summaryrefslogtreecommitdiffstats
path: root/video/out/vulkan/context.h
Commit message (Collapse)AuthorAgeFilesLines
* vo_gpu: vulkan: generalize SPIR-V compilerNiklas Haas2017-09-261-0/+3
| | | | | | | | | | | | | | In addition to the built-in nvidia compiler, we now also support a backend based on libshaderc. shaderc is sort of like glslang except it has a C API and is available as a dynamic library. The generated SPIR-V is now cached alongside the VkPipeline in the cached_program. We use a special cache header to ensure validity of this cache before passing it blindly to the vulkan implementation, since passing invalid SPIR-V can cause all sorts of nasty things. It's also designed to self-invalidate if the compiler gets better, by offering a catch-all `int compiler_version` that implementations can use as a cache invalidation marker.
* vo_gpu: vulkan: initial implementationNiklas Haas2017-09-261-0/+10
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop! Current problems / limitations / improvement opportunities: 1. The swapchain/flipping code violates the vulkan spec, by assuming that the presentation queue will be bounded (in cases where rendering is significantly faster than vsync). But apparently, there's simply no better way to do this right now, to the point where even the stupid cube.c examples from LunarG etc. do it wrong. (cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370) 2. The memory allocator could be improved. (This is a universal constant) 3. Could explore using push descriptors instead of descriptor sets, especially since we expect to switch descriptors semi-often for some passes (like interpolation). Probably won't make a difference, but the synchronization overhead might be a factor. Who knows. 4. Parallelism across frames / async transfer is not well-defined, we either need to use a better semaphore / command buffer strategy or a resource pooling layer to safely handle cross-frame parallelism. (That said, I gave resource pooling a try and was not happy with the result at all - so I'm still exploring the semaphore strategy) 5. We aggressively use pipeline barriers where events would offer a much more fine-grained synchronization mechanism. As a result of this, we might be suffering from GPU bubbles due to too-short dependencies on objects. (That said, I'm also exploring the use of semaphores as a an ordering tactic which would allow cross-frame time slicing in theory) Some minor changes to the vo_gpu and infrastructure, but nothing consequential. NOTE: For safety, all use of asynchronous commands / multiple command pools is currently disabled completely. There are some left-over relics of this in the code (e.g. the distinction between dev_poll and pool_poll), but that is kept in place mostly because this will be re-extended in the future (vulkan rev 2). The queue count is also currently capped to 1, because of the lack of cross-frame semaphores means we need the implicit synchronization from the same-queue semantics to guarantee a correct result.