BIT(x) if (x & 0x8000) x -= 0x10000; // sign extend a 4-bit value #define SE_4BIT(x) if (x & 0x8) x -= 0x10; void ima_dvi_decode_nibbles(unsigned short *output, int channels, int predictor_l, int index_l, int predictor_r, int index_r) { int step[2]; int predictor[2]; int index[2]; int diff; int i; int sign; int delta; int channel_number = 0; step[0] = adpcm_step[index_l]; step[1] = adpcm_step[index_r]; predictor[0] = predictor_l; predictor[1] = predictor_r; index[0] = index_l; index[1] = index_r; for (i = 0; i < IMA_ADPCM_SAMPLES_PER_BLOCK * channels; i++) { delta = output[i]; index[channel_number] += adpcm_index[delta]; CLAMP_0_TO_88(index[channel_number]); sign = delta & 8; delta = delta & 7; diff = step[channel_number] >> 3; if (delta & 4) diff += step[channel_number]; if (delta & 2) diff += step[channel_number] >> 1; if (delta & 1) diff += step[channel_number] >> 2; if (sign) predictor[channel_number] -= diff; else predictor[channel_number] += diff; CLAMP_S16(predictor[channel_number]); output[i] = predictor[channel_number]; step[channel_number] = adpcm_step[index[channel_number]]; // toggle channel channel_number ^= channels - 1; } } int ima_adpcm_decode_block(unsigned short *output, unsigned char *input, int channels) { int initial_predictor_l = 0; int initial_predictor_r = 0; int initial_index_l = 0; int initial_index_r = 0; int i; initial_predictor_l = BE_16(&input[0]); initial_index_l = initial_predictor_l; // mask, sign-extend, and clamp the predictor portion initial_predictor_l &= 0xFF80; SE_16BIT(initial_predictor_l); CLAMP_S16(initial_predictor_l); // mask and clamp the index portion initial_index_l &= 0x7F; CLAMP_0_TO_88(initial_index_l); // handle stereo if (channels > 1) { initial_predictor_r = BE_16(&input[IMA_ADPCM_BLOCK_SIZE]); initial_index_r = initial_predictor_r; // mask, sign-extend, and clamp the predictor portion initial_predictor_r &= 0xFF80; SE_16BIT(initial_predictor_r); CLAMP_S16(initial_predictor_r); // mask and clamp the index portion initial_index_r &= 0x7F; CLAMP_0_TO_88(initial_index_r); } // break apart all of the nibbles in the block if (channels == 1) for (i = 0; i < IMA_ADPCM_SAMPLES_PER_BLOCK / 2; i++) { output[i * 2 + 0] = input[2 + i] & 0x0F; output[i * 2 + 1] = input[2 + i] >> 4; } else for (i = 0; i < IMA_ADPCM_SAMPLES_PER_BLOCK / 2 * 2; i++) { output[i * 4 + 0] = input[2 + i] & 0x0F; output[i * 4 + 1] = input[2 + IMA_ADPCM_BLOCK_SIZE + i] & 0x0F; output[i * 4 + 2] = input[2 + i] >> 4; output[i * 4 + 3] = input[2 + IMA_ADPCM_BLOCK_SIZE + i] >> 4; } ima_dvi_decode_nibbles(output, channels, initial_predictor_l, initial_index_l, initial_predictor_r, initial_index_r); return IMA_ADPCM_SAMPLES_PER_BLOCK * channels; } int ms_adpcm_decode_block(unsigned short *output, unsigned char *input, int channels, int block_size) { int current_channel = 0; int idelta[2]; int sample1[2]; int sample2[2]; int coeff1[2]; int coeff2[2]; int stream_ptr = 0; int out_ptr = 0; int upper_nibble = 1; int nibble; int snibble; // signed nibble int predictor; // fetch the header information, in stereo if both channels are present coeff1[0] = ms_adapt_coeff1[input[stream_ptr]]; coeff2[0] = ms_adapt_coeff2[input[stream_ptr]]; stream_ptr++; if (channels == 2) { coeff1[1] = ms_adapt_coeff1[input[stream_ptr]]; coeff2[1] = ms_adapt_coeff2[input[stream_ptr]]; stream_ptr++; } idelta[0] = LE_16(&input[stream_ptr]); stream_ptr += 2; SE_16BIT(idelta[0]); if (channels == 2) { idelta[1] = LE_16(&input[stream_ptr]); stream_ptr += 2; SE_16BIT(idelta[1]); } sample1[0] = LE_16(&input[stream_ptr]); stream_ptr += 2; SE_16BIT(sample1[0]); if (channels == 2) { sample1[1] = LE_16(&input[stream_ptr]); stream_ptr += 2; SE_16BIT(sample1[1]); } sample2[0] = LE_16(&input[stream_ptr]); stream_ptr += 2; SE_16BIT(sample2[0]); if (channels == 2) { sample2[1] = LE_16(&input[stream_ptr]); stream_ptr += 2; SE_16BIT(sample2[1]); } while (stream_ptr < block_size) { // get the next nibble if (upper_nibble) nibble = snibble = input[stream_ptr] >> 4; else nibble = snibble = input[stream_ptr++] & 0x0F; upper_nibble ^= 1; SE_4BIT(snibble); predictor = ( ((sample1[current_channel] * coeff1[current_channel]) + (sample2[current_channel] * coeff2[current_channel])) / 256) + (snibble * idelta[current_channel]); CLAMP_S16(predictor); sample2[current_channel] = sample1[current_channel]; sample1[current_channel] = predictor; output[out_ptr++] = predictor; // compute the next adaptive scale factor (a.k.a. the variable idelta) idelta[current_channel] = (ms_adapt_table[nibble] * idelta[current_channel]) / 256; CLAMP_ABOVE_16(idelta[current_channel]); // toggle the channel current_channel ^= channels - 1; } return (block_size - (MS_ADPCM_PREAMBLE_SIZE * channels)) * 2; } // note: This decoder assumes the format 0x62 data always comes in // stereo flavor int fox62_adpcm_decode_block(unsigned short *output, unsigned char *input, int channels) { int predictor_l; int predictor_r; int index_l; int index_r; int code_l; int code_r; int i; int out_ptr = 0; int temp1, temp2, edi, eax, edx; static int counter = 0; predictor_l = LE_16(&input[10]); edi = predictor_r = LE_16(&input[12]); SE_16BIT(predictor_l); SE_16BIT(predictor_r); index_l = input[14]; index_r = input[15]; for (i = 16; i < FOX62_ADPCM_BLOCK_SIZE; i++) { code_l = input[i] & 0x0F; code_r = input[i] >> 4; if (counter == 0) printf ("code_l = %02X, predictor_l = %04X, index_l = %02X\n", code_l, predictor_l, index_l); if (counter == 0) printf ("code_r = %02X, predictor_r = %04X, index_r = %02X\n", code_r, predictor_r, index_r); // left side if (counter == 0) printf ("step = %04X, extra = %02X\n", fox62_step[index_l], fox62_extra_table[code_l]); temp1 = fox62_step[index_l] * fox62_extra_table[code_l]; if (counter == 0) printf ("temp1 (before) = %04X\n", temp1); if (temp1 < 0) temp1 += 7; if (counter == 0) printf ("temp1 (after) = %04X\n", temp1); temp2 = predictor_l; temp1 /= 8; if (counter == 0) printf ("temp1 (after div) = %04X\n", temp1); temp2 += temp1; if (counter == 0) printf ("temp2 (predictor_l before clamp) = %04X\n", temp2); CLAMP_S16(temp2); if (counter == 0) printf ("temp2 (predictor_l after clamp) = %04X\n", temp2); predictor_l = temp2; index_l += adpcm_index[code_l]; if (counter == 0) printf ("adjusted index_l = %02X\n", index_l); CLAMP_0_TO_88(index_l); // right side if (counter == 0) printf ("step = %04X, extra = %02X\n", fox62_step[index_r], fox62_extra_table[code_r]); temp1 = fox62_step[index_r] * fox62_extra_table[code_r]; if (counter == 0) printf ("temp1 (before) = %04X\n", temp1); if (temp1 < 0) temp1 += 7; if (counter == 0) printf ("temp1 (after) = %04X\n", temp1); temp2 = predictor_r; temp1 /= 8; if (counter == 0) printf ("temp1 (after div) = %04X\n", temp1); temp2 += temp1; if (counter == 0) printf ("temp2 (predictor_r before clamp) = %04X\n", temp2); CLAMP_S16(temp2); if (counter == 0) printf ("temp2 (predictor_r after clamp) = %04X\n", temp2); predictor_r = temp2; index_r += adpcm_index[code_r]; if (counter == 0) printf ("adjusted index_r = %02X\n", index_r); CLAMP_0_TO_88(index_r); // do the weird final output process edi += predictor_r; edi /= 2; eax = predictor_l + edi; edx = edi * 2; if (counter == 0) printf ("eax = %08X, edx = %08X, edi = %08X\n", eax, edx, edi); output[out_ptr++] = eax; predictor_l = eax; eax -= edx; if (counter == 0) printf ("eax = %08X, edx = %08X, edi = %08X\n", eax, edx, edi); // x24 += 4 output[out_ptr++] = eax; predictor_l = eax; eax += edi; if (counter == 0) printf ("eax = %08X, edx = %08X, edi = %08X\n", eax, edx, edi); edi = predictor_r; if (counter == 0) printf ("eax = %08X, edx = %08X, edi = %08X\n", eax, edx, edi); predictor_l = eax; if (counter == 0) printf ("L-sample = %04X, R-sample = %04X\n", output[out_ptr-2], output[out_ptr-1]); counter++; } return FOX62_ADPCM_SAMPLES_PER_BLOCK * channels; }