summaryrefslogtreecommitdiffstats
path: root/filters/f_decoder_wrapper.h
Commit message (Collapse)AuthorAgeFilesLines
* ad_lavc, vd_lavc: return full error codes to shared decoder loopwm42019-10-241-5/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ad_lavc and vd_lavc use the lavc_process() helper to translate the FFmpeg push/pull API to the internal filter API (which completely mismatch, even though I'm responsible for both, just fucking kill me). This interface was "slightly" too tight. It returned only a bool indicating "progress", which was not enough to handle some cases (see following commit). While we're at it, move all state into a struct. This is only a single bool, but we get the chance to add more if needed. This fixes mpv falling asleep if decoding returns an error during draining. If decoding fails when we already sent EOF, the state machine stopped making progress. This left mpv just sitting around and doing nothing. A test case can be created with: echo $RANDOM >> image.png This makes libavformat read a proper packet plus a packet of garbage. libavcodec will decode a frame, and then return an error code. The lavc_process() wrapper could not deal with this, because there was no way to differentiate between "retry" and "send new packet". Normally, it would send a new packet, so decoding would make progress anyway. If there was "progress", we couldn't just retry, because it'd retry forever. This is made worse by the fact that it tries to decode at least two frames before starting display, meaning it will "sit around and do nothing" before the picture is displayed. Change it so that on error return, "receiving" a frame is retried. This will make it return the EOF, so everything works properly. This is a high-risk change, because all these funny bullshit exceptions for hardware decoding are in the way, and I didn't retest them. For example, if hardware decoding is enabled, it keeps a list of packets, that are fed into the decoder again if hardware decoding fails, and a software fallback is performed. Another case of horrifying accidental complexity. Fixes: #6618
* Implement backwards playbackwm42019-09-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | See manpage additions. This is a huge hack. You can bet there are shit tons of bugs. It's literally forcing square pegs into round holes. Hopefully, the manpage wall of text makes it clear enough that the whole shit can easily crash and burn. (Although it shouldn't literally crash. That would be a bug. It possibly _could_ start a fire by entering some sort of endless loop, not a literal one, just something where it tries to do work without making progress.) (Some obvious bugs I simply ignored for this initial version, but there's a number of potential bugs I can't even imagine. Normal playback should remain completely unaffected, though.) How this works is also described in the manpage. Basically, we demux in reverse, then we decode in reverse, then we render in reverse. The decoding part is the simplest: just reorder the decoder output. This weirdly integrates with the timeline/ordered chapter code, which also has special requirements on feeding the packets to the decoder in a non-straightforward way (it doesn't conflict, although a bugmessmass breaks correct slicing of segments, so EDL/ordered chapter playback is broken in backward direction). Backward demuxing is pretty involved. In theory, it could be much easier: simply iterating the usual demuxer output backward. But this just doesn't fit into our code, so there's a cthulhu nightmare of shit. To be specific, each stream (audio, video) is reversed separately. At least this means we can do backward playback within cached content (for example, you could play backwards in a live stream; on that note, it disables prefetching, which would lead to losing new live video, but this could be avoided). The fuckmess also meant that I didn't bother trying to support subtitles. Subtitles are a problem because they're "sparse" streams. They need to be "passively" demuxed: you don't try to read a subtitle packet, you demux audio and video, and then look whether there was a subtitle packet. This means to get subtitles for a time range, you need to know that you demuxed video and audio over this range, which becomes pretty messy when you demux audio and video backwards separately. Backward display is the most weird (and potentially buggy) part. To avoid that we need to touch a LOT of timing code, we negate all timestamps. The basic idea is that due to the navigation, all comparisons and subtractions of timestamps keep working, and you don't need to touch every single of them to "reverse" them. E.g.: bool before = pts_a < pts_b; would need to be: bool before = forward ? pts_a < pts_b : pts_a > pts_b; or: bool before = pts_a * dir < pts_b * dir; or if you, as it's implemented now, just do this after decoding: pts_a *= dir; pts_b *= dir; and then in the normal timing/renderer code: bool before = pts_a < pts_b; Consequently, we don't need many changes in the latter code. But some assumptions inhererently true for forward playback may have been broken anyway. What is mainly needed is fixing places where values are passed between positive and negative "domains". For example, seeking and timestamp user display always uses positive timestamps. The main mess is that it's not obvious which domain a given variable should or does use. Well, in my tests with a single file, it suddenly started to work when I did this. I'm honestly surprised that it did, and that I didn't have to change a single line in the timing code past decoder (just something minor to make external/cached text subtitles display). I committed it immediately while avoiding thinking about it. But there really likely are subtle problems of all sorts. As far as I'm aware, gstreamer also supports backward playback. When I looked at this years ago, I couldn't find a way to actually try this, and I didn't revisit it now. Back then I also read talk slides from the person who implemented it, and I'm not sure if and which ideas I might have taken from it. It's possible that the timestamp reversal is inspired by it, but I didn't check. (I think it claimed that it could avoid large changes by changing a sign?) VapourSynth has some sort of reverse function, which provides a backward view on a video. The function itself is trivial to implement, as VapourSynth aims to provide random access to video by frame numbers (so you just request decreasing frame numbers). From what I remember, it wasn't exactly fluid, but it worked. It's implemented by creating an index, and seeking to the target on demand, and a bunch of caching. mpv could use it, but it would either require using VapourSynth as demuxer and decoder for everything, or replacing the current file every time something is supposed to be played backwards. FFmpeg's libavfilter has reversal filters for audio and video. These require buffering the entire media data of the file, and don't really fit into mpv's architecture. It could be used by playing a libavfilter graph that also demuxes, but that's like VapourSynth but worse.
* audio: move back PTS jump detection to before filter chainwm42018-02-131-0/+3
| | | | | | | | | | | The recent changes to player/audio.c moved PTS jump detection to after audio filtering. This was mostly done for convenience, because dataflow between decoder and filters was made "automatic", and jump detection would have to be done as filter. Now move it back to after decoders, again out of convenience. The future direction is to make the dataflow between filters and AO automatic, so this is a bit in the way. Another reason is that speed changes tend to cause jumps - these are legitimate, but get annoying quickly.
* audio: move to decoder wrapperwm42018-01-301-0/+11
| | | | | | | | | | | | | | | | Use the decoder wrapper that was introduced for video. This removes all code duplication the old audio decoder wrapper had with the video code. (The audio wrapper was copy pasted from the video one over a decade ago, and has been kept in sync ever since by the power of copy&paste. Since the original copy&paste was possibly done by someone who did not answer to the LGPL relicensing, this should also remove all doubts about whether any of this code is left, since we now completely remove any code that could possibly have been based on it.) There is some complication with spdif handling, and a minor behavior change (it will restrict the list of codecs to spdif if spdif is to be used), but there should not be any difference in practice.
* video: make decoder wrapper a filterwm42018-01-301-0/+104
Move dec_video.c to filters/f_decoder_wrapper.c. It essentially becomes a source filter. vd.h mostly disappears, because mp_filter takes care of the dataflow, but its remains are in struct mp_decoder_fns. One goal is to simplify dataflow by letting the filter framework handle it (or more accurately, using its conventions). One result is that the decode calls disappear from video.c, because we simply connect the decoder wrapper and the filter chain with mp_pin_connect(). Another goal is to eventually remove the code duplication between the audio and video paths for this. This commit prepares for this by trying to make f_decoder_wrapper.c extensible, so it can be used for audio as well later. Decoder framedropping changes a bit. It doesn't seem to be worse than before, and it's an obscure feature, so I'm content with its new state. Some special code that was apparently meant to avoid dropping too many frames in a row is removed, though. I'm not sure how the source code tree should be organized. For one, video/decode/vd_lavc.c is the only file in its directory, which is a bit annoying.