summaryrefslogtreecommitdiffstats
path: root/libvo/filter_kernels.c
diff options
context:
space:
mode:
Diffstat (limited to 'libvo/filter_kernels.c')
-rw-r--r--libvo/filter_kernels.c279
1 files changed, 0 insertions, 279 deletions
diff --git a/libvo/filter_kernels.c b/libvo/filter_kernels.c
deleted file mode 100644
index 2c2f56ee51..0000000000
--- a/libvo/filter_kernels.c
+++ /dev/null
@@ -1,279 +0,0 @@
-/*
- * This file is part of mplayer2.
- *
- * Most code for computing the weights is taken from Anti-Grain Geometry (AGG)
- * (licensed under GPL 2 or later), with modifications.
- * Copyright (C) 2002-2006 Maxim Shemanarev
- * http://vector-agg.cvs.sourceforge.net/viewvc/vector-agg/agg-2.5/include/agg_image_filters.h?view=markup
- *
- * Also see glumpy (BSD licensed), contains the same code in Python:
- * http://code.google.com/p/glumpy/source/browse/glumpy/image/filter.py
- *
- * Also see: Paul Heckbert's "zoom"
- *
- * Also see XBMC: ConvolutionKernels.cpp etc.
- *
- * mplayer2 is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * mplayer2 is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with mplayer2; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- */
-
-#include <stddef.h>
-#include <string.h>
-#include <math.h>
-#include <assert.h>
-
-#include "filter_kernels.h"
-
-// NOTE: all filters are separable, symmetric, and are intended for use with
-// a lookup table/texture.
-
-const struct filter_kernel *mp_find_filter_kernel(const char *name)
-{
- for (const struct filter_kernel *k = mp_filter_kernels; k->name; k++) {
- if (strcmp(k->name, name) == 0)
- return k;
- }
- return NULL;
-}
-
-// sizes = sorted list of available filter sizes, terminated with size 0
-// inv_scale = source_size / dest_size
-bool mp_init_filter(struct filter_kernel *filter, const int *sizes,
- double inv_scale)
-{
- // only downscaling requires widening the filter
- filter->inv_scale = inv_scale >= 1.0 ? inv_scale : 1.0;
- double support = filter->radius * filter->inv_scale;
- int size = ceil(2.0 * support);
- // round up to smallest available size that's still large enough
- if (size < sizes[0])
- size = sizes[0];
- const int *cursize = sizes;
- while (size > *cursize && *cursize)
- cursize++;
- if (*cursize) {
- filter->size = *cursize;
- return true;
- } else {
- // The filter doesn't fit - instead of failing completely, use the
- // largest filter available. This is incorrect, but better than refusing
- // to do anything.
- filter->size = cursize[-1];
- filter->inv_scale = filter->size / 2.0 / filter->radius;
- return false;
- }
-}
-
-// Calculate the 1D filtering kernel for N sample points.
-// N = number of samples, which is filter->size
-// The weights will be stored in out_w[0] to out_w[N - 1]
-// f = x0 - abs(x0), subpixel position in the range [0,1) or [0,1].
-void mp_compute_weights(struct filter_kernel *filter, double f, float *out_w)
-{
- assert(filter->size > 0);
- double sum = 0;
- for (int n = 0; n < filter->size; n++) {
- double x = f - (n - filter->size / 2 + 1);
- double w = filter->weight(filter, fabs(x) / filter->inv_scale);
- out_w[n] = w;
- sum += w;
- }
- //normalize
- for (int n = 0; n < filter->size; n++)
- out_w[n] /= sum;
-}
-
-// Fill the given array with weights for the range [0.0, 1.0]. The array is
-// interpreted as rectangular array of count * filter->size items.
-void mp_compute_lut(struct filter_kernel *filter, int count, float *out_array)
-{
- for (int n = 0; n < count; n++) {
- mp_compute_weights(filter, n / (double)(count - 1),
- out_array + filter->size * n);
- }
-}
-
-typedef struct filter_kernel kernel;
-
-static double bilinear(kernel *k, double x)
-{
- return 1.0 - x;
-}
-
-static double hanning(kernel *k, double x)
-{
- return 0.5 + 0.5 * cos(M_PI * x);
-}
-
-static double hamming(kernel *k, double x)
-{
- return 0.54 + 0.46 * cos(M_PI * x);
-}
-
-static double hermite(kernel *k, double x)
-{
- return (2.0 * x - 3.0) * x * x + 1.0;
-}
-
-static double quadric(kernel *k, double x)
-{
- // NOTE: glumpy uses 0.75, AGG uses 0.5
- if (x < 0.5)
- return 0.75 - x * x;
- if (x < 1.5)
- return 0.5 * (x - 1.5) * (x - 1.5);
- return 0;
-}
-
-static double bc_pow3(double x)
-{
- return (x <= 0) ? 0 : x * x * x;
-}
-
-static double bicubic(kernel *k, double x)
-{
- return (1.0/6.0) * ( bc_pow3(x + 2)
- - 4 * bc_pow3(x + 1)
- + 6 * bc_pow3(x)
- - 4 * bc_pow3(x - 1));
-}
-
-static double bessel_i0(double epsilon, double x)
-{
- double sum = 1;
- double y = x * x / 4;
- double t = y;
- for (int i = 2; t > epsilon; i++) {
- sum += t;
- t *= y / (i * i);
- }
- return sum;
-}
-
-static double kaiser(kernel *k, double x)
-{
- double a = k->params[0];
- double b = k->params[1];
- double epsilon = 1e-12;
- double i0a = 1 / bessel_i0(epsilon, b);
- return bessel_i0(epsilon, a * sqrt(1 - x * x)) * i0a;
-}
-
-static double catmull_rom(kernel *k, double x)
-{
- if (x < 1.0)
- return 0.5 * (2.0 + x * x * (-5.0 + x * 3.0));
- if (x < 2.0)
- return 0.5 * (4.0 + x * (-8.0 + x * (5.0 - x)));
- return 0;
-}
-
-// Mitchell-Netravali
-static double mitchell(kernel *k, double x)
-{
- double b = k->params[0];
- double c = k->params[1];
- double
- p0 = (6.0 - 2.0 * b) / 6.0,
- p2 = (-18.0 + 12.0 * b + 6.0 * c) / 6.0,
- p3 = (12.0 - 9.0 * b - 6.0 * c) / 6.0,
- q0 = (8.0 * b + 24.0 * c) / 6.0,
- q1 = (-12.0 * b - 48.0 * c) / 6.0,
- q2 = (6.0 * b + 30.0 * c) / 6.0,
- q3 = (-b - 6.0 * c) / 6.0;
- if (x < 1.0)
- return p0 + x * x * (p2 + x * p3);
- if (x < 2.0)
- return q0 + x * (q1 + x * (q2 + x * q3));
- return 0;
-}
-
-static double spline16(kernel *k, double x)
-{
- if (x < 1.0)
- return ((x - 9.0/5.0 ) * x - 1.0/5.0 ) * x + 1.0;
- return ((-1.0/3.0 * (x-1) + 4.0/5.0) * (x-1) - 7.0/15.0 ) * (x-1);
-}
-
-static double spline36(kernel *k, double x)
-{
- if(x < 1.0)
- return ((13.0/11.0 * x - 453.0/209.0) * x - 3.0/209.0) * x + 1.0;
- if(x < 2.0)
- return ((-6.0/11.0 * (x - 1) + 270.0/209.0) * (x - 1) - 156.0/209.0)
- * (x - 1);
- return ((1.0/11.0 * (x - 2) - 45.0/209.0) * (x - 2) + 26.0/209.0)
- * (x - 2);
-}
-
-static double gaussian(kernel *k, double x)
-{
- return exp(-2.0 * x * x) * sqrt(2.0 / M_PI);
-}
-
-static double sinc(kernel *k, double x)
-{
- if (x == 0.0)
- return 1.0;
- double pix = M_PI * x;
- return sin(pix) / pix;
-}
-
-static double lanczos(kernel *k, double x)
-{
- double radius = k->size / 2;
- if (x < -radius || x > radius)
- return 0;
- if (x == 0)
- return 1;
- double pix = M_PI * x;
- return radius * sin(pix) * sin(pix / radius) / (pix * pix);
-}
-
-static double blackman(kernel *k, double x)
-{
- double radius = k->size / 2;
- if (x == 0.0)
- return 1.0;
- if (x > radius)
- return 0.0;
- x *= M_PI;
- double xr = x / radius;
- return (sin(x) / x) * (0.42 + 0.5 * cos(xr) + 0.08 * cos(2 * xr));
-}
-
-const struct filter_kernel mp_filter_kernels[] = {
- {"bilinear_slow", 1, bilinear},
- {"hanning", 1, hanning},
- {"hamming", 1, hamming},
- {"hermite", 1, hermite},
- {"quadric", 1.5, quadric},
- {"bicubic", 2, bicubic},
- {"kaiser", 1, kaiser, .params = {6.33, 6.33} },
- {"catmull_rom", 2, catmull_rom},
- {"mitchell", 2, mitchell, .params = {1.0/3.0, 1.0/3.0} },
- {"spline16", 2, spline16},
- {"spline36", 3, spline36},
- {"gaussian", 2, gaussian},
- {"sinc2", 2, sinc},
- {"sinc3", 3, sinc},
- {"sinc4", 4, sinc},
- {"lanczos2", 2, lanczos},
- {"lanczos3", 3, lanczos},
- {"lanczos4", 4, lanczos},
- {"blackman2", 2, blackman},
- {"blackman3", 3, blackman},
- {"blackman4", 4, blackman},
- {0}
-};