summaryrefslogtreecommitdiffstats
path: root/audio/filter/filter.c
diff options
context:
space:
mode:
Diffstat (limited to 'audio/filter/filter.c')
-rw-r--r--audio/filter/filter.c360
1 files changed, 360 insertions, 0 deletions
diff --git a/audio/filter/filter.c b/audio/filter/filter.c
new file mode 100644
index 0000000000..b272125fd8
--- /dev/null
+++ b/audio/filter/filter.c
@@ -0,0 +1,360 @@
+/*
+ * design and implementation of different types of digital filters
+ *
+ * Copyright (C) 2001 Anders Johansson ajh@atri.curtin.edu.au
+ *
+ * This file is part of MPlayer.
+ *
+ * MPlayer is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * MPlayer is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with MPlayer; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#include <string.h>
+#include <math.h>
+#include "dsp.h"
+
+/******************************************************************************
+* FIR filter implementations
+******************************************************************************/
+
+/* C implementation of FIR filter y=w*x
+
+ n number of filter taps, where mod(n,4)==0
+ w filter taps
+ x input signal must be a circular buffer which is indexed backwards
+*/
+inline FLOAT_TYPE af_filter_fir(register unsigned int n, const FLOAT_TYPE* w,
+ const FLOAT_TYPE* x)
+{
+ register FLOAT_TYPE y; // Output
+ y = 0.0;
+ do{
+ n--;
+ y+=w[n]*x[n];
+ }while(n != 0);
+ return y;
+}
+
+/******************************************************************************
+* FIR filter design
+******************************************************************************/
+
+/* Design FIR filter using the Window method
+
+ n filter length must be odd for HP and BS filters
+ w buffer for the filter taps (must be n long)
+ fc cutoff frequencies (1 for LP and HP, 2 for BP and BS)
+ 0 < fc < 1 where 1 <=> Fs/2
+ flags window and filter type as defined in filter.h
+ variables are ored together: i.e. LP|HAMMING will give a
+ low pass filter designed using a hamming window
+ opt beta constant used only when designing using kaiser windows
+
+ returns 0 if OK, -1 if fail
+*/
+int af_filter_design_fir(unsigned int n, FLOAT_TYPE* w, const FLOAT_TYPE* fc,
+ unsigned int flags, FLOAT_TYPE opt)
+{
+ unsigned int o = n & 1; // Indicator for odd filter length
+ unsigned int end = ((n + 1) >> 1) - o; // Loop end
+ unsigned int i; // Loop index
+
+ FLOAT_TYPE k1 = 2 * M_PI; // 2*pi*fc1
+ FLOAT_TYPE k2 = 0.5 * (FLOAT_TYPE)(1 - o);// Constant used if the filter has even length
+ FLOAT_TYPE k3; // 2*pi*fc2 Constant used in BP and BS design
+ FLOAT_TYPE g = 0.0; // Gain
+ FLOAT_TYPE t1,t2,t3; // Temporary variables
+ FLOAT_TYPE fc1,fc2; // Cutoff frequencies
+
+ // Sanity check
+ if(!w || (n == 0)) return -1;
+
+ // Get window coefficients
+ switch(flags & WINDOW_MASK){
+ case(BOXCAR):
+ af_window_boxcar(n,w); break;
+ case(TRIANG):
+ af_window_triang(n,w); break;
+ case(HAMMING):
+ af_window_hamming(n,w); break;
+ case(HANNING):
+ af_window_hanning(n,w); break;
+ case(BLACKMAN):
+ af_window_blackman(n,w); break;
+ case(FLATTOP):
+ af_window_flattop(n,w); break;
+ case(KAISER):
+ af_window_kaiser(n,w,opt); break;
+ default:
+ return -1;
+ }
+
+ if(flags & (LP | HP)){
+ fc1=*fc;
+ // Cutoff frequency must be < 0.5 where 0.5 <=> Fs/2
+ fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25;
+ k1 *= fc1;
+
+ if(flags & LP){ // Low pass filter
+
+ // If the filter length is odd, there is one point which is exactly
+ // in the middle. The value at this point is 2*fCutoff*sin(x)/x,
+ // where x is zero. To make sure nothing strange happens, we set this
+ // value separately.
+ if (o){
+ w[end] = fc1 * w[end] * 2.0;
+ g=w[end];
+ }
+
+ // Create filter
+ for (i=0 ; i<end ; i++){
+ t1 = (FLOAT_TYPE)(i+1) - k2;
+ w[end-i-1] = w[n-end+i] = w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc
+ g += 2*w[end-i-1]; // Total gain in filter
+ }
+ }
+ else{ // High pass filter
+ if (!o) // High pass filters must have odd length
+ return -1;
+ w[end] = 1.0 - (fc1 * w[end] * 2.0);
+ g= w[end];
+
+ // Create filter
+ for (i=0 ; i<end ; i++){
+ t1 = (FLOAT_TYPE)(i+1);
+ w[end-i-1] = w[n-end+i] = -1 * w[end-i-1] * sin(k1 * t1)/(M_PI * t1); // Sinc
+ g += ((i&1) ? (2*w[end-i-1]) : (-2*w[end-i-1])); // Total gain in filter
+ }
+ }
+ }
+
+ if(flags & (BP | BS)){
+ fc1=fc[0];
+ fc2=fc[1];
+ // Cutoff frequencies must be < 1.0 where 1.0 <=> Fs/2
+ fc1 = ((fc1 <= 1.0) && (fc1 > 0.0)) ? fc1/2 : 0.25;
+ fc2 = ((fc2 <= 1.0) && (fc2 > 0.0)) ? fc2/2 : 0.25;
+ k3 = k1 * fc2; // 2*pi*fc2
+ k1 *= fc1; // 2*pi*fc1
+
+ if(flags & BP){ // Band pass
+ // Calculate center tap
+ if (o){
+ g=w[end]*(fc1+fc2);
+ w[end] = (fc2 - fc1) * w[end] * 2.0;
+ }
+
+ // Create filter
+ for (i=0 ; i<end ; i++){
+ t1 = (FLOAT_TYPE)(i+1) - k2;
+ t2 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2
+ t3 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1
+ g += w[end-i-1] * (t3 + t2); // Total gain in filter
+ w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3);
+ }
+ }
+ else{ // Band stop
+ if (!o) // Band stop filters must have odd length
+ return -1;
+ w[end] = 1.0 - (fc2 - fc1) * w[end] * 2.0;
+ g= w[end];
+
+ // Create filter
+ for (i=0 ; i<end ; i++){
+ t1 = (FLOAT_TYPE)(i+1);
+ t2 = sin(k1 * t1)/(M_PI * t1); // Sinc fc1
+ t3 = sin(k3 * t1)/(M_PI * t1); // Sinc fc2
+ w[end-i-1] = w[n-end+i] = w[end-i-1] * (t2 - t3);
+ g += 2*w[end-i-1]; // Total gain in filter
+ }
+ }
+ }
+
+ // Normalize gain
+ g=1/g;
+ for (i=0; i<n; i++)
+ w[i] *= g;
+
+ return 0;
+}
+
+/******************************************************************************
+* IIR filter design
+******************************************************************************/
+
+/* Helper functions for the bilinear transform */
+
+/* Pre-warp the coefficients of a numerator or denominator.
+ Note that a0 is assumed to be 1, so there is no wrapping
+ of it.
+*/
+static void af_filter_prewarp(FLOAT_TYPE* a, FLOAT_TYPE fc, FLOAT_TYPE fs)
+{
+ FLOAT_TYPE wp;
+ wp = 2.0 * fs * tan(M_PI * fc / fs);
+ a[2] = a[2]/(wp * wp);
+ a[1] = a[1]/wp;
+}
+
+/* Transform the numerator and denominator coefficients of s-domain
+ biquad section into corresponding z-domain coefficients.
+
+ The transfer function for z-domain is:
+
+ 1 + alpha1 * z^(-1) + alpha2 * z^(-2)
+ H(z) = -------------------------------------
+ 1 + beta1 * z^(-1) + beta2 * z^(-2)
+
+ Store the 4 IIR coefficients in array pointed by coef in following
+ order:
+ beta1, beta2 (denominator)
+ alpha1, alpha2 (numerator)
+
+ Arguments:
+ a - s-domain numerator coefficients
+ b - s-domain denominator coefficients
+ k - filter gain factor. Initially set to 1 and modified by each
+ biquad section in such a way, as to make it the
+ coefficient by which to multiply the overall filter gain
+ in order to achieve a desired overall filter gain,
+ specified in initial value of k.
+ fs - sampling rate (Hz)
+ coef - array of z-domain coefficients to be filled in.
+
+ Return: On return, set coef z-domain coefficients and k to the gain
+ required to maintain overall gain = 1.0;
+*/
+static void af_filter_bilinear(const FLOAT_TYPE* a, const FLOAT_TYPE* b, FLOAT_TYPE* k,
+ FLOAT_TYPE fs, FLOAT_TYPE *coef)
+{
+ FLOAT_TYPE ad, bd;
+
+ /* alpha (Numerator in s-domain) */
+ ad = 4. * a[2] * fs * fs + 2. * a[1] * fs + a[0];
+ /* beta (Denominator in s-domain) */
+ bd = 4. * b[2] * fs * fs + 2. * b[1] * fs + b[0];
+
+ /* Update gain constant for this section */
+ *k *= ad/bd;
+
+ /* Denominator */
+ *coef++ = (2. * b[0] - 8. * b[2] * fs * fs)/bd; /* beta1 */
+ *coef++ = (4. * b[2] * fs * fs - 2. * b[1] * fs + b[0])/bd; /* beta2 */
+
+ /* Numerator */
+ *coef++ = (2. * a[0] - 8. * a[2] * fs * fs)/ad; /* alpha1 */
+ *coef = (4. * a[2] * fs * fs - 2. * a[1] * fs + a[0])/ad; /* alpha2 */
+}
+
+
+
+/* IIR filter design using bilinear transform and prewarp. Transforms
+ 2nd order s domain analog filter into a digital IIR biquad link. To
+ create a filter fill in a, b, Q and fs and make space for coef and k.
+
+
+ Example Butterworth design:
+
+ Below are Butterworth polynomials, arranged as a series of 2nd
+ order sections:
+
+ Note: n is filter order.
+
+ n Polynomials
+ -------------------------------------------------------------------
+ 2 s^2 + 1.4142s + 1
+ 4 (s^2 + 0.765367s + 1) * (s^2 + 1.847759s + 1)
+ 6 (s^2 + 0.5176387s + 1) * (s^2 + 1.414214 + 1) * (s^2 + 1.931852s + 1)
+
+ For n=4 we have following equation for the filter transfer function:
+ 1 1
+ T(s) = --------------------------- * ----------------------------
+ s^2 + (1/Q) * 0.765367s + 1 s^2 + (1/Q) * 1.847759s + 1
+
+ The filter consists of two 2nd order sections since highest s power
+ is 2. Now we can take the coefficients, or the numbers by which s
+ is multiplied and plug them into a standard formula to be used by
+ bilinear transform.
+
+ Our standard form for each 2nd order section is:
+
+ a2 * s^2 + a1 * s + a0
+ H(s) = ----------------------
+ b2 * s^2 + b1 * s + b0
+
+ Note that Butterworth numerator is 1 for all filter sections, which
+ means s^2 = 0 and s^1 = 0
+
+ Let's convert standard Butterworth polynomials into this form:
+
+ 0 + 0 + 1 0 + 0 + 1
+ --------------------------- * --------------------------
+ 1 + ((1/Q) * 0.765367) + 1 1 + ((1/Q) * 1.847759) + 1
+
+ Section 1:
+ a2 = 0; a1 = 0; a0 = 1;
+ b2 = 1; b1 = 0.765367; b0 = 1;
+
+ Section 2:
+ a2 = 0; a1 = 0; a0 = 1;
+ b2 = 1; b1 = 1.847759; b0 = 1;
+
+ Q is filter quality factor or resonance, in the range of 1 to
+ 1000. The overall filter Q is a product of all 2nd order stages.
+ For example, the 6th order filter (3 stages, or biquads) with
+ individual Q of 2 will have filter Q = 2 * 2 * 2 = 8.
+
+
+ Arguments:
+ a - s-domain numerator coefficients, a[1] is always assumed to be 1.0
+ b - s-domain denominator coefficients
+ Q - Q value for the filter
+ k - filter gain factor. Initially set to 1 and modified by each
+ biquad section in such a way, as to make it the
+ coefficient by which to multiply the overall filter gain
+ in order to achieve a desired overall filter gain,
+ specified in initial value of k.
+ fs - sampling rate (Hz)
+ coef - array of z-domain coefficients to be filled in.
+
+ Note: Upon return from each call, the k argument will be set to a
+ value, by which to multiply our actual signal in order for the gain
+ to be one. On second call to szxform() we provide k that was
+ changed by the previous section. During actual audio filtering
+ k can be used for gain compensation.
+
+ return -1 if fail 0 if success.
+*/
+int af_filter_szxform(const FLOAT_TYPE* a, const FLOAT_TYPE* b, FLOAT_TYPE Q, FLOAT_TYPE fc,
+ FLOAT_TYPE fs, FLOAT_TYPE *k, FLOAT_TYPE *coef)
+{
+ FLOAT_TYPE at[3];
+ FLOAT_TYPE bt[3];
+
+ if(!a || !b || !k || !coef || (Q>1000.0 || Q< 1.0))
+ return -1;
+
+ memcpy(at,a,3*sizeof(FLOAT_TYPE));
+ memcpy(bt,b,3*sizeof(FLOAT_TYPE));
+
+ bt[1]/=Q;
+
+ /* Calculate a and b and overwrite the original values */
+ af_filter_prewarp(at, fc, fs);
+ af_filter_prewarp(bt, fc, fs);
+ /* Execute bilinear transform */
+ af_filter_bilinear(at, bt, k, fs, coef);
+
+ return 0;
+}