From e74a4d5bc0b101fbfb371942c00d3a77267dc4a6 Mon Sep 17 00:00:00 2001 From: wm4 Date: Thu, 12 Mar 2015 21:57:54 +0100 Subject: vo_opengl: refactor shader generation (part 1) The basic idea is to use dynamically generated shaders instead of a single monolithic file + a ton of ifdefs. Instead of having to setup every aspect of it separately (like compiling shaders, setting uniforms, perfoming the actual rendering steps, the GLSL parts), we generate the GLSL on the fly, and perform the rendering at the same time. The GLSL is regenerated every frame, but the actual compiled OpenGL-level shaders are cached, which makes it fast again. Almost all logic can be in a single place. The new code is significantly more flexible, which allows us to improve the code clarity, performance and add more features easily. This commit is incomplete. It drops almost all previous code, and readds only the most important things (some of them actually buggy). The next commit will complete it - it's separate to preserve authorship information. --- video/out/gl_video.c | 1925 ++++++++++++++++---------------------------------- 1 file changed, 628 insertions(+), 1297 deletions(-) (limited to 'video/out/gl_video.c') diff --git a/video/out/gl_video.c b/video/out/gl_video.c index 5ddb6c5cad..a52bd82020 100644 --- a/video/out/gl_video.c +++ b/video/out/gl_video.c @@ -41,11 +41,6 @@ #include "bitmap_packer.h" #include "dither.h" -static const char vo_opengl_shaders[] = -// Generated from gl_video_shaders.glsl -#include "video/out/gl_video_shaders.h" -; - // Pixel width of 1D lookup textures. #define LOOKUP_TEXTURE_SIZE 256 @@ -70,14 +65,21 @@ static const char *const fixed_scale_filters[] = { int filter_sizes[] = {2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 0}; +struct vertex_pt { + float x, y; +}; + struct vertex { - float position[2]; - float texcoord[2]; + struct vertex_pt position; + struct vertex_pt texcoord[4]; }; static const struct gl_vao_entry vertex_vao[] = { - {"vertex_position", 2, GL_FLOAT, false, offsetof(struct vertex, position)}, - {"vertex_texcoord", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord)}, + {"position", 2, GL_FLOAT, false, offsetof(struct vertex, position)}, + {"texcoord0", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[0])}, + {"texcoord1", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[1])}, + {"texcoord2", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[2])}, + {"texcoord3", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[3])}, {0} }; @@ -85,6 +87,7 @@ struct texplane { int w, h; int tex_w, tex_h; GLint gl_internal_format; + GLenum gl_target; GLenum gl_format; GLenum gl_type; GLuint gl_texture; @@ -102,11 +105,15 @@ struct video_image { struct scaler { int index; const char *name; + double scale_factor; float params[2]; float antiring; + + bool initialized; struct filter_kernel *kernel; GLuint gl_lut; - const char *lut_name; + GLenum gl_target; + struct fbotex sep_fbo; bool insufficient; // kernel points here @@ -121,6 +128,13 @@ struct fbosurface { #define FBOSURFACES_MAX 2 +struct src_tex { + GLuint gl_tex; + GLenum gl_target; + int tex_w, tex_h; + struct mp_rect src; +}; + struct gl_video { GL *gl; @@ -131,13 +145,12 @@ struct gl_video { int depth_g; int texture_16bit_depth; // actual bits available in 16 bit textures + struct gl_shader_cache *sc; + GLenum gl_target; // texture target (GL_TEXTURE_2D, ...) for video and FBOs struct gl_vao vao; - GLuint osd_programs[SUBBITMAP_COUNT]; - GLuint indirect_program, scale_sep_program, final_program, inter_program; - struct osd_state *osd_state; struct mpgl_osd *osd; double osd_pts; @@ -146,8 +159,6 @@ struct gl_video { bool use_lut_3d; GLuint dither_texture; - float dither_quantization; - float dither_center; int dither_size; struct mp_image_params real_image_params; // configured format @@ -159,7 +170,6 @@ struct gl_video { bool is_yuv, is_rgb, is_packed_yuv; bool has_alpha; char color_swizzle[5]; - float chroma_fix[2]; float input_gamma, conv_gamma; float user_gamma; @@ -169,8 +179,9 @@ struct gl_video { struct video_image image; struct fbotex indirect_fbo; // RGB target - struct fbotex scale_sep_fbo; // first pass when doing 2 pass scaling + struct fbotex chroma_merge_fbo; struct fbosurface surfaces[FBOSURFACES_MAX]; + size_t surface_idx; // state for luma (0) and chroma (1) scalers @@ -179,9 +190,6 @@ struct gl_video { // true if scaler is currently upscaling bool upscaling; - // reinit_rendering must be called - bool need_reinit_rendering; - bool is_interpolated; struct mp_csp_equalizer video_eq; @@ -192,8 +200,11 @@ struct gl_video { struct mp_rect src_rect; // displayed part of the source video struct mp_rect dst_rect; // video rectangle on output window struct mp_osd_res osd_rect; // OSD size/margins - int vp_x, vp_y, vp_w, vp_h; // GL viewport - bool vp_vflipped; + int vp_w, vp_h; + + // temporary during rendering + struct src_tex pass_tex[4]; + bool use_indirect; int frames_rendered; @@ -203,8 +214,6 @@ struct gl_video { struct gl_hwdec *hwdec; bool hwdec_active; - - void *scratch; }; struct fmt_entry { @@ -323,6 +332,7 @@ const struct gl_video_opts gl_video_opts_def = { .sigmoid_center = 0.75, .sigmoid_slope = 6.5, .scalers = { "bilinear", "bilinear" }, + .dscaler = "bilinear", .scaler_params = {{NAN, NAN}, {NAN, NAN}}, .scaler_radius = {3, 3}, .alpha_mode = 2, @@ -431,10 +441,12 @@ const struct m_sub_options gl_video_conf = { }; static void uninit_rendering(struct gl_video *p); -static void delete_shaders(struct gl_video *p); +static void uninit_scaler(struct gl_video *p, int scaler_unit); static void check_gl_features(struct gl_video *p); static bool init_format(int fmt, struct gl_video *init); -static double get_scale_factor(struct gl_video *p); + +#define GLSL(x) gl_sc_add(p->sc, #x "\n"); +#define GLSLF(...) gl_sc_addf(p->sc, __VA_ARGS__) static const struct fmt_entry *find_tex_format(GL *gl, int bytes_per_comp, int n_channels) @@ -467,977 +479,34 @@ void gl_video_set_debug(struct gl_video *p, bool enable) gl_set_debug_logger(gl, enable ? p->log : NULL); } -// Draw a textured quad. -// x0, y0, x1, y1 = destination coordinates of the quad in pixels -// tx0, ty0, tx1, ty1 = source texture coordinates in pixels -// tex_w, tex_h = size of the texture in pixels -// flags = bits 0-1: rotate, bits 2: flip vertically -static void draw_quad(struct gl_video *p, - float x0, float y0, float x1, float y1, - float tx0, float ty0, float tx1, float ty1, - float tex_w, float tex_h, int flags) -{ - if (p->gl_target != GL_TEXTURE_2D) - tex_w = tex_h = 1.0f; - - if (flags & 4) { - float tmp = ty0; - ty0 = ty1; - ty1 = tmp; - } - - struct vertex va[4] = { - { {x0, y0}, {tx0 / tex_w, ty0 / tex_h} }, - { {x0, y1}, {tx0 / tex_w, ty1 / tex_h} }, - { {x1, y0}, {tx1 / tex_w, ty0 / tex_h} }, - { {x1, y1}, {tx1 / tex_w, ty1 / tex_h} }, - }; - - int rot = flags & 3; - while (rot--) { - static const int perm[4] = {1, 3, 0, 2}; - struct vertex vb[4]; - memcpy(vb, va, sizeof(vb)); - for (int n = 0; n < 4; n++) - memcpy(va[n].texcoord, vb[perm[n]].texcoord, sizeof(float[2])); - } - - gl_vao_draw_data(&p->vao, GL_TRIANGLE_STRIP, va, 4); - - debug_check_gl(p, "after rendering"); -} - -static void transpose3x3(float r[3][3]) -{ - MPSWAP(float, r[0][1], r[1][0]); - MPSWAP(float, r[0][2], r[2][0]); - MPSWAP(float, r[1][2], r[2][1]); -} - -static void update_uniforms(struct gl_video *p, GLuint program) -{ - GL *gl = p->gl; - GLint loc; - - if (program == 0) - return; - - gl->UseProgram(program); - - struct mp_csp_params cparams = MP_CSP_PARAMS_DEFAULTS; - cparams.gray = p->is_yuv && !p->is_packed_yuv && p->plane_count == 1; - cparams.input_bits = p->image_desc.component_bits; - cparams.texture_bits = (cparams.input_bits + 7) & ~7; - mp_csp_set_image_params(&cparams, &p->image_params); - mp_csp_copy_equalizer_values(&cparams, &p->video_eq); - if (p->image_desc.flags & MP_IMGFLAG_XYZ) { - cparams.colorspace = MP_CSP_XYZ; - cparams.input_bits = 8; - cparams.texture_bits = 8; - } - - loc = gl->GetUniformLocation(program, "transform"); - if (loc >= 0 && p->vp_w > 0 && p->vp_h > 0) { - float matrix[3][3]; - int vvp[2] = {p->vp_h, 0}; - if (p->vp_vflipped) - MPSWAP(int, vvp[0], vvp[1]); - gl_matrix_ortho2d(matrix, 0, p->vp_w, vvp[0], vvp[1]); - gl->UniformMatrix3fv(loc, 1, GL_FALSE, &matrix[0][0]); - } - - loc = gl->GetUniformLocation(program, "colormatrix"); - if (loc >= 0) { - struct mp_cmat m = {{{0}}}; - if (p->image_desc.flags & MP_IMGFLAG_XYZ) { - // Hard-coded as relative colorimetric for now, since this transforms - // from the source file's D55 material to whatever color space our - // projector/display lives in, which should be D55 for a proper - // home cinema setup either way. - mp_get_xyz2rgb_coeffs(&cparams, p->csp_src, - MP_INTENT_RELATIVE_COLORIMETRIC, &m); - } else { - mp_get_yuv2rgb_coeffs(&cparams, &m); - } - transpose3x3(m.m); // GLES2 can not transpose in glUniformMatrix3fv - gl->UniformMatrix3fv(loc, 1, GL_FALSE, &m.m[0][0]); - loc = gl->GetUniformLocation(program, "colormatrix_c"); - gl->Uniform3f(loc, m.c[0], m.c[1], m.c[2]); - } - - gl->Uniform1f(gl->GetUniformLocation(program, "input_gamma"), - p->input_gamma); - - gl->Uniform1f(gl->GetUniformLocation(program, "conv_gamma"), - p->conv_gamma); - - // Coefficients for the sigmoidal transform are taken from the - // formula here: http://www.imagemagick.org/Usage/color_mods/#sigmoidal - float sig_center = p->opts.sigmoid_center; - float sig_slope = p->opts.sigmoid_slope; - - // This function needs to go through (0,0) and (1,1) so we compute the - // values at 1 and 0, and then scale/shift them, respectively. - float sig_offset = 1.0/(1+expf(sig_slope * sig_center)); - float sig_scale = 1.0/(1+expf(sig_slope * (sig_center-1))) - sig_offset; - - gl->Uniform1f(gl->GetUniformLocation(program, "sig_center"), sig_center); - gl->Uniform1f(gl->GetUniformLocation(program, "sig_slope"), sig_slope); - gl->Uniform1f(gl->GetUniformLocation(program, "sig_scale"), sig_scale); - gl->Uniform1f(gl->GetUniformLocation(program, "sig_offset"), sig_offset); - - gl->Uniform1f(gl->GetUniformLocation(program, "inv_gamma"), - 1.0f / p->user_gamma); - - for (int n = 0; n < p->plane_count; n++) { - char textures_n[32]; - char textures_size_n[32]; - snprintf(textures_n, sizeof(textures_n), "texture%d", n); - snprintf(textures_size_n, sizeof(textures_size_n), "textures_size[%d]", n); - - gl->Uniform1i(gl->GetUniformLocation(program, textures_n), n); - if (p->gl_target == GL_TEXTURE_2D) { - gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n), - p->image.planes[n].tex_w, p->image.planes[n].tex_h); - } else { - // Makes the pixel size calculation code think they are 1x1 - gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n), 1, 1); - } - } - - loc = gl->GetUniformLocation(program, "chroma_div"); - if (loc >= 0) { - int xs = p->image_desc.chroma_xs; - int ys = p->image_desc.chroma_ys; - gl->Uniform2f(loc, 1.0 / (1 << xs), 1.0 / (1 << ys)); - } - - gl->Uniform2f(gl->GetUniformLocation(program, "chroma_fix"), - p->chroma_fix[0], p->chroma_fix[1]); - - loc = gl->GetUniformLocation(program, "chroma_center_offset"); - if (loc >= 0) { - int chr = p->opts.chroma_location; - if (!chr) - chr = p->image_params.chroma_location; - int cx, cy; - mp_get_chroma_location(chr, &cx, &cy); - // By default texture coordinates are such that chroma is centered with - // any chroma subsampling. If a specific direction is given, make it - // so that the luma and chroma sample line up exactly. - // For 4:4:4, setting chroma location should have no effect at all. - // luma sample size (in chroma coord. space) - float ls_w = 1.0 / (1 << p->image_desc.chroma_xs); - float ls_h = 1.0 / (1 << p->image_desc.chroma_ys); - // move chroma center to luma center (in chroma coord. space) - float o_x = ls_w < 1 ? ls_w * -cx / 2 : 0; - float o_y = ls_h < 1 ? ls_h * -cy / 2 : 0; - int c = p->gl_target == GL_TEXTURE_2D ? 1 : 0; - gl->Uniform2f(loc, o_x / FFMAX(p->image.planes[1].w * c, 1), - o_y / FFMAX(p->image.planes[1].h * c, 1)); - } - - gl->Uniform2f(gl->GetUniformLocation(program, "dither_size"), - p->dither_size, p->dither_size); - - gl->Uniform1i(gl->GetUniformLocation(program, "lut_3d"), TEXUNIT_3DLUT); - - loc = gl->GetUniformLocation(program, "cms_matrix"); - if (loc >= 0) { - float cms_matrix[3][3] = {{0}}; - // Hard-coded to relative colorimetric - for a BT.2020 3DLUT we expect - // the input to be actual BT.2020 and not something red- or blueshifted, - // and for sRGB monitors we most likely want relative scaling either way. - mp_get_cms_matrix(p->csp_src, p->csp_dest, MP_INTENT_RELATIVE_COLORIMETRIC, cms_matrix); - gl->UniformMatrix3fv(loc, 1, GL_TRUE, &cms_matrix[0][0]); - } - - for (int n = 0; n < 2; n++) { - const char *lut = p->scalers[n].lut_name; - if (lut) - gl->Uniform1i(gl->GetUniformLocation(program, lut), - TEXUNIT_SCALERS + n); - } - - gl->Uniform1i(gl->GetUniformLocation(program, "dither"), TEXUNIT_DITHER); - gl->Uniform1f(gl->GetUniformLocation(program, "dither_quantization"), - p->dither_quantization); - gl->Uniform1f(gl->GetUniformLocation(program, "dither_center"), - p->dither_center); - - float sparam1_l = p->opts.scaler_params[0][0]; - float sparam1_c = p->opts.scaler_params[1][0]; - gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1_l"), - isnan(sparam1_l) ? 0.5f : sparam1_l); - gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1_c"), - isnan(sparam1_c) ? 0.5f : sparam1_c); - - gl->Uniform3f(gl->GetUniformLocation(program, "translation"), 0, 0, 0); - - gl->UseProgram(0); - - debug_check_gl(p, "update_uniforms()"); -} - -static void update_all_uniforms(struct gl_video *p) -{ - for (int n = 0; n < SUBBITMAP_COUNT; n++) - update_uniforms(p, p->osd->programs[n]); - update_uniforms(p, p->indirect_program); - update_uniforms(p, p->scale_sep_program); - update_uniforms(p, p->final_program); - update_uniforms(p, p->inter_program); -} - -#define SECTION_HEADER "#!section " - -static char *get_section(void *talloc_ctx, struct bstr source, - const char *section) -{ - char *res = talloc_strdup(talloc_ctx, ""); - bool copy = false; - while (source.len) { - struct bstr line = bstr_strip_linebreaks(bstr_getline(source, &source)); - if (bstr_eatstart(&line, bstr0(SECTION_HEADER))) { - copy = bstrcmp0(line, section) == 0; - } else if (copy) { - res = talloc_asprintf_append_buffer(res, "%.*s\n", BSTR_P(line)); - } - } - return res; -} - -static char *t_concat(void *talloc_ctx, const char *s1, const char *s2) -{ - return talloc_asprintf(talloc_ctx, "%s%s", s1, s2); -} - -static GLuint create_shader(struct gl_video *p, GLenum type, const char *header, - const char *source) -{ - GL *gl = p->gl; - - void *tmp = talloc_new(NULL); - const char *full_source = t_concat(tmp, header, source); - - GLuint shader = gl->CreateShader(type); - gl->ShaderSource(shader, 1, &full_source, NULL); - gl->CompileShader(shader); - GLint status; - gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status); - GLint log_length; - gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length); - - int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR; - const char *typestr = type == GL_VERTEX_SHADER ? "vertex" : "fragment"; - if (mp_msg_test(p->log, pri)) { - MP_MSG(p, pri, "%s shader source:\n", typestr); - mp_log_source(p->log, pri, full_source); - } - if (log_length > 1) { - GLchar *logstr = talloc_zero_size(tmp, log_length + 1); - gl->GetShaderInfoLog(shader, log_length, NULL, logstr); - MP_MSG(p, pri, "%s shader compile log (status=%d):\n%s\n", - typestr, status, logstr); - } - - talloc_free(tmp); - - return shader; -} - -static void prog_create_shader(struct gl_video *p, GLuint program, GLenum type, - const char *header, const char *source) -{ - GL *gl = p->gl; - GLuint shader = create_shader(p, type, header, source); - gl->AttachShader(program, shader); - gl->DeleteShader(shader); -} - -static void link_shader(struct gl_video *p, GLuint program) -{ - GL *gl = p->gl; - gl->LinkProgram(program); - GLint status; - gl->GetProgramiv(program, GL_LINK_STATUS, &status); - GLint log_length; - gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length); - - int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR; - if (mp_msg_test(p->log, pri)) { - GLchar *logstr = talloc_zero_size(NULL, log_length + 1); - gl->GetProgramInfoLog(program, log_length, NULL, logstr); - MP_MSG(p, pri, "shader link log (status=%d): %s\n", status, logstr); - talloc_free(logstr); - } -} - -#define PRELUDE_END "// -- prelude end\n" - -static GLuint create_program(struct gl_video *p, const char *name, - const char *header, const char *vertex, - const char *frag, struct gl_vao *vao) -{ - GL *gl = p->gl; - MP_VERBOSE(p, "compiling shader program '%s', header:\n", name); - const char *real_header = strstr(header, PRELUDE_END); - real_header = real_header ? real_header + strlen(PRELUDE_END) : header; - mp_log_source(p->log, MSGL_V, real_header); - GLuint prog = gl->CreateProgram(); - prog_create_shader(p, prog, GL_VERTEX_SHADER, header, vertex); - prog_create_shader(p, prog, GL_FRAGMENT_SHADER, header, frag); - gl_vao_bind_attribs(vao, prog); - link_shader(p, prog); - return prog; -} - -static void shader_def(char **shader, const char *name, - const char *value) -{ - *shader = talloc_asprintf_append(*shader, "#define %s %s\n", name, value); -} - -static void shader_def_opt(char **shader, const char *name, bool b) -{ - if (b) - shader_def(shader, name, "1"); -} - -#define APPENDF(s_ptr, ...) \ - *(s_ptr) = talloc_asprintf_append(*(s_ptr), __VA_ARGS__) - -static void shader_setup_scaler(char **shader, struct scaler *scaler, int pass) -{ - int unit = scaler->index; - const char *target = unit == 0 ? "SAMPLE" : "SAMPLE_C"; - if (!scaler->kernel) { - APPENDF(shader, "#define %s(p0, p1, p2) " - "sample_%s(p0, p1, p2, filter_param1_%c)\n", - target, scaler->name, "lc"[unit]); - } else { - int size = scaler->kernel->size; - const char *lut_tex = scaler->lut_name; - char name[40]; - snprintf(name, sizeof(name), "sample_scaler%d", unit); - APPENDF(shader, "#define DEF_SCALER%d \\\n ", unit); - char lut_fn[40]; - if (scaler->kernel->polar) { - double radius = scaler->kernel->radius; - int bound = (int)ceil(radius); - // SAMPLE_CONVOLUTION_POLAR_R(NAME, R, LUT, WEIGHTS_FN, ANTIRING) - APPENDF(shader, "SAMPLE_CONVOLUTION_POLAR_R(%s, %f, %s, WEIGHTS%d, %f)\n", - name, radius, lut_tex, unit, scaler->antiring); - - // Pre-compute unrolled weights matrix - APPENDF(shader, "#define WEIGHTS%d(LUT) \\\n ", unit); - for (int y = 1-bound; y <= bound; y++) { - for (int x = 1-bound; x <= bound; x++) { - // Since we can't know the subpixel position in advance, - // assume a worst case scenario. - int yy = y > 0 ? y-1 : y; - int xx = x > 0 ? x-1 : x; - double d = sqrt(xx*xx + yy*yy); - - if (d < radius - 1) { - // Samples definitely inside the main ring - APPENDF(shader, "SAMPLE_POLAR_%s(LUT, %f, %d, %d) \\\n ", - // The center 4 coefficients are the primary - // contributors, used to clamp the result for - // anti-ringing - (x >= 0 && y >= 0 && x <= 1 && y <= 1) - ? "PRIMARY" : "HELPER", - radius, x, y); - } else if (d < radius) { - // Samples on the edge, these are potential values - APPENDF(shader, "SAMPLE_POLAR_POTENTIAL(LUT, %f, %d, %d) \\\n ", - radius, x, y); - } - } - } - APPENDF(shader, "\n"); - } else { - if (size == 2 || size == 6) { - snprintf(lut_fn, sizeof(lut_fn), "weights%d", size); - } else { - snprintf(lut_fn, sizeof(lut_fn), "weights_scaler%d", unit); - APPENDF(shader, "WEIGHTS_N(%s, %d) \\\n ", lut_fn, size); - } - if (pass != -1) { - // The direction/pass assignment is rather arbitrary, but fixed in - // other parts of the code (like FBO setup). - const char *direction = pass == 0 ? "0, 1" : "1, 0"; - // SAMPLE_CONVOLUTION_SEP_N(NAME, DIR, N, LUT, WEIGHTS_FUNC, ANTIRING) - APPENDF(shader, "SAMPLE_CONVOLUTION_SEP_N(%s, vec2(%s), %d, %s, %s, %f)\n", - name, direction, size, lut_tex, lut_fn, scaler->antiring); - } else { - // SAMPLE_CONVOLUTION_N(NAME, N, LUT, WEIGHTS_FUNC) - APPENDF(shader, "SAMPLE_CONVOLUTION_N(%s, %d, %s, %s)\n", - name, size, lut_tex, lut_fn); - } - } - APPENDF(shader, "#define %s %s\n", target, name); - } -} - -static void compile_shaders(struct gl_video *p) -{ - GL *gl = p->gl; - - debug_check_gl(p, "before shaders"); - - delete_shaders(p); - - void *tmp = talloc_new(NULL); - - struct bstr src = bstr0(vo_opengl_shaders); - char *vertex_shader = get_section(tmp, src, "vertex_all"); - char *shader_prelude = get_section(tmp, src, "prelude"); - char *s_video = get_section(tmp, src, "frag_video"); - - bool rg = gl->mpgl_caps & MPGL_CAP_TEX_RG; - bool tex1d = gl->mpgl_caps & MPGL_CAP_1D_TEX; - bool tex3d = gl->mpgl_caps & MPGL_CAP_3D_TEX; - bool arrays = gl->mpgl_caps & MPGL_CAP_1ST_CLASS_ARRAYS; - char *header = - talloc_asprintf(tmp, "#version %d%s\n" - "#define HAVE_RG %d\n" - "#define HAVE_1DTEX %d\n" - "#define HAVE_3DTEX %d\n" - "#define HAVE_ARRAYS %d\n" - "%s%s", - gl->glsl_version, gl->es >= 300 ? " es" : "", - rg, tex1d, tex3d, arrays, shader_prelude, PRELUDE_END); - - bool use_cms = p->opts.srgb || p->use_lut_3d; - // 3DLUT overrides sRGB - bool use_srgb = p->opts.srgb && !p->use_lut_3d; - - float input_gamma = 1.0; - float conv_gamma = 1.0; - - bool is_xyz = p->image_desc.flags & MP_IMGFLAG_XYZ; - if (is_xyz) { - input_gamma *= 2.6; - // Note that this results in linear light, so we make sure to enable - // use_linear_light for XYZ inputs as well. - } - - p->input_gamma = input_gamma; - p->conv_gamma = conv_gamma; - - bool use_input_gamma = p->input_gamma != 1.0; - bool use_conv_gamma = p->conv_gamma != 1.0; - bool use_const_luma = p->image_params.colorspace == MP_CSP_BT_2020_C; - enum mp_csp_trc gamma_fun = p->image_params.gamma; - - // If either color correction option (3dlut or srgb) is enabled, or if - // sigmoidal upscaling is requested, or if the source is linear XYZ, we - // always scale in linear light - bool use_linear_light = p->opts.linear_scaling || p->opts.sigmoid_upscaling - || use_cms || is_xyz; - - // The inverse of the above transformation is normally handled by - // the CMS cases, but if CMS is disabled we need to go back manually - bool use_inv_bt1886 = false; - if (use_linear_light && !use_cms) { - if (gamma_fun == MP_CSP_TRC_SRGB) { - use_srgb = true; - } else { - use_inv_bt1886 = true; - } - } - - // Optionally transform to sigmoidal color space if requested. - p->sigmoid_enabled = p->opts.sigmoid_upscaling; - bool use_sigmoid = p->sigmoid_enabled && p->upscaling; - - // Figure out the right color spaces we need to convert, if any - enum mp_csp_prim prim_src = p->image_params.primaries, prim_dest; - if (use_cms) { - // sRGB mode wants sRGB aka BT.709 primaries, but the 3DLUT is - // always built against BT.2020. - prim_dest = p->opts.srgb ? MP_CSP_PRIM_BT_709 : MP_CSP_PRIM_BT_2020; - } else { - // If no CMS is being done we just want to output stuff as-is, - // in the native colorspace of the source. - prim_dest = prim_src; - } - - // XYZ input has no defined input color space, so we can directly convert - // it to whatever output space we actually need. - if (p->image_desc.flags & MP_IMGFLAG_XYZ) - prim_src = prim_dest; - - // Set the colorspace primaries and figure out whether we need to perform - // an extra conversion. - p->csp_src = mp_get_csp_primaries(prim_src); - p->csp_dest = mp_get_csp_primaries(prim_dest); - - bool use_cms_matrix = prim_src != prim_dest; - - if (p->gl_target == GL_TEXTURE_RECTANGLE) { - shader_def(&header, "VIDEO_SAMPLER", "sampler2DRect"); - shader_def_opt(&header, "USE_RECTANGLE", true); - } else { - shader_def(&header, "VIDEO_SAMPLER", "sampler2D"); - } - - // Need to pass alpha through the whole chain. (Not needed for OSD shaders.) - if (p->opts.alpha_mode == 1) - shader_def_opt(&header, "USE_ALPHA", p->has_alpha); - - char *header_osd = talloc_strdup(tmp, header); - shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_BT1886", - use_cms && gamma_fun == MP_CSP_TRC_BT_1886); - shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_SRGB", - use_cms && gamma_fun == MP_CSP_TRC_SRGB); - shader_def_opt(&header_osd, "USE_OSD_CMS_MATRIX", use_cms_matrix); - shader_def_opt(&header_osd, "USE_OSD_3DLUT", p->use_lut_3d); - shader_def_opt(&header_osd, "USE_OSD_SRGB", use_cms && use_srgb); - - for (int n = 0; n < SUBBITMAP_COUNT; n++) { - const char *name = osd_shaders[n]; - if (name) { - char *s_osd = get_section(tmp, src, name); - p->osd_programs[n] = create_program(p, name, header_osd, - vertex_shader, s_osd, - &p->osd->vao); - } - } - - struct gl_vao *v = &p->vao; // VAO to use to draw primitives - - char *header_conv = talloc_strdup(tmp, ""); - char *header_final = talloc_strdup(tmp, ""); - char *header_inter = talloc_strdup(tmp, ""); - char *header_sep = NULL; - - if (p->image_desc.id == IMGFMT_NV12 || p->image_desc.id == IMGFMT_NV21) { - shader_def(&header_conv, "USE_CONV", "CONV_NV12"); - } else if (p->plane_count > 1) { - shader_def(&header_conv, "USE_CONV", "CONV_PLANAR"); - } - - if (p->color_swizzle[0]) - shader_def(&header_conv, "USE_COLOR_SWIZZLE", p->color_swizzle); - shader_def_opt(&header_conv, "USE_INPUT_GAMMA", use_input_gamma); - shader_def_opt(&header_conv, "USE_COLORMATRIX", !p->is_rgb); - shader_def_opt(&header_conv, "USE_CONV_GAMMA", use_conv_gamma); - shader_def_opt(&header_conv, "USE_CONST_LUMA", use_const_luma); - shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_BT1886", - use_linear_light && gamma_fun == MP_CSP_TRC_BT_1886); - shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_SRGB", - use_linear_light && gamma_fun == MP_CSP_TRC_SRGB); - shader_def_opt(&header_conv, "USE_SIGMOID", use_sigmoid); - if (p->opts.alpha_mode > 0 && p->has_alpha && p->plane_count > 3) - shader_def(&header_conv, "USE_ALPHA_PLANE", "3"); - if (p->opts.alpha_mode == 2 && p->has_alpha) - shader_def(&header_conv, "USE_ALPHA_BLEND", "1"); - shader_def_opt(&header_conv, "USE_CHROMA_FIX", - p->chroma_fix[0] != 1.0f || p->chroma_fix[1] != 1.0f); - - shader_def_opt(&header_final, "USE_SIGMOID_INV", use_sigmoid); - shader_def_opt(&header_final, "USE_INV_GAMMA", p->user_gamma_enabled); - shader_def_opt(&header_final, "USE_CMS_MATRIX", use_cms_matrix); - shader_def_opt(&header_final, "USE_3DLUT", p->use_lut_3d); - shader_def_opt(&header_final, "USE_SRGB", use_srgb); - shader_def_opt(&header_final, "USE_INV_BT1886", use_inv_bt1886); - shader_def_opt(&header_final, "USE_DITHER", p->dither_texture != 0); - shader_def_opt(&header_final, "USE_TEMPORAL_DITHER", p->opts.temporal_dither); - - if (p->scalers[0].kernel && !p->scalers[0].kernel->polar) { - header_sep = talloc_strdup(tmp, ""); - shader_def_opt(&header_sep, "FIXED_SCALE", true); - shader_setup_scaler(&header_sep, &p->scalers[0], 0); - shader_setup_scaler(&header_inter, &p->scalers[0], 1); - } else { - shader_setup_scaler(&header_inter, &p->scalers[0], -1); - } - - bool use_interpolation = p->opts.smoothmotion; - - if (use_interpolation) { - shader_def_opt(&header_inter, "FIXED_SCALE", true); - shader_def_opt(&header_final, "USE_LINEAR_INTERPOLATION", 1); - } - - // The indirect pass is used to preprocess the image before scaling. - bool use_indirect = false; - - // Don't sample from input video textures before converting the input to - // its proper gamma. - if (use_input_gamma || use_conv_gamma || use_linear_light || use_const_luma) - use_indirect = true; - - // Trivial scalers are implemented directly and efficiently by the GPU. - // This only includes bilinear and nearest neighbour in OpenGL, but we - // don't support nearest neighbour upsampling. - bool trivial_scaling = strcmp(p->scalers[0].name, "bilinear") == 0 && - strcmp(p->scalers[1].name, "bilinear") == 0; - - // If the video is subsampled, chroma information needs to be pulled up to - // the input size before scaling can be done. Even for 4:4:4 or planar RGB - // this is also faster because it means the scalers can operate on all - // channels simultaneously. This is unnecessary for trivial scaling. - if (p->plane_count > 1 && !trivial_scaling) - use_indirect = true; - - if (p->image_desc.flags & MP_IMGFLAG_SUBSAMPLED) { - shader_setup_scaler(&header_conv, &p->scalers[1], -1); - } else { - // Force using the normal scaler on chroma. If the "indirect" stage is - // used, the actual scaling will happen in the next stage. - shader_def(&header_conv, "SAMPLE_C", - use_indirect ? "SAMPLE_TRIVIAL" : "SAMPLE"); - } - - if (use_indirect) { - // We don't use filtering for the Y-plane (luma), because it's never - // scaled in this scenario. - shader_def(&header_conv, "SAMPLE", "SAMPLE_TRIVIAL"); - shader_def_opt(&header_conv, "FIXED_SCALE", true); - header_conv = t_concat(tmp, header, header_conv); - p->indirect_program = - create_program(p, "indirect", header_conv, vertex_shader, s_video, v); - } else if (header_sep) { - header_sep = t_concat(tmp, header_sep, header_conv); - } else { - header_inter = t_concat(tmp, header_inter, header_conv); - } - - if (header_sep) { - header_sep = t_concat(tmp, header, header_sep); - p->scale_sep_program = - create_program(p, "scale_sep", header_sep, vertex_shader, s_video, v); - } - - if (use_interpolation) { - header_inter = t_concat(tmp, header, header_inter); - p->inter_program = - create_program(p, "inter", header_inter, vertex_shader, s_video, v); - } else { - header_final = t_concat(tmp, header_final, header_inter); - } - - header_final = t_concat(tmp, header, header_final); - p->final_program = - create_program(p, "final", header_final, vertex_shader, s_video, v); - - debug_check_gl(p, "shader compilation"); - - talloc_free(tmp); -} - -static void delete_program(GL *gl, GLuint *prog) -{ - gl->DeleteProgram(*prog); - *prog = 0; -} - -static void delete_shaders(struct gl_video *p) -{ - GL *gl = p->gl; - - for (int n = 0; n < SUBBITMAP_COUNT; n++) - delete_program(gl, &p->osd->programs[n]); - delete_program(gl, &p->indirect_program); - delete_program(gl, &p->scale_sep_program); - delete_program(gl, &p->final_program); - delete_program(gl, &p->inter_program); -} - -static void get_scale_factors(struct gl_video *p, double xy[2]) -{ - xy[0] = (p->dst_rect.x1 - p->dst_rect.x0) / - (double)(p->src_rect.x1 - p->src_rect.x0); - xy[1] = (p->dst_rect.y1 - p->dst_rect.y0) / - (double)(p->src_rect.y1 - p->src_rect.y0); -} - -static double get_scale_factor(struct gl_video *p) -{ - double xy[2]; - get_scale_factors(p, xy); - return FFMIN(xy[0], xy[1]); -} - -static void update_scale_factor(struct gl_video *p, struct scaler *scaler) -{ - double scale = 1.0; - double xy[2]; - get_scale_factors(p, xy); - double f = MPMIN(xy[0], xy[1]); - if (p->opts.fancy_downscaling && scaler->index == 0 && f < 1.0 && - fabs(xy[0] - f) < 0.01 && fabs(xy[1] - f) < 0.01) - { - MP_VERBOSE(p, "Using fancy-downscaling (scaler %d).\n", scaler->index); - scale = FFMAX(1.0, 1.0 / f); - } - scaler->insufficient = !mp_init_filter(scaler->kernel, filter_sizes, scale); -} - -static void init_scaler(struct gl_video *p, struct scaler *scaler) -{ - GL *gl = p->gl; - - assert(scaler->name); - - scaler->kernel = NULL; - scaler->insufficient = false; - - const struct filter_kernel *t_kernel = mp_find_filter_kernel(scaler->name); - if (!t_kernel) - return; - - scaler->kernel_storage = *t_kernel; - scaler->kernel = &scaler->kernel_storage; - - for (int n = 0; n < 2; n++) { - if (!isnan(p->opts.scaler_params[scaler->index][n])) - scaler->kernel->params[n] = p->opts.scaler_params[scaler->index][n]; - } - - scaler->antiring = p->opts.scaler_antiring[scaler->index]; - - if (scaler->kernel->radius < 0) - scaler->kernel->radius = p->opts.scaler_radius[scaler->index]; - - update_scale_factor(p, scaler); - - int size = scaler->kernel->size; - int elems_per_pixel = 4; - if (size == 1) { - elems_per_pixel = 1; - } else if (size == 2) { - elems_per_pixel = 2; - } else if (size == 6) { - elems_per_pixel = 3; - } - int width = size / elems_per_pixel; - assert(size == width * elems_per_pixel); - const struct fmt_entry *fmt = &gl_float16_formats[elems_per_pixel - 1]; - int target; - - if (scaler->kernel->polar) { - target = GL_TEXTURE_1D; - scaler->lut_name = scaler->index == 0 ? "lut_1d_l" : "lut_1d_c"; - } else { - target = GL_TEXTURE_2D; - scaler->lut_name = scaler->index == 0 ? "lut_2d_l" : "lut_2d_c"; - } - - gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_SCALERS + scaler->index); - - if (!scaler->gl_lut) - gl->GenTextures(1, &scaler->gl_lut); - - gl->BindTexture(target, scaler->gl_lut); - - float *weights = talloc_array(NULL, float, LOOKUP_TEXTURE_SIZE * size); - mp_compute_lut(scaler->kernel, LOOKUP_TEXTURE_SIZE, weights); - - if (target == GL_TEXTURE_1D) { - gl->TexImage1D(target, 0, fmt->internal_format, LOOKUP_TEXTURE_SIZE, - 0, fmt->format, GL_FLOAT, weights); - } else { - gl->TexImage2D(target, 0, fmt->internal_format, width, LOOKUP_TEXTURE_SIZE, - 0, fmt->format, GL_FLOAT, weights); - } - - talloc_free(weights); - - gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); - gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); - gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); - if (target != GL_TEXTURE_1D) - gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); - - gl->ActiveTexture(GL_TEXTURE0); - - debug_check_gl(p, "after initializing scaler"); -} - -static void init_dither(struct gl_video *p) -{ - GL *gl = p->gl; - - // Assume 8 bits per component if unknown. - int dst_depth = p->depth_g ? p->depth_g : 8; - if (p->opts.dither_depth > 0) - dst_depth = p->opts.dither_depth; - - if (p->opts.dither_depth < 0 || p->opts.dither_algo < 0) - return; - - MP_VERBOSE(p, "Dither to %d.\n", dst_depth); - - int tex_size; - void *tex_data; - GLint tex_iformat; - GLint tex_format; - GLenum tex_type; - unsigned char temp[256]; - - if (p->opts.dither_algo == 0) { - int sizeb = p->opts.dither_size; - int size = 1 << sizeb; - - if (p->last_dither_matrix_size != size) { - p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix, - float, size * size); - mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb); - p->last_dither_matrix_size = size; - } - - tex_size = size; - tex_iformat = gl_float16_formats[0].internal_format; - tex_format = gl_float16_formats[0].format; - tex_type = GL_FLOAT; - tex_data = p->last_dither_matrix; - } else { - assert(sizeof(temp) >= 8 * 8); - mp_make_ordered_dither_matrix(temp, 8); - - const struct fmt_entry *fmt = find_tex_format(gl, 1, 1); - tex_size = 8; - tex_iformat = fmt->internal_format; - tex_format = fmt->format; - tex_type = fmt->type; - tex_data = temp; - } - - // This defines how many bits are considered significant for output on - // screen. The superfluous bits will be used for rounding according to the - // dither matrix. The precision of the source implicitly decides how many - // dither patterns can be visible. - p->dither_quantization = (1 << dst_depth) - 1; - p->dither_center = 0.5 / (tex_size * tex_size); - p->dither_size = tex_size; - - gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_DITHER); - gl->GenTextures(1, &p->dither_texture); - gl->BindTexture(GL_TEXTURE_2D, p->dither_texture); - gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1); - gl->TexImage2D(GL_TEXTURE_2D, 0, tex_iformat, tex_size, tex_size, 0, - tex_format, tex_type, tex_data); - gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); - gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); - gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); - gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); - gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4); - gl->ActiveTexture(GL_TEXTURE0); - - debug_check_gl(p, "dither setup"); -} - static void recreate_osd(struct gl_video *p) { if (p->osd) mpgl_osd_destroy(p->osd); - p->osd = mpgl_osd_init(p->gl, p->log, p->osd_state, p->osd_programs); - p->osd->use_pbo = p->opts.pbo; -} - -static bool does_resize(struct mp_rect src, struct mp_rect dst) -{ - return src.x1 - src.x0 != dst.x1 - dst.x0 || - src.y1 - src.y0 != dst.y1 - dst.y0; -} - -static const char *expected_scaler(struct gl_video *p, int unit) -{ - if (p->opts.scaler_resizes_only && unit == 0 && - !does_resize(p->src_rect, p->dst_rect)) - { - return "bilinear"; - } - if (unit == 0 && p->opts.dscaler && get_scale_factor(p) < 1.0) - return p->opts.dscaler; - return p->opts.scalers[unit]; -} - -static void update_settings(struct gl_video *p) -{ - struct mp_csp_params params; - mp_csp_copy_equalizer_values(¶ms, &p->video_eq); - - p->user_gamma = params.gamma * p->opts.gamma; - - // Lazy gamma shader initialization (a microoptimization) - if (p->user_gamma != 1.0f && !p->user_gamma_enabled) { - p->user_gamma_enabled = true; - p->need_reinit_rendering = true; - } + p->osd = mpgl_osd_init(p->gl, p->log, p->osd_state); + mpgl_osd_set_options(p->osd, p->opts.pbo); } static void reinit_rendering(struct gl_video *p) { - GL *gl = p->gl; - MP_VERBOSE(p, "Reinit rendering.\n"); debug_check_gl(p, "before scaler initialization"); uninit_rendering(p); - if (!p->image_params.imgfmt) - return; - - update_settings(p); - - for (int n = 0; n < 2; n++) - p->scalers[n].name = expected_scaler(p, n); - - init_dither(p); - - init_scaler(p, &p->scalers[0]); - init_scaler(p, &p->scalers[1]); - - compile_shaders(p); - update_all_uniforms(p); - - int w = p->image_w; - int h = p->image_h; - - // Convolution filters don't need linear sampling, so using nearest is - // often faster. - GLenum filter = p->scalers[0].kernel ? GL_NEAREST : GL_LINEAR; - - if (p->indirect_program) { - fbotex_init(&p->indirect_fbo, gl, p->log, w, h, p->gl_target, filter, - p->opts.fbo_format); - } - recreate_osd(p); - - p->need_reinit_rendering = false; } static void uninit_rendering(struct gl_video *p) { GL *gl = p->gl; - delete_shaders(p); - - for (int n = 0; n < 2; n++) { - gl->DeleteTextures(1, &p->scalers[n].gl_lut); - p->scalers[n].gl_lut = 0; - p->scalers[n].lut_name = NULL; - p->scalers[n].kernel = NULL; - } + for (int n = 0; n < 2; n++) + uninit_scaler(p, n); gl->DeleteTextures(1, &p->dither_texture); p->dither_texture = 0; - - fbotex_uninit(&p->indirect_fbo); - - for (int i = 0; i < FBOSURFACES_MAX; i++) { - fbotex_uninit(&p->surfaces[i].fbotex); - p->surfaces[i].valid = false; - } - - fbotex_uninit(&p->scale_sep_fbo); } void gl_video_set_lut3d(struct gl_video *p, struct lut3d *lut3d) @@ -1477,16 +546,31 @@ void gl_video_set_lut3d(struct gl_video *p, struct lut3d *lut3d) reinit_rendering(p); } -static void set_image_textures(struct gl_video *p, struct video_image *vimg, - GLuint imgtex[4]) +static void pass_set_image_textures(struct gl_video *p, struct video_image *vimg) { - GL *gl = p->gl; - GLuint dummy[4] = {0}; - if (!imgtex) - imgtex = dummy; + GLuint imgtex[4] = {0}; assert(vimg->mpi); + float offset[2] = {0}; + int chroma_loc = p->opts.chroma_location; + if (!chroma_loc) + chroma_loc = p->image_params.chroma_location; + if (chroma_loc != MP_CHROMA_CENTER) { + int cx, cy; + mp_get_chroma_location(chroma_loc, &cx, &cy); + // By default texture coordinates are such that chroma is centered with + // any chroma subsampling. If a specific direction is given, make it + // so that the luma and chroma sample line up exactly. + // For 4:4:4, setting chroma location should have no effect at all. + // luma sample size (in chroma coord. space) + float ls_w = 1.0 / (1 << p->image_desc.chroma_xs); + float ls_h = 1.0 / (1 << p->image_desc.chroma_ys); + // move chroma center to luma center (in chroma coord. space) + offset[0] = ls_w < 1 ? ls_w * -cx / 2 : 0; + offset[1] = ls_h < 1 ? ls_h * -cy / 2 : 0; + } + if (p->hwdec_active) { p->hwdec->driver->map_image(p->hwdec, vimg->mpi, imgtex); } else { @@ -1495,24 +579,25 @@ static void set_image_textures(struct gl_video *p, struct video_image *vimg, } for (int n = 0; n < 4; n++) { - gl->ActiveTexture(GL_TEXTURE0 + n); - gl->BindTexture(p->gl_target, imgtex[n]); - } - gl->ActiveTexture(GL_TEXTURE0); -} - -static void unset_image_textures(struct gl_video *p) -{ - GL *gl = p->gl; - - for (int n = 0; n < 4; n++) { - gl->ActiveTexture(GL_TEXTURE0 + n); - gl->BindTexture(p->gl_target, 0); + struct texplane *t = &vimg->planes[n]; + p->pass_tex[n] = (struct src_tex){ + .gl_tex = imgtex[n], + .gl_target = t->gl_target, + .tex_w = t->tex_w, + .tex_h = t->tex_h, + //.src = {0, 0, t->w, t->h}, + .src = { + // xxx this is wrong; we want to crop the source when sampling + // from indirect_fbo, but not when rendering to indirect_fbo + // also, this should apply offset, and take care of odd video + // dimensions properly; and it should use floats instead + .x0 = p->src_rect.x0 >> p->image_desc.xs[n], + .y0 = p->src_rect.y0 >> p->image_desc.ys[n], + .x1 = p->src_rect.x1 >> p->image_desc.xs[n], + .y1 = p->src_rect.y1 >> p->image_desc.ys[n], + }, + }; } - gl->ActiveTexture(GL_TEXTURE0); - - if (p->hwdec_active) - p->hwdec->driver->unmap_image(p->hwdec); } static int align_pow2(int s) @@ -1558,6 +643,8 @@ static void init_video(struct gl_video *p) for (int n = 0; n < p->plane_count; n++) { struct texplane *plane = &vimg->planes[n]; + plane->gl_target = p->gl_target; + plane->w = mp_chroma_div_up(p->image_w, p->image_desc.xs[n]); plane->h = mp_chroma_div_up(p->image_h, p->image_desc.ys[n]); @@ -1589,17 +676,6 @@ static void init_video(struct gl_video *p) } gl->ActiveTexture(GL_TEXTURE0); - // If the dimensions of the Y plane are not aligned on the luma. - // Assume 4:2:0 with size (3,3). The last luma pixel is (2,2). - // The last chroma pixel is (1,1), not (0,0). So for luma, the - // coordinate range is [0,3), for chroma it is [0,2). This means the - // texture coordinates for chroma are stretched by adding 1 luma pixel - // to the range. Undo this. - p->chroma_fix[0] = p->image.planes[0].tex_w / (double)p->image.planes[1].tex_w - / (1 << p->image_desc.chroma_xs); - p->chroma_fix[1] = p->image.planes[0].tex_h / (double)p->image.planes[1].tex_h - / (1 << p->image_desc.chroma_ys); - debug_check_gl(p, "after video texture creation"); reinit_rendering(p); @@ -1631,186 +707,539 @@ static void uninit_video(struct gl_video *p) p->image_params = p->real_image_params; } -static void change_dither_trafo(struct gl_video *p) +static void pass_prepare_src_tex(struct gl_video *p) { GL *gl = p->gl; - int program = p->final_program; + struct gl_shader_cache *sc = p->sc; + + for (int n = 0; n < p->plane_count; n++) { + struct src_tex *s = &p->pass_tex[n]; + if (!s->gl_tex) + continue; + + char texture_name[32]; + char texture_size[32]; + snprintf(texture_name, sizeof(texture_name), "texture%d", n); + snprintf(texture_size, sizeof(texture_size), "texture_size%d", n); + + gl_sc_uniform_sampler(sc, texture_name, p->gl_target, n); + float f[2] = {1, 1}; + if (p->gl_target != GL_TEXTURE_RECTANGLE) { + f[0] = s->tex_w; + f[1] = s->tex_h; + } + gl_sc_uniform_vec2(sc, texture_size, f); - int phase = p->frames_rendered % 8u; - float r = phase * (M_PI / 2); // rotate - float m = phase < 4 ? 1 : -1; // mirror + gl->ActiveTexture(GL_TEXTURE0 + n); + gl->BindTexture(s->gl_target, s->gl_tex); + } + gl->ActiveTexture(GL_TEXTURE0); +} - gl->UseProgram(program); +static void render_pass_quad(struct gl_video *p, int vp_w, int vp_h, + const struct mp_rect *dst) +{ + struct vertex va[4]; - float matrix[2][2] = {{cos(r), -sin(r) }, - {sin(r) * m, cos(r) * m}}; - gl->UniformMatrix2fv(gl->GetUniformLocation(program, "dither_trafo"), - 1, GL_TRUE, &matrix[0][0]); + float matrix[3][3]; + gl_matrix_ortho2d(matrix, 0, vp_w, 0, vp_h); - gl->UseProgram(0); + float x[2] = {dst->x0, dst->x1}; + float y[2] = {dst->y0, dst->y1}; + gl_matrix_mul_vec(matrix, &x[0], &y[0]); + gl_matrix_mul_vec(matrix, &x[1], &y[1]); + + for (int n = 0; n < 4; n++) { + struct vertex *v = &va[n]; + v->position.x = x[n / 2]; + v->position.y = y[n % 2]; + for (int i = 0; i < 4; i++) { + struct src_tex *s = &p->pass_tex[i]; + if (s->gl_tex) { + float tx[2] = {s->src.x0, s->src.x1}; + float ty[2] = {s->src.y0, s->src.y1}; + bool rect = s->gl_target == GL_TEXTURE_RECTANGLE; + v->texcoord[i].x = tx[n / 2] / (rect ? 1 : s->tex_w); + v->texcoord[i].y = ty[n % 2] / (rect ? 1 : s->tex_h); + } + } + } + + gl_vao_draw_data(&p->vao, GL_TRIANGLE_STRIP, va, 4); + + debug_check_gl(p, "after rendering"); } -struct pass { - int num; - // Not necessarily a FBO; we just abuse this struct because it's convenient. - // It specifies the source texture/sub-rectangle for the next pass. - struct fbotex f; - // If true, render source (f) to dst, instead of the full dest. fbo viewport - bool use_dst; - struct mp_rect dst; - int flags; // for write_quad -}; +static void finish_pass_direct(struct gl_video *p, GLint fbo, int vp_w, int vp_h, + const struct mp_rect *dst) +{ + GL *gl = p->gl; + pass_prepare_src_tex(p); + gl->BindFramebuffer(GL_FRAMEBUFFER, fbo); + gl->Viewport(0, 0, vp_w, vp_h < 0 ? -vp_h : vp_h); + gl_sc_gen_shader_and_reset(p->sc); + render_pass_quad(p, vp_w, vp_h, dst); + gl->BindFramebuffer(GL_FRAMEBUFFER, 0); + memset(&p->pass_tex, 0, sizeof(p->pass_tex)); +} + +// dst_fbo: this will be used for rendering; possibly reallocating the whole +// FBO, if the required parameters have changed +// w, h: required FBO target dimension, and also defines the target rectangle +// used for rasterization +// flags: 0 or combination of FBOTEX_FUZZY_W/FBOTEX_FUZZY_H (setting the fuzzy +// flags allows the FBO to be larger than the target) +static void finish_pass_fbo(struct gl_video *p, struct fbotex *dst_fbo, + int w, int h, int flags) +{ + fbotex_change(dst_fbo, p->gl, p->log, w, h, p->opts.fbo_format, flags); + + finish_pass_direct(p, dst_fbo->fbo, dst_fbo->tex_w, dst_fbo->tex_h, + &(struct mp_rect){0, 0, w, h}); + p->pass_tex[0] = (struct src_tex){ + .gl_tex = dst_fbo->texture, + .gl_target = GL_TEXTURE_2D, + .tex_w = dst_fbo->tex_w, + .tex_h = dst_fbo->tex_h, + .src = {0, 0, w, h}, + }; +} + +static void uninit_scaler(struct gl_video *p, int scaler_unit) +{ + GL *gl = p->gl; + struct scaler *scaler = &p->scalers[scaler_unit]; -// *chain contains the source, and is overwritten with a copy of the result -// fbo is used as destination texture/render target. -static void handle_pass(struct gl_video *p, struct pass *chain, - struct fbotex *fbo, GLuint program) + gl->DeleteTextures(1, &scaler->gl_lut); + scaler->gl_lut = 0; + scaler->kernel = NULL; + scaler->initialized = false; +} + +static void reinit_scaler(struct gl_video *p, int scaler_unit, const char *name, + double scale_factor) { GL *gl = p->gl; + struct scaler *scaler = &p->scalers[scaler_unit]; - if (!program) + if (scaler->name && strcmp(scaler->name, name) == 0 && + scaler->scale_factor == scale_factor && + scaler->initialized) return; - gl->BindTexture(p->gl_target, chain->f.texture); - gl->UseProgram(program); + uninit_scaler(p, scaler_unit); - gl->Viewport(fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h); - gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo); + scaler->name = name; + scaler->scale_factor = scale_factor; + scaler->insufficient = false; + scaler->initialized = true; - int tex_w = chain->f.tex_w; - int tex_h = chain->f.tex_h; - struct mp_rect src = { - .x0 = chain->f.vp_x, - .y0 = chain->f.vp_y, - .x1 = chain->f.vp_x + chain->f.vp_w, - .y1 = chain->f.vp_y + chain->f.vp_h, - }; + const struct filter_kernel *t_kernel = mp_find_filter_kernel(scaler->name); + if (!t_kernel) + return; - struct mp_rect dst = {-1, -1, 1, 1}; - if (chain->use_dst) - dst = chain->dst; + scaler->kernel_storage = *t_kernel; + scaler->kernel = &scaler->kernel_storage; - MP_TRACE(p, "Pass %d: [%d,%d,%d,%d] -> [%d,%d,%d,%d][%d,%d@%dx%d/%dx%d] (%d)\n", - chain->num, src.x0, src.y0, src.x1, src.y1, - dst.x0, dst.y0, dst.x1, dst.y1, - fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h, - fbo->tex_w, fbo->tex_h, chain->flags); + for (int n = 0; n < 2; n++) { + if (!isnan(p->opts.scaler_params[scaler->index][n])) + scaler->kernel->params[n] = p->opts.scaler_params[scaler->index][n]; + } - draw_quad(p, - dst.x0, dst.y0, dst.x1, dst.y1, - src.x0, src.y0, src.x1, src.y1, - tex_w, tex_h, chain->flags); + scaler->antiring = p->opts.scaler_antiring[scaler->index]; - *chain = (struct pass){ - .num = chain->num + 1, - .f = *fbo, - }; + if (scaler->kernel->radius < 0) + scaler->kernel->radius = p->opts.scaler_radius[scaler->index]; + + scaler->insufficient = !mp_init_filter(scaler->kernel, filter_sizes, + scale_factor); + + if (scaler->kernel->polar) { + scaler->gl_target = GL_TEXTURE_1D; + } else { + scaler->gl_target = GL_TEXTURE_2D; + } + + int size = scaler->kernel->size; + int elems_per_pixel = 4; + if (size == 1) { + elems_per_pixel = 1; + } else if (size == 2) { + elems_per_pixel = 2; + } else if (size == 6) { + elems_per_pixel = 3; + } + int width = size / elems_per_pixel; + assert(size == width * elems_per_pixel); + const struct fmt_entry *fmt = &gl_float16_formats[elems_per_pixel - 1]; + GLenum target = scaler->gl_target; + + gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_SCALERS + scaler->index); + + if (!scaler->gl_lut) + gl->GenTextures(1, &scaler->gl_lut); + + gl->BindTexture(target, scaler->gl_lut); + + float *weights = talloc_array(NULL, float, LOOKUP_TEXTURE_SIZE * size); + mp_compute_lut(scaler->kernel, LOOKUP_TEXTURE_SIZE, weights); + + if (target == GL_TEXTURE_1D) { + gl->TexImage1D(target, 0, fmt->internal_format, LOOKUP_TEXTURE_SIZE, + 0, fmt->format, GL_FLOAT, weights); + } else { + gl->TexImage2D(target, 0, fmt->internal_format, width, LOOKUP_TEXTURE_SIZE, + 0, fmt->format, GL_FLOAT, weights); + } + + talloc_free(weights); + + gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); + gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); + gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + if (target != GL_TEXTURE_1D) + gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + + gl->ActiveTexture(GL_TEXTURE0); + + debug_check_gl(p, "after initializing scaler"); } -static size_t fbosurface_next(struct gl_video *p) +static void pass_sample_separated_get_weights(struct gl_video *p, + struct scaler *scaler) { - return (p->surface_idx + 1) % FBOSURFACES_MAX; + gl_sc_uniform_sampler(p->sc, "lut", scaler->gl_target, + TEXUNIT_SCALERS + scaler->index); + + int N = scaler->kernel->size; + if (N == 2) { + GLSL(vec2 c1 = texture(lut, vec2(0.5, fcoord)).RG;) + GLSL(float weights[2] = float[](c1.r, c1.g);) + } else if (N == 6) { + GLSL(vec4 c1 = texture(lut, vec2(0.25, fcoord));) + GLSL(vec4 c2 = texture(lut, vec2(0.75, fcoord));) + GLSL(float weights[6] = float[](c1.r, c1.g, c1.b, c2.r, c2.g, c2.b);) + } else { + GLSL(float weights[N];) + GLSL(for (int n = 0; n < N / 4; n++) {) + GLSL( vec4 c = texture(lut, vec2(1.0 / (N / 2) + n / float(N / 4), fcoord));) + GLSL( weights[n * 4 + 0] = c.r;) + GLSL( weights[n * 4 + 1] = c.g;) + GLSL( weights[n * 4 + 2] = c.b;) + GLSL( weights[n * 4 + 3] = c.a;) + GLSL(}) + } +} + +// Handle a single pass (either vertical or horizontal). The direction is given +// by the vector (d_x, d_y) +static void pass_sample_separated_gen(struct gl_video *p, struct scaler *scaler, + int d_x, int d_y) +{ + int N = scaler->kernel->size; + GLSLF("vec2 dir = vec2(%d, %d);\n", d_x, d_y); + GLSLF("#define N %d\n", N); + GLSLF("#define ANTIRING %f\n", scaler->antiring); + GLSL(vec2 pt = (vec2(1.0) / texture_size0) * dir;) + GLSL(float fcoord = dot(fract(texcoord0 * texture_size0 - vec2(0.5)), dir);) + GLSL(vec2 base = texcoord0 - fcoord * pt - pt * vec2(N / 2 - 1);) + pass_sample_separated_get_weights(p, scaler); + GLSL(vec4 color = vec4(0);) + GLSL(vec4 hi = vec4(0);) + GLSL(vec4 lo = vec4(1);) + GLSL(for (int n = 0; n < N; n++) {) + GLSL( vec4 c = texture(texture0, base + pt * vec2(n));) + GLSL( color += vec4(weights[n]) * c;) + GLSL( if (n == N/2-1 || n == N/2) {) + GLSL( lo = min(lo, c);) + GLSL( hi = max(hi, c);) + GLSL( }) + GLSL(}) + GLSL(color = mix(color, clamp(color, lo, hi), ANTIRING);) +} + +static void pass_sample_separated(struct gl_video *p, struct scaler *scaler, + int w, int h) +{ + GLSLF("// pass 1\n"); + pass_sample_separated_gen(p, scaler, 0, 1); + int src_w = p->pass_tex[0].src.x1 - p->pass_tex[0].src.x0; + finish_pass_fbo(p, &scaler->sep_fbo, src_w, h, 0); + GLSLF("// pass 2\n"); + pass_sample_separated_gen(p, scaler, 1, 0); +} + +// Scale. This uses the p->pass_tex[0] texture as source. It's hardcoded to +// use all variables and values associated with p->pass_tex[0] (which includes +// texture0/texcoord0/texture_size0). +// The src rectangle is implicit in p->pass_tex. +// The dst rectangle is implicit by what the caller will do next, but w and h +// must still be what is going to be used (to dimension FBOs correctly). +// This will declare "vec4 color;", which contains the scaled contents. +// The scaler unit is initialized by this function; in order to avoid cache +// thrashing, the scaler unit should usually use the same parameters. +static void pass_scale(struct gl_video *p, int scaler_unit, const char *name, + double scale_factor, int w, int h) +{ + struct scaler *scaler = &p->scalers[scaler_unit]; + reinit_scaler(p, scaler_unit, name, scale_factor); + + // Dispatch the scaler. They're all wildly different. + if (strcmp(scaler->name, "bilinear") == 0) { + GLSL(vec4 color = texture(texture0, texcoord0);) + } else if (scaler->kernel && !scaler->kernel->polar) { + pass_sample_separated(p, scaler, w, h); + } else { + abort(); //not implemented yet + } } -// Handle all of the frame passes upto and including upscaling, assuming -// upscaling is not part of the final pass -static void gl_video_upscale_frame(struct gl_video *p, struct pass *chain, struct fbotex *inter_fbo) +// sample from video textures, set "color" variable to yuv value +// (not sure how exactly this should involve the resamplers) +static void pass_read_video(struct gl_video *p, bool *use_indirect) { - // Order of processing: [indirect -> [scale_sep ->]] inter - handle_pass(p, chain, &p->indirect_fbo, p->indirect_program); - - // compensated for optional rotation - struct mp_rect src_rect_rot = p->src_rect; - if ((p->image_params.rotate % 180) == 90) { - MPSWAP(int, src_rect_rot.x0, src_rect_rot.y0); - MPSWAP(int, src_rect_rot.x1, src_rect_rot.y1); + pass_set_image_textures(p, &p->image); + + if (p->plane_count > 1) { + if (p->plane_count == 2) { + GLSL(vec2 chroma = texture(texture1, texcoord1).RG;) // NV formats + } else { + GLSL(vec2 chroma = vec2(texture(texture1, texcoord1).r, + texture(texture2, texcoord2).r);) + } + + const char *cscale = p->opts.scalers[1]; + if (p->image_desc.flags & MP_IMGFLAG_SUBSAMPLED && + strcmp(cscale, "bilinear") != 0) { + GLSLF("// chroma merging\n"); + GLSL(vec4 color = vec4(chroma.r, chroma.g, 0.0, 0.0);) + if (1) { //p->plane_count > 2) { + // For simplicity - and maybe also for performance - we merge + // the chroma planes into one texture before scaling. So the + // scaler doesn't need to deal with more than 1 source texture. + int c_w = p->pass_tex[1].src.x1 - p->pass_tex[1].src.x0; + int c_h = p->pass_tex[1].src.y1 - p->pass_tex[1].src.y0; + finish_pass_fbo(p, &p->chroma_merge_fbo, c_w, c_h, 0); + } + GLSLF("// chroma scaling\n"); + pass_scale(p, 1, cscale, 1.0, p->image_w, p->image_h); + GLSL(vec2 chroma = color.rg;) + // Always force rendering to a FBO before main scaling, or we would + // scale chroma incorrectly. + *use_indirect = true; + + // What we'd really like to do is putting the output of the chroma + // scaler on texture unit 1, and leave luma on unit 0 (alpha on 3). + // But this obviously doesn't work, so here's an extremely shitty + // hack. Keep in mind that the shader already uses tex unit 0, so + // it can't be changed. alpha is missing too. + struct src_tex prev = p->pass_tex[0]; + pass_set_image_textures(p, &p->image); + p->pass_tex[1] = p->pass_tex[0]; + p->pass_tex[0] = prev; + GLSL(color = vec4(texture(texture1, texcoord1).r, chroma, 0);) + } else { + GLSL(vec4 color = vec4(0.0, chroma, 0.0);) + // These always use bilinear; either because the scaler is bilinear, + // or because we use an indirect pass. + GLSL(color.r = texture(texture0, texcoord0).r;) + if (p->has_alpha && p->plane_count >= 4) + GLSL(color.a = texture(texture3, texcoord3).r;) + } + } else { + GLSL(vec4 color = texture(texture0, texcoord0);) } +} + +// yuv conversion, and any other conversions before main up/down-scaling +static void pass_convert_yuv(struct gl_video *p) +{ + struct gl_shader_cache *sc = p->sc; - // Clip to visible height so that separate scaling scales the visible part - // only (and the target FBO texture can have a bounded size). - // Don't clamp width; too hard to get correct final scaling on l/r borders. - chain->f.vp_y = src_rect_rot.y0; - chain->f.vp_h = src_rect_rot.y1 - src_rect_rot.y0; + GLSLF("// color conversion\n"); - handle_pass(p, chain, &p->scale_sep_fbo, p->scale_sep_program); + if (p->color_swizzle[0]) + GLSLF("color = color.%s;\n", p->color_swizzle); + + // Conversion from Y'CbCr or other spaces to RGB + if (!p->is_rgb) { +