/* Unified ADPCM Decoder for MPlayer (C) 2001 Mike Melanson */ #include "config.h" #include "bswap.h" #include "adpcm.h" #define BE_16(x) (be2me_16(*(unsigned short *)(x))) #define BE_32(x) (be2me_32(*(unsigned int *)(x))) #define LE_16(x) (le2me_16(*(unsigned short *)(x))) #define LE_32(x) (le2me_32(*(unsigned int *)(x))) // clamp a number between 0 and 88 #define CLAMP_0_TO_88(x) if (x < 0) x = 0; else if (x > 88) x = 88; // clamp a number within a signed 16-bit range #define CLAMP_S16(x) if (x < -32768) x = -32768; \ else if (x > 32767) x = 32767; // sign extend a 16-bit value #define SE_16BIT(x) if (x & 0x8000) x -= 0x10000; void ima_dvi_decode_nibbles(unsigned short *output, int channels, int predictor_l, int index_l, int predictor_r, int index_r) { int step[2]; int predictor[2]; int index[2]; int diff; int i; int sign; int delta; int channel_number = 0; step[0] = adpcm_step[index_l]; step[1] = adpcm_step[index_r]; predictor[0] = predictor_l; predictor[1] = predictor_r; index[0] = index_l; index[1] = index_r; for (i = 0; i < IMA_ADPCM_SAMPLES_PER_BLOCK * channels; i++) { delta = output[i]; index[channel_number] += adpcm_index[delta]; CLAMP_0_TO_88(index[channel_number]); sign = delta & 8; delta = delta & 7; diff = step[channel_number] >> 3; if (delta & 4) diff += step[channel_number]; if (delta & 2) diff += step[channel_number] >> 1; if (delta & 1) diff += step[channel_number] >> 2; if (sign) predictor[channel_number] -= diff; else predictor[channel_number] += diff; CLAMP_S16(predictor[channel_number]); output[i] = predictor[channel_number]; step[channel_number] = adpcm_step[index[channel_number]]; // toggle channel channel_number ^= channels - 1; } } int ima_adpcm_decode_block(unsigned short *output, unsigned char *input, int channels) { int initial_predictor_l = 0; int initial_predictor_r = 0; int initial_index_l = 0; int initial_index_r = 0; int i; initial_predictor_l = BE_16(&input[0]); initial_index_l = initial_predictor_l; // mask, sign-extend, and clamp the predictor portion initial_predictor_l &= 0xFF80; SE_16BIT(initial_predictor_l); CLAMP_S16(initial_predictor_l); // mask and clamp the index portion initial_index_l &= 0x7F; CLAMP_0_TO_88(initial_index_l); // handle stereo if (channels > 1) { initial_predictor_r = BE_16(&input[IMA_ADPCM_BLOCK_SIZE]); initial_index_r = initial_predictor_r; // mask, sign-extend, and clamp the predictor portion initial_predictor_r &= 0xFF80; SE_16BIT(initial_predictor_r); CLAMP_S16(initial_predictor_r); // mask and clamp the index portion initial_index_r &= 0x7F; CLAMP_0_TO_88(initial_index_r); } // break apart all of the nibbles in the block if (channels == 1) for (i = 0; i < IMA_ADPCM_SAMPLES_PER_BLOCK / 2; i++) { output[i * 2 + 0] = input[2 + i] & 0x0F; output[i * 2 + 1] = input[2 + i] >> 4; } else for (i = 0; i < IMA_ADPCM_SAMPLES_PER_BLOCK / 2 * 2; i++) { output[i * 4 + 0] = input[2 + i] & 0x0F; output[i * 4 + 1] = input[2 + IMA_ADPCM_BLOCK_SIZE + i] & 0x0F; output[i * 4 + 2] = input[2 + i] >> 4; output[i * 4 + 3] = input[2 + IMA_ADPCM_BLOCK_SIZE + i] >> 4; } ima_dvi_decode_nibbles(output, channels, initial_predictor_l, initial_index_l, initial_predictor_r, initial_index_r); return IMA_ADPCM_SAMPLES_PER_BLOCK * channels; }