From d8002f1dde94771952b301f4ebe331c52bc71871 Mon Sep 17 00:00:00 2001 From: wm4 Date: Sat, 9 May 2020 17:56:44 +0200 Subject: video: separate repacking code from zimg and make it independent For whatever purpose. If anything, this makes the zimg wrapper cleaner. The added tests are not particular exhaustive, but nice to have. This also makes the scale_zimg.c test pretty useless, because it only tests repacking (going through the zimg wrapper). In theory, the repack_tests things could also be used on scalers, but I guess it doesn't matter. Some things are added over the previous zimg wrapper code. For example, some fringe formats can now be expanded to 8 bit per component for convenience. --- test/ref/repack.txt | 163 ++++++++ test/repack.c | 249 ++++++++++++ test/tests.c | 23 ++ test/tests.h | 7 + video/img_format.h | 3 +- video/repack.c | 1110 +++++++++++++++++++++++++++++++++++++++++++++++++++ video/repack.h | 72 ++++ video/zimg.c | 954 +++---------------------------------------- wscript_build.py | 2 + 9 files changed, 1688 insertions(+), 895 deletions(-) create mode 100644 test/ref/repack.txt create mode 100644 test/repack.c create mode 100644 video/repack.c create mode 100644 video/repack.h diff --git a/test/ref/repack.txt b/test/ref/repack.txt new file mode 100644 index 0000000000..3946a6eb47 --- /dev/null +++ b/test/ref/repack.txt @@ -0,0 +1,163 @@ +0bgr => [pa] [un] gbrp | a=1:1 [tu] [tp] +0rgb => [pa] [un] gbrp | a=1:1 [tu] [tp] +abgr => [pa] [un] gbrap | a=1:1 [tu] [tp] +argb => [pa] [un] gbrap | a=1:1 [tu] [tp] +ayuv64 => [pa] [un] yuva444p16 | a=1:1 [tu] [tp] +ayuv64be => [pa] [un] yuva444p16 | a=1:1 [tu] [tp] +bayer_bggr16 => no +bayer_bggr16be => no +bayer_bggr8 => no +bayer_gbrg16 => no +bayer_gbrg16be => no +bayer_gbrg8 => no +bayer_grbg16 => no +bayer_grbg16be => no +bayer_grbg8 => no +bayer_rggb16 => no +bayer_rggb16be => no +bayer_rggb8 => no +bgr0 => [pa] [un] gbrp | a=1:1 [tu] [tp] +bgr24 => [pa] [un] gbrp | a=1:1 +bgr4 => no +bgr444 => [pa] [un] gbrp4 | a=1:1 +bgr444 => [pa] [un] gbrp | a=1:1 [expand-8bit] +bgr444be => [pa] [un] gbrp4 | a=1:1 +bgr444be => [pa] [un] gbrp | a=1:1 [expand-8bit] +bgr48 => [pa] [un] gbrp16 | a=1:1 +bgr48be => [pa] [un] gbrp16 | a=1:1 +bgr4_byte => [pa] [un] gbrp2 | a=1:1 +bgr4_byte => [pa] [un] gbrp1 | a=1:1 [round-down] +bgr4_byte => [pa] [un] gbrp | a=1:1 [expand-8bit] +bgr555 => [pa] [un] gbrp5 | a=1:1 +bgr555 => [pa] [un] gbrp | a=1:1 [expand-8bit] +bgr555be => [pa] [un] gbrp5 | a=1:1 +bgr555be => [pa] [un] gbrp | a=1:1 [expand-8bit] +bgr565 => [pa] [un] gbrp6 | a=1:1 +bgr565 => [pa] [un] gbrp5 | a=1:1 [round-down] +bgr565 => [pa] [un] gbrp | a=1:1 [expand-8bit] +bgr565be => [pa] [un] gbrp6 | a=1:1 +bgr565be => [pa] [un] gbrp5 | a=1:1 [round-down] +bgr565be => [pa] [un] gbrp | a=1:1 [expand-8bit] +bgr8 => [pa] [un] gbrp3 | a=1:1 +bgr8 => [pa] [un] gbrp2 | a=1:1 [round-down] +bgr8 => [pa] [un] gbrp | a=1:1 [expand-8bit] +bgra => [pa] [un] gbrap | a=1:1 [tu] [tp] +bgra64 => [pa] [un] gbrap16 | a=1:1 +bgra64be => [pa] [un] gbrap16 | a=1:1 +cuda => no +d3d11 => no +d3d11va_vld => no +drm_prime => no +dxva2_vld => no +gbrap10be => [pa] [un] gbrap10 | a=1:1 +gbrap12be => [pa] [un] gbrap12 | a=1:1 +gbrap16be => [pa] [un] gbrap16 | a=1:1 +gbrapf32be => [pa] [un] gbrapf32 | a=1:1 +gbrp10be => [pa] [un] gbrp10 | a=1:1 +gbrp12be => [pa] [un] gbrp12 | a=1:1 +gbrp14be => [pa] [un] gbrp14 | a=1:1 +gbrp16be => [pa] [un] gbrp16 | a=1:1 +gbrp9be => [pa] [un] gbrp9 | a=1:1 +gbrpf32be => [pa] [un] gbrpf32 | a=1:1 +gray10be => [pa] [un] gray10 | a=1:1 +gray12be => [pa] [un] gray12 | a=1:1 +gray14be => [pa] [un] gray14 | a=1:1 +gray16be => [pa] [un] gray16 | a=1:1 +gray9be => [pa] [un] gray9 | a=1:1 +grayf32be => [pa] [un] grayf32 | a=1:1 +mediacodec => no +mmal => no +monob => [pa] [un] y1 | a=8:1 [tu] [tp] +monob => [pa] [un] gray | a=8:1 [expand-8bit] +monow => [pa] [un] y1 | a=8:1 [tu] [tp] +monow => [pa] [un] gray | a=8:1 [expand-8bit] +nv12 => [pa] [un] yuv420p | a=2:2 [tu] [tp] +nv16 => [pa] [un] yuv422p | a=2:1 +nv20 => [pa] [un] yuv422p10 | a=2:1 +nv20be => [pa] [un] yuv422p10 | a=2:1 +nv21 => [pa] [un] yuv420p | a=2:2 [tu] [tp] +nv24 => [pa] [un] yuv444p | a=1:1 +nv42 => [pa] [un] yuv444p | a=1:1 +opencl => no +p010 => [pa] [un] yuv420p16 | a=2:2 +p010be => [pa] [un] yuv420p16 | a=2:2 +p016 => [pa] [un] yuv420p16 | a=2:2 +p016be => [pa] [un] yuv420p16 | a=2:2 +pal8 => [un] gbrap | a=1:1 +qsv => no +rgb0 => [pa] [un] gbrp | a=1:1 [tu] [tp] +rgb24 => [pa] [un] gbrp | a=1:1 +rgb30 => [pa] [un] gbrp10 | a=1:1 +rgb4 => no +rgb444 => [pa] [un] gbrp4 | a=1:1 +rgb444 => [pa] [un] gbrp | a=1:1 [expand-8bit] +rgb444be => [pa] [un] gbrp4 | a=1:1 +rgb444be => [pa] [un] gbrp | a=1:1 [expand-8bit] +rgb48 => [pa] [un] gbrp16 | a=1:1 +rgb48be => [pa] [un] gbrp16 | a=1:1 [tu] [tp] +rgb4_byte => [pa] [un] gbrp2 | a=1:1 +rgb4_byte => [pa] [un] gbrp1 | a=1:1 [round-down] +rgb4_byte => [pa] [un] gbrp | a=1:1 [expand-8bit] +rgb555 => [pa] [un] gbrp5 | a=1:1 +rgb555 => [pa] [un] gbrp | a=1:1 [expand-8bit] +rgb555be => [pa] [un] gbrp5 | a=1:1 +rgb555be => [pa] [un] gbrp | a=1:1 [expand-8bit] +rgb565 => [pa] [un] gbrp6 | a=1:1 +rgb565 => [pa] [un] gbrp5 | a=1:1 [round-down] +rgb565 => [pa] [un] gbrp | a=1:1 [expand-8bit] +rgb565be => [pa] [un] gbrp6 | a=1:1 +rgb565be => [pa] [un] gbrp5 | a=1:1 [round-down] +rgb565be => [pa] [un] gbrp | a=1:1 [expand-8bit] +rgb8 => [pa] [un] gbrp3 | a=1:1 +rgb8 => [pa] [un] gbrp2 | a=1:1 [round-down] +rgb8 => [pa] [un] gbrp | a=1:1 [expand-8bit] +rgba => [pa] [un] gbrap | a=1:1 [tu] [tp] +rgba64 => [pa] [un] gbrap16 | a=1:1 [tu] [tp] +rgba64be => [pa] [un] gbrap16 | a=1:1 +uyvy422 => [pa] [un] yuv422p | a=2:1 +uyyvyy411 => no +vaapi => no +vaapi_idct => no +vaapi_moco => no +vdpau => no +vdpau_output => no +videotoolbox => no +vulkan => no +xvmc => no +xyz12 => [pa] [un] gbrp16 | a=1:1 +xyz12be => [pa] [un] gbrp16 | a=1:1 +y210 => [pa] [un] yuv422p16 | a=2:1 +y210be => [pa] [un] yuv422p16 | a=2:1 +ya16 => [pa] [un] yap16 | a=1:1 [tu] [tp] +ya16be => [pa] [un] yap16 | a=1:1 +ya8 => [pa] [un] yap8 | a=1:1 +yuv420p10be => [pa] [un] yuv420p10 | a=2:2 +yuv420p12be => [pa] [un] yuv420p12 | a=2:2 +yuv420p14be => [pa] [un] yuv420p14 | a=2:2 +yuv420p16be => [pa] [un] yuv420p16 | a=2:2 +yuv420p9be => [pa] [un] yuv420p9 | a=2:2 +yuv422p10be => [pa] [un] yuv422p10 | a=2:1 +yuv422p12be => [pa] [un] yuv422p12 | a=2:1 +yuv422p14be => [pa] [un] yuv422p14 | a=2:1 +yuv422p16be => [pa] [un] yuv422p16 | a=2:1 [tu] [tp] +yuv422p9be => [pa] [un] yuv422p9 | a=2:1 +yuv440p10be => [pa] [un] yuv440p10 | a=1:2 +yuv440p12be => [pa] [un] yuv440p12 | a=1:2 +yuv444p10be => [pa] [un] yuv444p10 | a=1:1 +yuv444p12be => [pa] [un] yuv444p12 | a=1:1 +yuv444p14be => [pa] [un] yuv444p14 | a=1:1 +yuv444p16be => [pa] [un] yuv444p16 | a=1:1 +yuv444p9be => [pa] [un] yuv444p9 | a=1:1 +yuva420p10be => [pa] [un] yuva420p10 | a=2:2 +yuva420p16be => [pa] [un] yuva420p16 | a=2:2 +yuva420p9be => [pa] [un] yuva420p9 | a=2:2 +yuva422p10be => [pa] [un] yuva422p10 | a=2:1 +yuva422p12be => [pa] [un] yuva422p12 | a=2:1 +yuva422p16be => [pa] [un] yuva422p16 | a=2:1 +yuva422p9be => [pa] [un] yuva422p9 | a=2:1 +yuva444p10be => [pa] [un] yuva444p10 | a=1:1 +yuva444p12be => [pa] [un] yuva444p12 | a=1:1 +yuva444p16be => [pa] [un] yuva444p16 | a=1:1 +yuva444p9be => [pa] [un] yuva444p9 | a=1:1 +yuyv422 => [pa] [un] yuv422p | a=2:1 +yvyu422 => [pa] [un] yuv422p | a=2:1 [tu] [tp] diff --git a/test/repack.c b/test/repack.c new file mode 100644 index 0000000000..ede6046350 --- /dev/null +++ b/test/repack.c @@ -0,0 +1,249 @@ +#include + +#include "common/common.h" +#include "tests.h" +#include "video/fmt-conversion.h" +#include "video/img_format.h" +#include "video/repack.h" +#include "video/zimg.h" + +// Excuse the utter stupidity. +#define UNFUCK(v) ((v) > 0 ? (v) : pixfmt2imgfmt(-(v))) +static_assert(IMGFMT_START > 0, ""); +#define IMGFMT_GBRP (-AV_PIX_FMT_GBRP) +#define IMGFMT_GBRAP (-AV_PIX_FMT_GBRAP) + +struct entry { + int w, h; + int fmt_a; + const void *const a[4]; + int fmt_b; + const void *const b[4]; + int flags; +}; + +#define P8(...) (const uint8_t[]){__VA_ARGS__} +#define P16(...) (const uint16_t[]){__VA_ARGS__} + +// Warning: only entries that match existing conversions are tested. +static const struct entry repack_tests[] = { + // Note: the '0' tests rely on 0 being written, although by definition the + // contents of this padding is undefined. The repacker always writes + // it this way, though. + {1, 1, IMGFMT_RGB0, {P8(1, 2, 3, 0)}, + IMGFMT_GBRP, {P8(2), P8(3), P8(1)}}, + {1, 1, IMGFMT_BGR0, {P8(1, 2, 3, 0)}, + IMGFMT_GBRP, {P8(2), P8(1), P8(3)}}, + {1, 1, IMGFMT_0RGB, {P8(0, 1, 2, 3)}, + IMGFMT_GBRP, {P8(2), P8(3), P8(1)}}, + {1, 1, IMGFMT_0BGR, {P8(0, 1, 2, 3)}, + IMGFMT_GBRP, {P8(2), P8(1), P8(3)}}, + {1, 1, IMGFMT_RGBA, {P8(1, 2, 3, 4)}, + IMGFMT_GBRAP, {P8(2), P8(3), P8(1), P8(4)}}, + {1, 1, IMGFMT_BGRA, {P8(1, 2, 3, 4)}, + IMGFMT_GBRAP, {P8(2), P8(1), P8(3), P8(4)}}, + {1, 1, IMGFMT_ARGB, {P8(4, 1, 2, 3)}, + IMGFMT_GBRAP, {P8(2), P8(3), P8(1), P8(4)}}, + {1, 1, IMGFMT_ABGR, {P8(4, 1, 2, 3)}, + IMGFMT_GBRAP, {P8(2), P8(1), P8(3), P8(4)}}, + {1, 1, IMGFMT_RGBA64, {P16(0x1a1b, 0x2a2b, 0x3a3b, 0x4a4b)}, + -AV_PIX_FMT_GBRAP16, {P16(0x2a2b), P16(0x3a3b), + P16(0x1a1b), P16(0x4a4b)}}, + {1, 1, -AV_PIX_FMT_RGB48BE, {P16(0x1a1b, 0x2a2b, 0x3a3b)}, + -AV_PIX_FMT_GBRP16, {P16(0x2b2a), P16(0x3b3a), + P16(0x1b1a)}}, + {8, 1, -AV_PIX_FMT_MONOWHITE, {P8(0xAA)}, + IMGFMT_Y1, {P8(0, 1, 0, 1, 0, 1, 0, 1)}}, + {8, 1, -AV_PIX_FMT_MONOBLACK, {P8(0xAA)}, + IMGFMT_Y1, {P8(1, 0, 1, 0, 1, 0, 1, 0)}}, + {2, 2, IMGFMT_NV12, {P8(1, 2, 3, 4), P8(5, 6)}, + IMGFMT_420P, {P8(1, 2, 3, 4), P8(5), P8(6)}}, + {2, 2, -AV_PIX_FMT_NV21, {P8(1, 2, 3, 4), P8(5, 6)}, + IMGFMT_420P, {P8(1, 2, 3, 4), P8(6), P8(5)}}, + {1, 1, -AV_PIX_FMT_AYUV64, {P16(1, 2, 3, 4)}, + -AV_PIX_FMT_YUVA444P16, {P16(2), P16(3), P16(4), P16(1)}}, + {1, 1, -AV_PIX_FMT_AYUV64BE, {P16(0x0100, 0x0200, 0x0300, 0x0400)}, + -AV_PIX_FMT_YUVA444P16, {P16(2), P16(3), P16(4), P16(1)}}, + {2, 1, -AV_PIX_FMT_YVYU422, {P8(1, 2, 3, 4)}, + -AV_PIX_FMT_YUV422P, {P8(1, 3), P8(4), P8(2)}}, + {1, 1, -AV_PIX_FMT_YA16, {P16(1, 2)}, + IMGFMT_YAP16, {P16(1), P16(2)}}, + {2, 1, -AV_PIX_FMT_YUV422P16BE, {P16(0x1a1b, 0x2a2b), P16(0x3a3b), + P16(0x4a4b)}, + -AV_PIX_FMT_YUV422P16, {P16(0x1b1a, 0x2b2a), P16(0x3b3a), + P16(0x4b4a)}}, +}; + +static bool is_true_planar(int imgfmt) +{ + struct mp_regular_imgfmt desc; + if (!mp_get_regular_imgfmt(&desc, imgfmt)) + return false; + + for (int n = 0; n < desc.num_planes; n++) { + if (desc.planes[n].num_components != 1) + return false; + } + + return true; +} + +static int try_repack(struct test_ctx *ctx, FILE *f, int imgfmt, int flags, + int not_if_fmt) +{ + char *head = mp_tprintf(80, "%-15s =>", mp_imgfmt_to_name(imgfmt)); + struct mp_repack *un = mp_repack_create_planar(imgfmt, false, flags); + struct mp_repack *pa = mp_repack_create_planar(imgfmt, true, flags); + + // If both exists, they must be always symmetric. + if (un && pa) { + assert(mp_repack_get_format_src(pa) == mp_repack_get_format_dst(un)); + assert(mp_repack_get_format_src(un) == mp_repack_get_format_dst(pa)); + assert(mp_repack_get_align_x(pa) == mp_repack_get_align_x(un)); + assert(mp_repack_get_align_y(pa) == mp_repack_get_align_y(un)); + } + + int a = 0; + int b = 0; + if (un) { + a = mp_repack_get_format_src(un); + b = mp_repack_get_format_dst(un); + } else if (pa) { + a = mp_repack_get_format_dst(pa); + b = mp_repack_get_format_src(pa); + } + + // Skip the identity ones because they're uninteresting, and add too much + // noise. But still make sure they behave as expected. + if (is_true_planar(imgfmt)) { + // (note that we require alpha-enabled zimg) + assert(mp_zimg_supports_in_format(imgfmt)); + assert(un && pa); + assert(a == imgfmt && b == imgfmt); + talloc_free(pa); + talloc_free(un); + return 0; + } + + struct mp_repack *rp = pa ? pa : un; + if (!rp) { + if (!flags) + fprintf(f, "%s no\n", head); + return 0; + } + + assert(a == imgfmt); + if (b && b == not_if_fmt) { + talloc_free(pa); + talloc_free(un); + return 0; + } + + fprintf(f, "%s %4s %4s %-15s |", head, pa ? "[pa]" : "", un ? "[un]" : "", + mp_imgfmt_to_name(b)); + + fprintf(f, " a=%d:%d", mp_repack_get_align_x(rp), mp_repack_get_align_y(rp)); + + if (flags & REPACK_CREATE_ROUND_DOWN) + fprintf(f, " [round-down]"); + if (flags & REPACK_CREATE_EXPAND_8BIT) + fprintf(f, " [expand-8bit]"); + + // LCM of alignment of all packers. + int ax = mp_repack_get_align_x(rp); + int ay = mp_repack_get_align_y(rp); + if (pa && un) { + ax = MPMAX(mp_repack_get_align_x(pa), mp_repack_get_align_x(un)); + ay = MPMAX(mp_repack_get_align_y(pa), mp_repack_get_align_y(un)); + } + + for (int n = 0; n < MP_ARRAY_SIZE(repack_tests); n++) { + const struct entry *e = &repack_tests[n]; + int fmt_a = UNFUCK(e->fmt_a); + int fmt_b = UNFUCK(e->fmt_b); + if (!(fmt_a == a && fmt_b == b && e->flags == flags)) + continue; + + // We convert a "random" macro pixel to catch potential addressing bugs + // that might be ignored with (0, 0) origins. + struct mp_image *ia = mp_image_alloc(fmt_a, e->w * 5 * ax, e->h * 5 * ay); + struct mp_image *ib = mp_image_alloc(fmt_b, e->w * 7 * ax, e->h * 6 * ay); + int sx = 4 * ax, sy = 3 * ay, dx = 3 * ax, dy = 2 * ay; + + assert(ia && ib); + + for (int pack = 0; pack < 2; pack++) { + struct mp_repack *repacker = pack ? pa : un; + if (!repacker) + continue; + + mp_image_clear(ia, 0, 0, ia->w, ia->h); + mp_image_clear(ib, 0, 0, ib->w, ib->h); + + const void *const *dstd = pack ? e->a : e->b; + const void *const *srcd = pack ? e->b : e->a; + struct mp_image *dsti = pack ? ia : ib; + struct mp_image *srci = pack ? ib : ia; + + bool r = repack_config_buffers(repacker, 0, dsti, 0, srci, NULL); + assert(r); + + for (int p = 0; p < srci->num_planes; p++) { + uint8_t *ptr = mp_image_pixel_ptr(srci, p, sx, sy); + for (int y = 0; y < e->h >> srci->fmt.ys[p]; y++) { + int w = e->w >> srci->fmt.xs[p]; + int wb = (w * srci->fmt.bpp[p] + 7) / 8; + const void *cptr = (uint8_t *)srcd[p] + wb * y; + memcpy(ptr + srci->stride[p] * y, cptr, wb); + } + } + + repack_line(repacker, dx, dy, sx, sy, e->w); + + for (int p = 0; p < dsti->num_planes; p++) { + uint8_t *ptr = mp_image_pixel_ptr(dsti, p, dx, dy); + for (int y = 0; y < e->h >> dsti->fmt.ys[p]; y++) { + int w = e->w >> dsti->fmt.xs[p]; + int wb = (w * dsti->fmt.bpp[p] + 7) / 8; + const void *cptr = (uint8_t *)dstd[p] + wb * y; + assert_memcmp(ptr + dsti->stride[p] * y, cptr, wb); + } + } + + fprintf(f, " [t%s]", pack ? "p" : "u"); + } + + talloc_free(ia); + talloc_free(ib); + } + + fprintf(f, "\n"); + + talloc_free(pa); + talloc_free(un); + return b; +} + +static void run(struct test_ctx *ctx) +{ + FILE *f = test_open_out(ctx, "repack.txt"); + + init_imgfmts_list(); + for (int n = 0; n < num_imgfmts; n++) { + int imgfmt = imgfmts[n]; + + int other = try_repack(ctx, f, imgfmt, 0, 0); + try_repack(ctx, f, imgfmt, REPACK_CREATE_ROUND_DOWN, other); + try_repack(ctx, f, imgfmt, REPACK_CREATE_EXPAND_8BIT, other); + } + + fclose(f); + + assert_text_files_equal(ctx, "repack.txt", "repack.txt", + "This can fail if FFmpeg/libswscale adds or removes pixfmts."); +} + +const struct unittest test_repack = { + .name = "repack", + .run = run, +}; diff --git a/test/tests.c b/test/tests.c index 9ef88f4a8d..d8df43f319 100644 --- a/test/tests.c +++ b/test/tests.c @@ -12,6 +12,7 @@ static const struct unittest *unittests[] = { &test_paths, &test_repack_sws, #if HAVE_ZIMG + &test_repack, // zimg only due to cross-checking with zimg.c &test_repack_zimg, #endif NULL @@ -128,3 +129,25 @@ void assert_text_files_equal_impl(const char *file, int line, abort(); } } + +static void hexdump(const uint8_t *d, size_t size) +{ + printf("|"); + while (size--) { + printf(" %02x", d[0]); + d++; + } + printf(" |\n"); +} + +void assert_memcmp_impl(const char *file, int line, + const void *a, const void *b, size_t size) +{ + if (memcmp(a, b, size) == 0) + return; + + printf("%s:%d: mismatching data:\n", file, line); + hexdump(a, size); + hexdump(b, size); + abort(); +} diff --git a/test/tests.h b/test/tests.h index f4065f596f..8b2eb98174 100644 --- a/test/tests.h +++ b/test/tests.h @@ -43,6 +43,7 @@ extern const struct unittest test_json; extern const struct unittest test_linked_list; extern const struct unittest test_repack_sws; extern const struct unittest test_repack_zimg; +extern const struct unittest test_repack; extern const struct unittest test_paths; #define assert_true(x) assert(x) @@ -54,6 +55,10 @@ extern const struct unittest test_paths; #define assert_float_equal(a, b, tolerance) \ assert_float_equal_impl(__FILE__, __LINE__, (a), (b), (tolerance)) +// Assert that memcmp(a,b,s)==0, or hexdump output on failure. +#define assert_memcmp(a, b, s) \ + assert_memcmp_impl(__FILE__, __LINE__, (a), (b), (s)) + // Require that the files "ref" and "new" are the same. The paths can be // relative to ref_path and out_path respectively. If they're not the same, // the output of "diff" is shown, the err message (if not NULL), and the test @@ -69,6 +74,8 @@ void assert_float_equal_impl(const char *file, int line, void assert_text_files_equal_impl(const char *file, int line, struct test_ctx *ctx, const char *ref, const char *new, const char *err); +void assert_memcmp_impl(const char *file, int line, + const void *a, const void *b, size_t size); // Open a new file in the out_path. Always succeeds. FILE *test_open_out(struct test_ctx *ctx, const char *name); diff --git a/video/img_format.h b/video/img_format.h index 8e55cc9493..b0fdef8a50 100644 --- a/video/img_format.h +++ b/video/img_format.h @@ -69,8 +69,9 @@ struct mp_imgfmt_desc { int flags; // MP_IMGFLAG_* bitfield int8_t num_planes; int8_t chroma_xs, chroma_ys; // chroma shift (i.e. log2 of chroma pixel size) - int8_t align_x, align_y; // pixel size to get byte alignment and to get + int8_t align_x, align_y; // pixel count to get byte alignment and to get // to a pixel pos where luma & chroma aligns + // always power of 2 int8_t bytes[MP_MAX_PLANES]; // bytes per pixel (MP_IMGFLAG_BYTE_ALIGNED) int8_t bpp[MP_MAX_PLANES]; // bits per pixel int8_t plane_bits; // number of bits in use for plane 0 diff --git a/video/repack.c b/video/repack.c new file mode 100644 index 0000000000..359e32996d --- /dev/null +++ b/video/repack.c @@ -0,0 +1,1110 @@ +/* + * This file is part of mpv. + * + * mpv is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * mpv is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with mpv. If not, see . + */ + +#include + +#include +#include + +#include "common/common.h" +#include "repack.h" +#include "video/fmt-conversion.h" +#include "video/img_format.h" +#include "video/mp_image.h" + +enum repack_step_type { + REPACK_STEP_REPACK, + REPACK_STEP_ENDIAN, +}; + +struct repack_step { + enum repack_step_type type; + // 0=input, 1=output + struct mp_image *buf[2]; + bool user_buf[2]; // user_buf[n]==true if buf[n] = user src/dst buffer + struct mp_imgfmt_desc fmt[2]; + struct mp_image *tmp; // output buffer, if needed +}; + +struct mp_repack { + bool pack; // if false, this is for unpacking + int flags; + int imgfmt_user; // original mp format (unchanged endian) + int imgfmt_a; // original mp format (possibly packed format, + // swapped endian) + int imgfmt_b; // equivalent unpacked/planar format + struct mp_imgfmt_desc fmt_a;// ==imgfmt_a + struct mp_imgfmt_desc fmt_b;// ==imgfmt_b + + void (*repack)(struct mp_repack *rp, + struct mp_image *a, int a_x, int a_y, + struct mp_image *b, int b_x, int b_y, int w); + + bool passthrough_y; // possible luma plane optimization for e.g. nv12 + int endian_size; // endian swap; 0=none, 2/4=swap word size + + // For packed_repack. + int components[4]; // b[n] = mp_image.planes[components[n]] + // pack: a is dst, b is src + // unpack: a is src, b is dst + void (*packed_repack_scanline)(void *a, void *b[], int w); + + // Fringe RGB/YUV. + uint8_t comp_size; + uint8_t *comp_map; + uint8_t comp_shifts[3]; + uint8_t *comp_lut; + + // REPACK_STEP_REPACK: if true, need to copy this plane + bool copy_buf[4]; + + struct repack_step steps[4]; + int num_steps; + + bool configured; +}; + +// depth = number of LSB in use +static int find_gbrp_format(int depth, int num_planes) +{ + if (num_planes != 3 && num_planes != 4) + return 0; + struct mp_regular_imgfmt desc = { + .component_type = MP_COMPONENT_TYPE_UINT, + .forced_csp = MP_CSP_RGB, + .component_size = depth > 8 ? 2 : 1, + .component_pad = depth - (depth > 8 ? 16 : 8), + .num_planes = num_planes, + .planes = { {1, {2}}, {1, {3}}, {1, {1}}, {1, {4}} }, + }; + return mp_find_regular_imgfmt(&desc); +} + +// depth = number of LSB in use +static int find_yuv_format(int depth, int num_planes) +{ + if (num_planes < 1 || num_planes > 4) + return 0; + struct mp_regular_imgfmt desc = { + .component_type = MP_COMPONENT_TYPE_UINT, + .component_size = depth > 8 ? 2 : 1, + .component_pad = depth - (depth > 8 ? 16 : 8), + .num_planes = num_planes, + .planes = { {1, {1}}, {1, {2}}, {1, {3}}, {1, {4}} }, + }; + if (num_planes == 2) + desc.planes[1].components[0] = 4; + return mp_find_regular_imgfmt(&desc); +} + +// Copy one line on the plane p. +static void copy_plane(struct mp_image *dst, int dst_x, int dst_y, + struct mp_image *src, int src_x, int src_y, + int w, int p) +{ + // Number of lines on this plane. + int h = (1 << dst->fmt.chroma_ys) - (1 << dst->fmt.ys[p]) + 1; + size_t size = mp_image_plane_bytes(dst, p, dst_x, w); + + assert(dst->fmt.bpp[p] == src->fmt.bpp[p]); + + for (int y = 0; y < h; y++) { + void *pd = mp_image_pixel_ptr(dst, p, dst_x, dst_y + y); + void *ps = mp_image_pixel_ptr(src, p, src_x, src_y + y); + memcpy(pd, ps, size); + } +} + +// Swap endian for one line. +static void swap_endian(struct mp_image *dst, int dst_x, int dst_y, + struct mp_image *src, int src_x, int src_y, + int w, int endian_size) +{ + assert(src->fmt.num_planes == dst->fmt.num_planes); + + for (int p = 0; p < dst->fmt.num_planes; p++) { + int xs = dst->fmt.xs[p]; + int bpp = dst->fmt.bytes[p]; + int words_per_pixel = bpp / endian_size; + int num_words = ((w + (1 << xs) - 1) >> xs) * words_per_pixel; + // Number of lines on this plane. + int h = (1 << dst->fmt.chroma_ys) - (1 << dst->fmt.ys[p]) + 1; + + assert(src->fmt.bytes[p] == bpp); + + for (int y = 0; y < h; y++) { + void *s = mp_image_pixel_ptr(src, p, src_x, src_y + y); + void *d = mp_image_pixel_ptr(dst, p, dst_x, dst_y + y); + switch (endian_size) { + case 2: + for (int x = 0; x < num_words; x++) + ((uint16_t *)d)[x] = av_bswap16(((uint16_t *)s)[x]); + break; + case 4: + for (int x = 0; x < num_words; x++) + ((uint32_t *)d)[x] = av_bswap32(((uint32_t *)s)[x]); + break; + default: + assert(0); + } + } + } +} + +// PA = PAck, copy planar input to single packed array +// UN = UNpack, copy packed input to planar output +// Naming convention: +// pa_/un_ prefix to identify conversion direction. +// Left (LSB, lowest byte address) -> Right (MSB, highest byte address). +// (This is unusual; MSB to LSB is more commonly used to describe formats, +// but our convention makes more sense for byte access in little endian.) +// "c" identifies a color component. +// "z" identifies known zero padding. +// "x" identifies uninitialized padding. +// A component is followed by its size in bits. +// Size can be omitted for multiple uniform components (c8c8c8 == ccc8). +// Unpackers will often use "x" for padding, because they ignore it, while +// packers will use "z" because they write zero. + +#define PA_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3) \ + static void name(void *dst, void *src[], int w) { \ + for (int x = 0; x < w; x++) { \ + ((packed_t *)dst)[x] = \ + ((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \ + ((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \ + ((packed_t)((plane_t *)src[2])[x] << (sh_c2)) | \ + ((packed_t)((plane_t *)src[3])[x] << (sh_c3)); \ + } \ + } + +#define UN_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3, mask)\ + static void name(void *src, void *dst[], int w) { \ + for (int x = 0; x < w; x++) { \ + packed_t c = ((packed_t *)src)[x]; \ + ((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \ + ((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \ + ((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \ + ((plane_t *)dst[3])[x] = (c >> (sh_c3)) & (mask); \ + } \ + } + + +#define PA_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, pad) \ + static void name(void *dst, void *src[], int w) { \ + for (int x = 0; x < w; x++) { \ + ((packed_t *)dst)[x] = (pad) | \ + ((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \ + ((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \ + ((packed_t)((plane_t *)src[2])[x] << (sh_c2)); \ + } \ + } + +UN_WORD_4(un_cccc8, uint32_t, uint8_t, 0, 8, 16, 24, 0xFFu) +PA_WORD_4(pa_cccc8, uint32_t, uint8_t, 0, 8, 16, 24) +// Not sure if this is a good idea; there may be no alignment guarantee. +UN_WORD_4(un_cccc16, uint64_t, uint16_t, 0, 16, 32, 48, 0xFFFFu) +PA_WORD_4(pa_cccc16, uint64_t, uint16_t, 0, 16, 32, 48) + +#define UN_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, mask) \ + static void name(void *src, void *dst[], int w) { \ + for (int x = 0; x < w; x++) { \ + packed_t c = ((packed_t *)src)[x]; \ + ((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \ + ((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \ + ((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \ + } \ + } + +UN_WORD_3(un_ccc8x8, uint32_t, uint8_t, 0, 8, 16, 0xFFu) +PA_WORD_3(pa_ccc8z8, uint32_t, uint8_t, 0, 8, 16, 0) +UN_WORD_3(un_x8ccc8, uint32_t, uint8_t, 8, 16, 24, 0xFFu) +PA_WORD_3(pa_z8ccc8, uint32_t, uint8_t, 8, 16, 24, 0) +UN_WORD_3(un_ccc10x2, uint32_t, uint16_t, 0, 10, 20, 0x3FFu) +PA_WORD_3(pa_ccc10z2, uint32_t, uint16_t, 20, 10, 0, 0) + +#define PA_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, pad) \ + static void name(void *dst, void *src[], int w) { \ + for (int x = 0; x < w; x++) { \ + ((packed_t *)dst)[x] = (pad) | \ + ((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \ + ((packed_t)((plane_t *)src[1])[x] << (sh_c1)); \ + } \ + } + +#define UN_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, mask) \ + static void name(void *src, void *dst[], int w) { \ + for (int x = 0; x < w; x++) { \ + packed_t c = ((packed_t *)src)[x]; \ + ((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \ + ((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \ + } \ + } + +UN_WORD_2(un_cc8, uint16_t, uint8_t, 0, 8, 0xFFu) +PA_WORD_2(pa_cc8, uint16_t, uint8_t, 0, 8, 0) +UN_WORD_2(un_cc16, uint32_t, uint16_t, 0, 16, 0xFFFFu) +PA_WORD_2(pa_cc16, uint32_t, uint16_t, 0, 16, 0) + +#define PA_SEQ_3(name, comp_t) \ + static void name(void *dst, void *src[], int w) { \ + comp_t *r = dst; \ + for (int x = 0; x < w; x++) { \ + *r++ = ((comp_t *)src[0])[x]; \ + *r++ = ((comp_t *)src[1])[x]; \ + *r++ = ((comp_t *)src[2])[x]; \ + } \ + } + +#define UN_SEQ_3(name, comp_t) \ + static void name(void *src, void *dst[], int w) { \ + comp_t *r = src; \ + for (int x = 0; x < w; x++) { \ + ((comp_t *)dst[0])[x] = *r++; \ + ((comp_t *)dst[1])[x] = *r++; \ + ((comp_t *)dst[2])[x] = *r++; \ + } \ + } + +UN_SEQ_3(un_ccc8, uint8_t) +PA_SEQ_3(pa_ccc8, uint8_t) +UN_SEQ_3(un_ccc16, uint16_t) +PA_SEQ_3(pa_ccc16, uint16_t) + +// "regular": single packed plane, all components have same width (except padding) +struct regular_repacker { + int packed_width; // number of bits of the packed pixel + int component_width; // number of bits for a single component + int prepadding; // number of bits of LSB padding + int num_components; // number of components that can be accessed + void (*pa_scanline)(void *a, void *b[], int w); + void (*un_scanline)(void *a, void *b[], int w); +}; + +static const struct regular_repacker regular_repackers[] = { + {32, 8, 0, 3, pa_ccc8z8, un_ccc8x8}, + {32, 8, 8, 3, pa_z8ccc8, un_x8ccc8}, + {32, 8, 0, 4, pa_cccc8, un_cccc8}, + {64, 16, 0, 4, pa_cccc16, un_cccc16}, + {24, 8, 0, 3, pa_ccc8, un_ccc8}, + {48, 16, 0, 3, pa_ccc16, un_ccc16}, + {16, 8, 0, 2, pa_cc8, un_cc8}, + {32, 16, 0, 2, pa_cc16, un_cc16}, + {32, 10, 0, 3, pa_ccc10z2, un_ccc10x2}, +}; + +static void packed_repack(struct mp_repack *rp, + struct mp_image *a, int a_x, int a_y, + struct mp_image *b, int b_x, int b_y, int w) +{ + uint32_t *pa = mp_image_pixel_ptr(a, 0, a_x, a_y); + + void *pb[4] = {0}; + for (int p = 0; p < b->num_planes; p++) { + int s = rp->components[p]; + pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y); + } + + rp->packed_repack_scanline(pa, pb, w); +} + +// Tries to set a packer/unpacker for component-wise byte aligned formats. +static void setup_packed_packer(struct mp_repack *rp) +{ + struct mp_regular_imgfmt desc; + if (!mp_get_regular_imgfmt(&desc, rp->imgfmt_a)) + return; + + if (desc.num_planes != 1 || desc.planes[0].num_components < 2) + return; + struct mp_regular_imgfmt_plane *p = &desc.planes[0]; + + int num_real_components = 0; + bool has_alpha = false; + for (int n = 0; n < p->num_components; n++) { + if (p->components[n]) { + has_alpha |= p->components[n] == 4; + num_real_components += 1; + } else { + // padding must be in MSB or LSB + if (n != 0 && n != p->num_components - 1) + return; + } + } + + int depth = desc.component_size * 8 + MPMIN(0, desc.component_pad); + + static const int reorder_gbrp[] = {0, 3, 1, 2, 4}; + static const int reorder_yuv[] = {0, 1, 2, 3, 4}; + int planar_fmt = 0; + const int *reorder = NULL; + if (desc.forced_csp) { + if (desc.forced_csp != MP_CSP_RGB && desc.forced_csp != MP_CSP_XYZ) + return; + planar_fmt = find_gbrp_format(depth, num_real_components); + reorder = reorder_gbrp; + } else { + planar_fmt = find_yuv_format(depth, num_real_components); + reorder = reorder_yuv; + } + if (!planar_fmt) + return; + + for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) { + const struct regular_repacker *pa = ®ular_repackers[i]; + + // The following may assume little endian (because some repack backends + // use word access, while the metadata here uses byte access). + + int prepad = p->components[0] ? 0 : 8; + int first_comp = p->components[0] ? 0 : 1; + void (*repack_cb)(void *pa, void *pb[], int w) = + rp->pack ? pa->pa_scanline : pa->un_scanline; + + if (pa->packed_width != desc.component_size * p->num_components * 8 || + pa->component_width != depth || + pa->num_components != num_real_components || + pa->prepadding != prepad || + !repack_cb) + continue; + + rp->repack = packed_repack; + rp->packed_repack_scanline = repack_cb; + rp->imgfmt_b = planar_fmt; + for (int n = 0; n < num_real_components; n++) { + // Determine permutation that maps component order between the two + // formats, with has_alpha special case (see above). + int c = reorder[p->components[first_comp + n]]; + rp->components[n] = c == 4 ? num_real_components - 1 : c - 1; + } + return; + } +} + +struct fringe_rgb_repacker { + // To avoid making a mess of IMGFMT_*, we use av formats directly. + enum AVPixelFormat avfmt; + // If true, use BGR instead of RGB. + // False: LSB - R - G - B - pad - MSB + // True: LSB - B - G - R - pad - MSB + bool rev_order; + // Size in bit for each component, strictly from LSB to MSB. + int bits[3]; + bool be; +}; + +static const struct fringe_rgb_repacker fringe_rgb_repackers[] = { + {AV_PIX_FMT_BGR4_BYTE, false, {1, 2, 1}}, + {AV_PIX_FMT_RGB4_BYTE, true, {1, 2, 1}}, + {AV_PIX_FMT_BGR8, false, {3, 3, 2}}, + {AV_PIX_FMT_RGB8, true, {2, 3, 3}}, // pixdesc desc. and doc. bug? + {AV_PIX_FMT_RGB444LE, true, {4, 4, 4}}, + {AV_PIX_FMT_RGB444BE, true, {4, 4, 4}, .be = true}, + {AV_PIX_FMT_BGR444LE, false, {4, 4, 4}}, + {AV_PIX_FMT_BGR444BE, false, {4, 4, 4}, .be = true}, + {AV_PIX_FMT_BGR565LE, false, {5, 6, 5}}, + {AV_PIX_FMT_BGR565BE, false, {5, 6, 5}, .be = true}, + {AV_PIX_FMT_RGB565LE, true, {5, 6, 5}}, + {AV_PIX_FMT_RGB565BE, true, {5, 6, 5}, .be = true}, + {AV_PIX_FMT_BGR555LE, false, {5, 5, 5}}, + {AV_PIX_FMT_BGR555BE, false, {5, 5, 5}, .be = true}, + {AV_PIX_FMT_RGB555LE, true, {5, 5, 5}}, + {AV_PIX_FMT_RGB555BE, true, {5, 5, 5}, .be = true}, +}; + +#define PA_SHIFT_LUT8(name, packed_t) \ + static void name(void *dst, void *src[], int w, uint8_t *lut, \ + uint8_t s0, uint8_t s1, uint8_t s2) { \ + for (int x = 0; x < w; x++) { \ + ((packed_t *)dst)[x] = \ + (lut[((uint8_t *)src[0])[x] + 256 * 0] << s0) | \ + (lut[((uint8_t *)src[1])[x] + 256 * 1] << s1) | \ + (lut[((uint8_t *)src[2])[x] + 256 * 2] << s2); \ + } \ + } + + +#define UN_SHIFT_LUT8(name, packed_t) \ + static void name(void *src, void *dst[], int w, uint8_t *lut, \ + uint8_t s0, uint8_t s1, uint8_t s2) { \ + for (int x = 0; x < w; x++) { \ + packed_t c = ((packed_t *)src)[x]; \ + ((uint8_t *)dst[0])[x] = lut[((c >> s0) & 0xFF) + 256 * 0]; \ + ((uint8_t *)dst[1])[x] = lut[((c >> s1) & 0xFF) + 256 * 1]; \ + ((uint8_t *)dst[2])[x] = lut[((c >> s2) & 0xFF) + 256 * 2]; \ + } \ + } + +PA_SHIFT_LUT8(pa_shift_lut8_8, uint8_t) +PA_SHIFT_LUT8(pa_shift_lut8_16, uint16_t) +UN_SHIFT_LUT8(un_shift_lut8_8, uint8_t) +UN_SHIFT_LUT8(un_shift_lut8_16, uint16_t) + +static void fringe_rgb_repack(struct mp_repack *rp, + struct mp_image *a, int a_x, int a_y, + struct mp_image *b, int b_x, int b_y, int w) +{ + void *pa = mp_image_pixel_ptr(a, 0, a_x, a_y); + + void *pb[4] = {0}; + for (int p = 0; p < b->num_planes; p++) { + int s = rp->components[p]; + pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y); + } + + assert(rp->comp_size == 1 || rp->comp_size == 2); + + void (*repack)(void *pa, void *pb[], int w, uint8_t *lut, + uint8_t s0, uint8_t s1, uint8_t s2) = NULL; + if (rp->pack) { + repack = rp->comp_size == 1 ? pa_shift_lut8_8 : pa_shift_lut8_16; + } else { + repack = rp->comp_size == 1 ? un_shift_lut8_8 : un_shift_lut8_16; + } + repack(pa, pb, w, rp->comp_lut, + rp->comp_shifts[0], rp->comp_shifts[1], rp->comp_shifts[2]); +} + +static void setup_fringe_rgb_packer(struct mp_repack *rp) +{ + enum AVPixelFormat avfmt = imgfmt2pixfmt(rp->imgfmt_a); + + const struct fringe_rgb_repacker *fmt = NULL; + for (int n = 0; n < MP_ARRAY_SIZE(fringe_rgb_repackers); n++) { + if (fringe_rgb_repackers[n].avfmt == avfmt) { + fmt = &fringe_rgb_repackers[n]; + break; + } + } + + if (!fmt) + return; + + int depth = fmt->bits[0]; + for (int n = 0; n < 3; n++) { + if (rp->flags & REPACK_CREATE_ROUND_DOWN) { + depth = MPMIN(depth, fmt->bits[n]); + } else { + depth = MPMAX(depth, fmt->bits[n]); + } + } + if (rp->flags & REPACK_CREATE_EXPAND_8BIT) + depth = 8; + + rp->imgfmt_b = find_gbrp_format(depth, 3); + if (!rp->imgfmt_b) + return; + rp->comp_lut = talloc_array(rp, uint8_t, 256 * 3); + rp->repack = fringe_rgb_repack; + static const int c_order_rgb[] = {3, 1, 2}; + static const int c_order_bgr[] = {2, 1, 3}; + for (int n = 0; n < 3; n++) + rp->components[n] = (fmt->rev_order ? c_order_bgr : c_order_rgb)[n] - 1; + + int bitpos = 0; + for (int n = 0; n < 3; n++) { + int bits = fmt->bits[n]; + rp->comp_shifts[n] = bitpos; + if (rp->comp_lut) { + uint8_t *lut = rp->comp_lut + 256 * n; + uint8_t zmax = (1 << depth) - 1; + uint8_t cmax = (1 << bits) - 1; + for (int v = 0; v < 256; v++) { + if (rp->pack) { + lut[v] = (v * cmax + zmax / 2) / zmax; + } else { + lut[v] = (v & cmax) * zmax / cmax; + } + } + } + bitpos += bits; + } + + rp->comp_size = (bitpos + 7) / 8; + assert(rp->comp_size == 1 || rp->comp_size == 2); + + if (fmt->be) { + assert(rp->comp_size == 2); + rp->endian_size = 2; + } +} + +static void unpack_pal(struct mp_repack *rp, + struct mp_image *a, int a_x, int a_y, + struct mp_image *b, int b_x, int b_y, int w) +{ + uint8_t *src = mp_image_pixel_ptr(a, 0, a_x, a_y); + uint32_t *pal = (void *)a->planes[1]; + + uint8_t *dst[4] = {0}; + for (int p = 0; p < b->num_planes; p++) + dst[p] = mp_image_pixel_ptr(b, p, b_x, b_y); + + for (int x = 0; x < w; x++) { + uint32_t c = pal[src[x]]; + dst[0][x] = (c >> 8) & 0xFF; // G + dst[1][x] = (c >> 0) & 0xFF; // B + dst[2][x] = (c >> 16) & 0xFF; // R + dst[3][x] = (c >> 24) & 0xFF; // A + } +} + +static void bitmap_repack(struct mp_repack *rp, + struct mp_image *a, int a_x, int a_y, + struct mp_image *b, int b_x, int b_y, int w) +{ + uint8_t *pa = mp_image_pixel_ptr(a, 0, a_x, a_y); + uint8_t *pb = mp_image_pixel_ptr(b, 0, b_x, b_y); + + if (rp->pack) { + for (unsigned x = 0; x < w; x += 8) { + uint8_t d = 0; + int max_b = MPMIN(8, w - x); + for (int bp = 0; bp < max_b; bp++) + d |= (rp->comp_lut[pb[x + bp]]) << (7 - bp); + pa[x / 8] = d; + } + } else { + for (unsigned x = 0; x < w; x += 8) { + uint8_t d = pa[x / 8]; + int max_b = MPMIN(8, w - x); + for (int bp = 0; bp < max_b; bp++) + pb[x + bp] = rp->comp_lut[d & (1 << (7 - bp))]; + } + } +} + +static void setup_misc_packer(struct mp_repack *rp) +{ + // Although it's in regular_repackers[], the generic mpv imgfmt metadata + // can't handle it yet. + if (rp->imgfmt_a == IMGFMT_RGB30) { + int planar_fmt = find_gbrp_format(10, 3); + if (!planar_fmt) + return; + rp->imgfmt_b = planar_fmt; + rp->repack = packed_repack; + rp->packed_repack_scanline = rp->pack ? pa_ccc10z2 : un_ccc10x2; + static int c_order[] = {3, 2, 1}; + for (int n = 0; n < 3; n++) + rp->components[n] = c_order[n] - 1; + } else if (rp->imgfmt_a == IMGFMT_PAL8 && !rp->pack) { + int grap_fmt = find_gbrp_format(8, 4); + if (!grap_fmt) + return; + rp->imgfmt_b = grap_fmt; + rp->repack = unpack_pal; + } else { + enum AVPixelFormat avfmt = imgfmt2pixfmt(rp->imgfmt_a); + if (avfmt == AV_PIX_FMT_MONOWHITE || avfmt == AV_PIX_FMT_MONOBLACK) { + rp->comp_lut = talloc_array(rp, uint8_t, 256); + rp->imgfmt_b = IMGFMT_Y1; + int max = 1; + if (rp->flags & REPACK_CREATE_EXPAND_8BIT) { + rp->imgfmt_b = IMGFMT_Y8; + max = 255; + } + bool inv = avfmt == AV_PIX_FMT_MONOWHITE; + for (int n = 0; n < 256; n++) { + rp->comp_lut[n] = rp->pack ? (inv ^ (n >= (max + 1) / 2)) + : ((inv ^ !!n) ? max : 0); + } + rp->repack = bitmap_repack; + return; + } + } +} + +struct fringe_yuv422_repacker { + // To avoid making a mess of IMGFMT_*, we use av formats directly. + enum AVPixelFormat avfmt; + // In bits (depth/8 rounded up gives byte size) + int8_t depth; + // Word index of each sample: {y0, y1, cb, cr} + uint8_t comp[4]; + bool be; +}; + +static const struct fringe_yuv422_repacker fringe_yuv422_repackers[] = { + {AV_PIX_FMT_YUYV422, 8, {0, 2, 1, 3}}, + {AV_PIX_FMT_UYVY422, 8, {1, 3, 0, 2}}, + {AV_PIX_FMT_YVYU422, 8, {0, 2, 3, 1}}, +#ifdef AV_PIX_FMT_Y210 + {AV_PIX_FMT_Y210LE, 10, {0, 2, 1, 3}}, + {AV_PIX_FMT_Y210BE, 10, {0, 2, 1, 3}, .be = true}, +#endif +}; + +#define PA_P422(name, comp_t) \ + static void name(void *dst, void *src[], int w, uint8_t *c) { \ + for (int x = 0; x < w; x += 2) { \ + ((comp_t *)dst)[x * 2 + c[0]] = ((comp_t *)src[0])[x + 0]; \ + ((comp_t *)dst)[x * 2 + c[1]] = ((comp_t *)src[0])[x + 1]; \ + ((comp_t *)dst)[x * 2 + c[2]] = ((comp_t *)src[1])[x >> 1]; \ + ((comp_t *)dst)[x * 2 + c[3]] = ((comp_t *)src[2])[x >> 1]; \ + } \ + } + + +#define UN_P422(name, comp_t) \ + static void name(void *src, void *dst[], int w, uint8_t *c) { \ + for (int x = 0; x < w; x += 2) { \ + ((comp_t *)dst[0])[x + 0] = ((comp_t *)src)[x * 2 + c[0]]; \ + ((comp_t *)dst[0])[x + 1] = ((comp_t *)src)[x * 2 + c[1]]; \ + ((comp_t *)dst[1])[x >> 1] = ((comp_t *)src)[x * 2 + c[2]]; \ + ((comp_t *)dst[2])[x >> 1] = ((comp_t *)src)[x * 2 + c[3]]; \ + } \ + } + +PA_P422(pa_p422_8, uint8_t) +PA_P422(pa_p422_16, uint16_t) +UN_P422(un_p422_8, uint8_t) +UN_P422(un_p422_16, uint16_t) + +static void fringe_yuv422_repack(struct mp_repack *rp, + struct mp_image *a, int a_x, int a_y, + struct mp_image *b, int b_x, int b_y, int w) +{ + void *pa = mp_image_pixel_ptr(a, 0, a_x, a_y); + + void *pb[4] = {0}; + for (int p = 0; p < b->num_planes; p++) + pb[p] = mp_image_pixel_ptr(b, p, b_x, b_y); + + assert(rp->comp_size == 1 || rp->comp_size == 2); + + void (*repack)(void *a, void *b[], int w, uint8_t *c) = NULL; + if (rp->pack) { + repack = rp->comp_size == 1 ? pa_p422_8 : pa_p422_16; + } else { + repack = rp->comp_size == 1 ? un_p422_8 : un_p422_16; + } + repack(pa, pb, w, rp->comp_map); +} + +static void setup_fringe_yuv422_packer(struct mp_repack *rp) +{ + enum AVPixelFormat avfmt = imgfmt2pixfmt(rp->imgfmt_a); + + const struct fringe_yuv422_repacker *fmt = NULL; + for (int n = 0; n < MP_ARRAY_SIZE(fringe_yuv422_repackers); n++) { + if (fringe_yuv422_repackers[n].avfmt == avfmt) { + fmt = &fringe_yuv422_repackers[n]; + break; + } + } + + if (!fmt) + return; + + rp->comp_size = (fmt->depth + 7) / 8; + assert(rp->comp_size == 1 || rp->comp_size == 2); + + struct mp_regular_imgfmt yuvfmt = { + .component_type = MP_COMPONENT_TYPE_UINT, + // NB: same problem with P010 and not clearing padding. + .component_size = rp->comp_size, + .num_planes = 3, + .planes = { {1, {1}}, {1, {2}}, {1, {3}} }, + .chroma_xs = 1, + .chroma_ys = 0, + }; + rp->imgfmt_b = mp_find_regular_imgfmt(&yuvfmt); + rp->repack = fringe_yuv422_repack; + rp->comp_map = (uint8_t *)fmt->comp; + + if (fmt->be) { + assert(rp->comp_size == 2); + rp->endian_size = 2; + } +} + +static void repack_nv(struct mp_repack *rp, + struct mp_image *a, int a_x, int a_y, + struct mp_image *b, int b_x, int b_y, int w) +{ + int xs = a->fmt.chroma_xs; + + uint32_t *pa = mp_image_pixel_ptr(a, 1, a_x, a_y); + + void *pb[2]; + for (int p = 0; p < 2; p++) { + int s = rp->components[p]; + pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y); + } + + rp->packed_repack_scanline(pa, pb, (w + (1 << xs) - 1) >> xs); +} + +static void setup_nv_packer(struct mp_repack *rp) +{ + struct mp_regular_imgfmt desc; + if (!mp_get_regular_imgfmt(&desc, rp->imgfmt_a)) + return; + + // Check for NV. + if (desc.num_planes != 2) + return; + if (desc.planes[0].num_components != 1 || desc.planes[0].components[0] != 1) + return; + if (desc.planes[1].num_components != 2) + return; + int cr0 = desc.planes[1].components[0]; + int cr1 = desc.planes[1].components[1]; + if (cr0 > cr1) + MPSWAP(int, cr0, cr1); + if (cr0 != 2 || cr1 != 3) + return; + + // Construct equivalent planar format. + struct mp_regular_imgfmt desc2 = desc; + desc2.num_planes = 3; + desc2.planes[1].num_components = 1; + desc2.planes[1].components[0] = 2; + desc2.planes[2].num_components = 1; + desc2.planes[2].components[0] = 3; + // For P010. Strangely this concept exists only for the NV format. + if (desc2.component_pad > 0) + desc2.component_pad = 0; + + int planar_fmt = mp_find_regular_imgfmt(&desc2); + if (!planar_fmt) + return; + + for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) { + const struct regular_repacker *pa = ®ular_repackers[i]; + + void (*repack_cb)(void *pa, void *pb[], int w) = + rp->pack ? pa->pa_scanline : pa->un_scanline; + + if (pa->packed_width != desc.component_size * 2 * 8 || + pa->component_width != desc.component_size * 8 || + pa->num_components != 2 || + pa->prepadding != 0 || + !repack_cb) + continue; + + rp->repack = repack_nv; + rp->passthrough_y = true; + rp->packed_repack_scanline = repack_cb; + rp->imgfmt_b = planar_fmt; + rp->components[0] = desc.planes[1].components[0] - 1; + rp->components[1] = desc.planes[1].components[1] - 1; + return; + } +} + +void repack_line(struct mp_repack *rp, int dst_x, int dst_y, + int src_x, int src_y, int w) +{ + assert(rp->configured); + + struct repack_step *first = &rp->steps[0]; + struct repack_step *last = &rp->steps[rp->num_steps - 1]; + + assert(dst_x >= 0 && dst_y >= 0 && src_x >= 0 && src_y >= 0 && w >= 0); + assert(dst_x + w <= MP_ALIGN_UP(last->buf[1]->w, last->fmt[1].align_x)); + assert(src_x + w <= MP_ALIGN_UP(first->buf[1]->w, first->fmt[0].align_x)); + assert(dst_y < last->buf[1]->h); + assert(src_y < first->buf[0]->h); + assert(!(dst_x & (last->fmt[1].align_x - 1))); + assert(!(src_x & (first->fmt[0].align_x - 1))); + assert(!(w & ((1 << first->fmt[0].chroma_xs) - 1))); + assert(!(dst_y & (last->fmt[1].align_y - 1))); + assert(!(src_y & (first->fmt[0].align_y - 1))); + + for (int n = 0; n < rp->num_steps; n++) { + struct repack_step *rs = &rp->steps[n]; + + // When writing to temporary buffers, always write to the start (maybe + // helps with locality). + int sx = rs->user_buf[0] ? src_x : 0; + int sy = rs->user_buf[0] ? src_y : 0; + int dx = rs->user_buf[1] ? dst_x : 0; + int dy = rs->user_buf[1] ? dst_y : 0; + + struct mp_image *buf_a = rs->buf[rp->pack]; + struct mp_image *buf_b = rs->buf[!rp->pack]; + int a_x = rp->pack ? dx : sx; + int a_y = rp->pack ? dy : sy; + int b_x = rp->pack ? sx : dx; + int b_y = rp->pack ? sy : dy; + + switch (rs->type) { + case REPACK_STEP_REPACK: { + if (rp->repack) + rp->repack(rp, buf_a, a_x, a_y, buf_b, b_x, b_y, w); + + for (int p = 0; p < rs->fmt[0].num_planes; p++) { + if (rp->copy_buf[p]) + copy_plane(rs->buf[1], dx, dy, rs->buf[0], sx, sy, w, p); + } + break; + } + case REPACK_STEP_ENDIAN: + swap_endian(rs->buf[1], dx, dy, rs->buf[0], sx, sy, w, + rp->endian_size); + break; + } + } +} + +static bool setup_format_ne(struct mp_repack *rp) +{ + if (!rp->imgfmt_b) + setup_nv_packer(rp); + if (!rp->imgfmt_b) + setup_misc_packer(rp); + if (!rp->imgfmt_b) + setup_packed_packer(rp); + if (!rp->imgfmt_b) + setup_fringe_rgb_packer(rp); + if (!rp->imgfmt_b) + setup_fringe_yuv422_packer(rp); + if (!rp->imgfmt_b) + rp->imgfmt_b = rp->imgfmt_a; // maybe it was planar after all + + struct mp_regular_imgfmt desc; + if (!mp_get_regular_imgfmt(&desc, rp->imgfmt_b)) + return false; + + // no weird stuff + if (desc.num_planes > 4) + return false; + + // Endian swapping. + if (rp->imgfmt_a != rp->imgfmt_user) { + struct mp_regular_imgfmt ndesc; + if (!mp_get_regular_imgfmt(&ndesc, rp->imgfmt_a) || ndesc.num_planes > 4) + return false; + rp->endian_size = ndesc.component_size; + if (rp->endian_size != 2 && rp->endian_size != 4) + return false; + } + + // Accept only true planar formats (with known components and no padding). + for (int n = 0; n < desc.num_planes; n++) { + if (desc.planes[n].num_components != 1) + return false; + int c = desc.planes[n].components[0]; + if (c < 1 || c > 4) + return false; + } + + rp->fmt_a = mp_imgfmt_get_desc(rp->imgfmt_a); + rp->fmt_b = mp_imgfmt_get_desc(rp->imgfmt_b); + + // This is if we did a pack step. + + rp->steps[rp->num_steps++] = (struct repack_step) { + .type = REPACK_STEP_REPACK, + .fmt = { rp->fmt_b, rp->fmt_a }, + }; + + if (rp->endian_size) { + rp->steps[rp->num_steps++] = (struct repack_step) { + .type = REPACK_STEP_ENDIAN, + .fmt = { + rp->fmt_a, + mp_imgfmt_get_desc(rp->imgfmt_user), + }, + }; + } + + // Reverse if unpack (to reflect actual data flow) + if (!rp->pack) { + for (int n = 0; n < rp->num_steps / 2; n++) { + MPSWAP(struct repack_step, rp->steps[n], + rp->steps[rp->num_steps - 1 - n]); + } + for (int n = 0; n < rp->num_steps; n++) { + struct repack_step *rs = &rp->steps[n]; + MPSWAP(struct mp_imgfmt_desc, rs->fmt[0], rs->fmt[1]); + } + } + + for (int n = 0; n < rp->num_steps - 1; n++) + assert(rp->steps[n].fmt[1].id == rp->steps[n + 1].fmt[0].id); + + return true; +} + +static void reset_params(struct mp_repack *rp) +{ + rp->num_steps = 0; + rp->imgfmt_b = 0; + rp->repack = NULL; + rp->passthrough_y = false; + rp->endian_size = 0; + rp->packed_repack_scanline = NULL; + rp->comp_size = 0; + rp->comp_map = NULL; + talloc_free(rp->comp_lut); + rp->comp_lut = NULL; +} + +static bool setup_format(struct mp_repack *rp) +{ + reset_params(rp); + rp->imgfmt_a = rp->imgfmt_user; + if (setup_format_ne(rp)) + return true; + // Try reverse endian. + reset_params(rp); + rp->imgfmt_a = mp_find_other_endian(rp->imgfmt_user); + return rp->imgfmt_a && setup_format_ne(rp); +} + +struct mp_repack *mp_repack_create_planar(int imgfmt, bool pack, int flags) +{ + struct mp_repack *rp = talloc_zero(NULL, struct mp_repack); + rp->imgfmt_user = imgfmt; + rp->pack = pack; + rp->flags = flags; + + if (!setup_format(rp)) { + talloc_free(rp); + return NULL; + } + + return rp; +} + +int mp_repack_get_format_src(struct mp_repack *rp) +{ + return rp->steps[0].fmt[0].id; +} + +int mp_repack_get_format_dst(struct mp_repack *rp) +{ + return rp->steps[rp->num_steps - 1].fmt[1].id; +} + +int mp_repack_get_align_x(struct mp_repack *rp) +{ + // We really want the LCM between those, but since only one of them is + // packed (or they're the same format), and the chroma subsampling is the + // same for both, only the packed one matters. + return rp->fmt_a.align_x; +} + +int mp_repack_get_align_y(struct mp_repack *rp) +{ + return rp->fmt_a.align_y; // should be the same for packed/planar formats +} + +static void image_realloc(struct mp_image **img, int fmt, int w, int h) +{ + if (*img && (*img)->imgfmt == fmt && (*img)->w == w && (*img)->h == h) + return; + talloc_free(*img); + *img = mp_image_alloc(fmt, w, h); +} + +bool repack_config_buffers(struct mp_repack *rp, + int dst_flags, struct mp_image *dst, + int src_flags, struct mp_image *src, + bool *enable_passthrough) +{ + struct repack_step *rs_first = &rp->steps[0]; + struct repack_step *rs_last = &rp->steps[rp->num_steps - 1]; + + rp->configured = false; + + assert(dst && src); + + int buf_w = MPMAX(dst->w, src->w); + + assert(dst->imgfmt == rs_last->fmt[1].id); + assert(src->imgfmt == rs_first->fmt[0].id); + + // Chain/allocate buffers. + + for (int n = 0; n < rp->num_steps; n++) + rp->steps[n].buf[0] = rp->steps[n].buf[1] = NULL; + + rs_first->buf[0] = src; + rs_last->buf[1] = dst; + + for (int n = 0; n < rp->num_steps; n++) { + struct repack_step *rs = &rp->steps[n]; + + if (!rs->buf[0]) { + assert(n > 0); + rs->buf[0] = rp->steps[n - 1].buf[1]; + } + + if (rs->buf[1]) + continue; + + // Note: since repack_line() can have different src/dst offsets, we + // can't do true in-place in general. + bool can_inplace = rs->type == REPACK_STEP_ENDIAN && + rs->buf[0] != src && rs->buf[0] != dst; + if (can_inplace) { + rs->buf[1] = rs->buf[0]; + continue; + } + + if (rs != rs_last) { + struct repack_step *next = &rp->steps[n + 1]; + if (next->buf[0]) { + rs->buf[1] = next->buf[0]; + continue; + } + } + + image_realloc(&rs->tmp, rs->fmt[1].id, buf_w, rs->fmt[1].align_y); + if (!rs->tmp) + return false; + talloc_steal(rp, rs->tmp); + rs->buf[1] = rs->tmp; + } + + for (int n = 0; n < rp->num_steps; n++) { + struct repack_step *rs = &rp->steps[n]; + rs->user_buf[0] = rs->buf[0] == src || rs->buf[0] == dst; + rs->user_buf[1] = rs->buf[1] == src || rs->buf[1] == dst; + } + + // If repacking is the only operation. It's also responsible for simply + // copying src to dst if absolutely no filtering is done. + bool may_passthrough = + rp->num_steps == 1 && rp->steps[0].type == REPACK_STEP_REPACK; + + for (int p = 0; p < rp->fmt_b.num_planes; p++) { + // (All repack callbacks copy, except nv12 does not copy luma.) + bool repack_copies_plane = rp->repack && !(rp->passthrough_y && p == 0); + + bool can_pt = may_passthrough && !repack_copies_plane && + enable_passthrough && enable_passthrough[p]; + + // Copy if needed, unless the repack callback does it anyway. + rp->copy_buf[p] = !repack_copies_plane && !can_pt; + + if (enable_passthrough) + enable_passthrough[p] = can_pt && !rp->copy_buf[p]; + } + + if (enable_passthrough) { + for (int n = rp->fmt_b.num_planes; n < MP_MAX_PLANES; n++) + enable_passthrough[n] = false; + } + + rp->configured = true; + + return true; +} diff --git a/video/repack.h b/video/repack.h new file mode 100644 index 0000000000..fa81ca9df2 --- /dev/null +++ b/video/repack.h @@ -0,0 +1,72 @@ +#pragma once + +#include + +enum { + // This controls bheavior with different bit widths per component (like + // RGB565). If ROUND_DOWN is specified, the planar format will use the min. + // bit width of all components, otherwise the transformation is lossless. + REPACK_CREATE_ROUND_DOWN = (1 << 0), + + // Expand some (not all) low bit depth fringe formats to 8 bit on unpack. + REPACK_CREATE_EXPAND_8BIT = (1 << 1), +}; + +struct mp_repack; +struct mp_image; + +// Create a repacker between any format (imgfmt parameter) and an equivalent +// planar format (that is native endian). If pack==true, imgfmt is the output, +// otherwise it is the input. The respective other input/output is the planar +