summaryrefslogtreecommitdiffstats
path: root/audio/filter/af_hrtf.c
diff options
context:
space:
mode:
Diffstat (limited to 'audio/filter/af_hrtf.c')
-rw-r--r--audio/filter/af_hrtf.c670
1 files changed, 670 insertions, 0 deletions
diff --git a/audio/filter/af_hrtf.c b/audio/filter/af_hrtf.c
new file mode 100644
index 0000000000..4f5eedb29d
--- /dev/null
+++ b/audio/filter/af_hrtf.c
@@ -0,0 +1,670 @@
+/*
+ * Experimental audio filter that mixes 5.1 and 5.1 with matrix
+ * encoded rear channels into headphone signal using FIR filtering
+ * with HRTF.
+ *
+ * This file is part of MPlayer.
+ *
+ * MPlayer is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * MPlayer is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with MPlayer; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+//#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <inttypes.h>
+
+#include <math.h>
+#include <libavutil/common.h>
+
+#include "af.h"
+#include "dsp.h"
+
+/* HRTF filter coefficients and adjustable parameters */
+#include "af_hrtf.h"
+
+typedef struct af_hrtf_s {
+ /* Lengths */
+ int dlbuflen, hrflen, basslen;
+ /* L, C, R, Ls, Rs channels */
+ float *lf, *rf, *lr, *rr, *cf, *cr;
+ const float *cf_ir, *af_ir, *of_ir, *ar_ir, *or_ir, *cr_ir;
+ int cf_o, af_o, of_o, ar_o, or_o, cr_o;
+ /* Bass */
+ float *ba_l, *ba_r;
+ float *ba_ir;
+ /* Whether to matrix decode the rear center channel */
+ int matrix_mode;
+ /* How to decode the input:
+ 0 = 5/5+1 channels
+ 1 = 2 channels
+ 2 = matrix encoded 2 channels */
+ int decode_mode;
+ /* Full wave rectified (FWR) amplitudes and gain used to steer the
+ active matrix decoding of front channels (variable names
+ lpr/lmr means Lt + Rt, Lt - Rt) */
+ float l_fwr, r_fwr, lpr_fwr, lmr_fwr;
+ float adapt_l_gain, adapt_r_gain, adapt_lpr_gain, adapt_lmr_gain;
+ /* Matrix input decoding require special FWR buffer, since the
+ decoding is done in place. */
+ float *fwrbuf_l, *fwrbuf_r, *fwrbuf_lr, *fwrbuf_rr;
+ /* Rear channel delay buffer for matrix decoding */
+ float *rear_dlbuf;
+ /* Full wave rectified amplitude and gain used to steer the active
+ matrix decoding of center rear channel */
+ float lr_fwr, rr_fwr, lrprr_fwr, lrmrr_fwr;
+ float adapt_lr_gain, adapt_rr_gain;
+ float adapt_lrprr_gain, adapt_lrmrr_gain;
+ /* Cyclic position on the ring buffer */
+ int cyc_pos;
+ int print_flag;
+} af_hrtf_t;
+
+/* Convolution on a ring buffer
+ * nx: length of the ring buffer
+ * nk: length of the convolution kernel
+ * sx: ring buffer
+ * sk: convolution kernel
+ * offset: offset on the ring buffer, can be
+ */
+static float conv(const int nx, const int nk, const float *sx, const float *sk,
+ const int offset)
+{
+ /* k = reminder of offset / nx */
+ int k = offset >= 0 ? offset % nx : nx + (offset % nx);
+
+ if(nk + k <= nx)
+ return af_filter_fir(nk, sx + k, sk);
+ else
+ return af_filter_fir(nk + k - nx, sx, sk + nx - k) +
+ af_filter_fir(nx - k, sx + k, sk);
+}
+
+/* Detect when the impulse response starts (significantly) */
+static int pulse_detect(const float *sx)
+{
+ /* nmax must be the reference impulse response length (128) minus
+ s->hrflen */
+ const int nmax = 128 - HRTFFILTLEN;
+ const float thresh = IRTHRESH;
+ int i;
+
+ for(i = 0; i < nmax; i++)
+ if(fabs(sx[i]) > thresh)
+ return i;
+ return 0;
+}
+
+/* Fuzzy matrix coefficient transfer function to "lock" the matrix on
+ a effectively passive mode if the gain is approximately 1 */
+static inline float passive_lock(float x)
+{
+ const float x1 = x - 1;
+ const float ax1s = fabs(x - 1) * (1.0 / MATAGCLOCK);
+
+ return x1 - x1 / (1 + ax1s * ax1s) + 1;
+}
+
+/* Unified active matrix decoder for 2 channel matrix encoded surround
+ sources */
+static inline void matrix_decode(short *in, const int k, const int il,
+ const int ir, const int decode_rear,
+ const int dlbuflen,
+ float l_fwr, float r_fwr,
+ float lpr_fwr, float lmr_fwr,
+ float *adapt_l_gain, float *adapt_r_gain,
+ float *adapt_lpr_gain, float *adapt_lmr_gain,
+ float *lf, float *rf, float *lr,
+ float *rr, float *cf)
+{
+ const int kr = (k + MATREARDELAY) % dlbuflen;
+ float l_gain = (l_fwr + r_fwr) /
+ (1 + l_fwr + l_fwr);
+ float r_gain = (l_fwr + r_fwr) /
+ (1 + r_fwr + r_fwr);
+ /* The 2nd axis has strong gain fluctuations, and therefore require
+ limits. The factor corresponds to the 1 / amplification of (Lt
+ - Rt) when (Lt, Rt) is strongly correlated. (e.g. during
+ dialogues). It should be bigger than -12 dB to prevent
+ distortion. */
+ float lmr_lim_fwr = lmr_fwr > M9_03DB * lpr_fwr ?
+ lmr_fwr : M9_03DB * lpr_fwr;
+ float lpr_gain = (lpr_fwr + lmr_lim_fwr) /
+ (1 + lpr_fwr + lpr_fwr);
+ float lmr_gain = (lpr_fwr + lmr_lim_fwr) /
+ (1 + lmr_lim_fwr + lmr_lim_fwr);
+ float lmr_unlim_gain = (lpr_fwr + lmr_fwr) /
+ (1 + lmr_fwr + lmr_fwr);
+ float lpr, lmr;
+ float l_agc, r_agc, lpr_agc, lmr_agc;
+ float f, d_gain, c_gain, c_agc_cfk;
+
+#if 0
+ static int counter = 0;
+ static FILE *fp_out;
+
+ if(counter == 0)
+ fp_out = fopen("af_hrtf.log", "w");
+ if(counter % 240 == 0)
+ fprintf(fp_out, "%g %g %g %g %g ", counter * (1.0 / 48000),
+ l_gain, r_gain, lpr_gain, lmr_gain);
+#endif
+
+ /*** AXIS NO. 1: (Lt, Rt) -> (C, Ls, Rs) ***/
+ /* AGC adaption */
+ d_gain = (fabs(l_gain - *adapt_l_gain) +
+ fabs(r_gain - *adapt_r_gain)) * 0.5;
+ f = d_gain * (1.0 / MATAGCTRIG);
+ f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
+ *adapt_l_gain = (1 - f) * *adapt_l_gain + f * l_gain;
+ *adapt_r_gain = (1 - f) * *adapt_r_gain + f * r_gain;
+ /* Matrix */
+ l_agc = in[il] * passive_lock(*adapt_l_gain);
+ r_agc = in[ir] * passive_lock(*adapt_r_gain);
+ cf[k] = (l_agc + r_agc) * M_SQRT1_2;
+ if(decode_rear) {
+ lr[kr] = rr[kr] = (l_agc - r_agc) * M_SQRT1_2;
+ /* Stereo rear channel is steered with the same AGC steering as
+ the decoding matrix. Note this requires a fast updating AGC
+ at the order of 20 ms (which is the case here). */
+ lr[kr] *= (l_fwr + l_fwr) /
+ (1 + l_fwr + r_fwr);
+ rr[kr] *= (r_fwr + r_fwr) /
+ (1 + l_fwr + r_fwr);
+ }
+
+ /*** AXIS NO. 2: (Lt + Rt, Lt - Rt) -> (L, R) ***/
+ lpr = (in[il] + in[ir]) * M_SQRT1_2;
+ lmr = (in[il] - in[ir]) * M_SQRT1_2;
+ /* AGC adaption */
+ d_gain = fabs(lmr_unlim_gain - *adapt_lmr_gain);
+ f = d_gain * (1.0 / MATAGCTRIG);
+ f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
+ *adapt_lpr_gain = (1 - f) * *adapt_lpr_gain + f * lpr_gain;
+ *adapt_lmr_gain = (1 - f) * *adapt_lmr_gain + f * lmr_gain;
+ /* Matrix */
+ lpr_agc = lpr * passive_lock(*adapt_lpr_gain);
+ lmr_agc = lmr * passive_lock(*adapt_lmr_gain);
+ lf[k] = (lpr_agc + lmr_agc) * M_SQRT1_2;
+ rf[k] = (lpr_agc - lmr_agc) * M_SQRT1_2;
+
+ /*** CENTER FRONT CANCELLATION ***/
+ /* A heuristic approach exploits that Lt + Rt gain contains the
+ information about Lt, Rt correlation. This effectively reshapes
+ the front and rear "cones" to concentrate Lt + Rt to C and
+ introduce Lt - Rt in L, R. */
+ /* 0.67677 is the emprical lower bound for lpr_gain. */
+ c_gain = 8 * (*adapt_lpr_gain - 0.67677);
+ c_gain = c_gain > 0 ? c_gain : 0;
+ /* c_gain should not be too high, not even reaching full
+ cancellation (~ 0.50 - 0.55 at current AGC implementation), or
+ the center will s0und too narrow. */
+ c_gain = MATCOMPGAIN / (1 + c_gain * c_gain);
+ c_agc_cfk = c_gain * cf[k];
+ lf[k] -= c_agc_cfk;
+ rf[k] -= c_agc_cfk;
+ cf[k] += c_agc_cfk + c_agc_cfk;
+#if 0
+ if(counter % 240 == 0)
+ fprintf(fp_out, "%g %g %g %g %g\n",
+ *adapt_l_gain, *adapt_r_gain,
+ *adapt_lpr_gain, *adapt_lmr_gain,
+ c_gain);
+ counter++;
+#endif
+}
+
+static inline void update_ch(af_hrtf_t *s, short *in, const int k)
+{
+ const int fwr_pos = (k + FWRDURATION) % s->dlbuflen;
+ /* Update the full wave rectified total amplitude */
+ /* Input matrix decoder */
+ if(s->decode_mode == HRTF_MIX_MATRIX2CH) {
+ s->l_fwr += abs(in[0]) - fabs(s->fwrbuf_l[fwr_pos]);
+ s->r_fwr += abs(in[1]) - fabs(s->fwrbuf_r[fwr_pos]);
+ s->lpr_fwr += abs(in[0] + in[1]) -
+ fabs(s->fwrbuf_l[fwr_pos] + s->fwrbuf_r[fwr_pos]);
+ s->lmr_fwr += abs(in[0] - in[1]) -
+ fabs(s->fwrbuf_l[fwr_pos] - s->fwrbuf_r[fwr_pos]);
+ }
+ /* Rear matrix decoder */
+ if(s->matrix_mode) {
+ s->lr_fwr += abs(in[2]) - fabs(s->fwrbuf_lr[fwr_pos]);
+ s->rr_fwr += abs(in[3]) - fabs(s->fwrbuf_rr[fwr_pos]);
+ s->lrprr_fwr += abs(in[2] + in[3]) -
+ fabs(s->fwrbuf_lr[fwr_pos] + s->fwrbuf_rr[fwr_pos]);
+ s->lrmrr_fwr += abs(in[2] - in[3]) -
+ fabs(s->fwrbuf_lr[fwr_pos] - s->fwrbuf_rr[fwr_pos]);
+ }
+
+ switch (s->decode_mode) {
+ case HRTF_MIX_51:
+ /* 5/5+1 channel sources */
+ s->lf[k] = in[0];
+ s->cf[k] = in[4];
+ s->rf[k] = in[1];
+ s->fwrbuf_lr[k] = s->lr[k] = in[2];
+ s->fwrbuf_rr[k] = s->rr[k] = in[3];
+ break;
+ case HRTF_MIX_MATRIX2CH:
+ /* Matrix encoded 2 channel sources */
+ s->fwrbuf_l[k] = in[0];
+ s->fwrbuf_r[k] = in[1];
+ matrix_decode(in, k, 0, 1, 1, s->dlbuflen,
+ s->l_fwr, s->r_fwr,
+ s->lpr_fwr, s->lmr_fwr,
+ &(s->adapt_l_gain), &(s->adapt_r_gain),
+ &(s->adapt_lpr_gain), &(s->adapt_lmr_gain),
+ s->lf, s->rf, s->lr, s->rr, s->cf);
+ break;
+ case HRTF_MIX_STEREO:
+ /* Stereo sources */
+ s->lf[k] = in[0];
+ s->rf[k] = in[1];
+ s->cf[k] = s->lr[k] = s->rr[k] = 0;
+ break;
+ }
+
+ /* We need to update the bass compensation delay line, too. */
+ s->ba_l[k] = in[0] + in[4] + in[2];
+ s->ba_r[k] = in[4] + in[1] + in[3];
+}
+
+/* Initialization and runtime control */
+static int control(struct af_instance *af, int cmd, void* arg)
+{
+ af_hrtf_t *s = af->setup;
+ int test_output_res;
+ char mode;
+
+ switch(cmd) {
+ case AF_CONTROL_REINIT:
+ af->data->rate = ((struct mp_audio*)arg)->rate;
+ if(af->data->rate != 48000) {
+ // automatic samplerate adjustment in the filter chain
+ // is not yet supported.
+ mp_msg(MSGT_AFILTER, MSGL_ERR,
+ "[hrtf] ERROR: Sampling rate is not 48000 Hz (%d)!\n",
+ af->data->rate);
+ return AF_ERROR;
+ }
+ af->data->nch = ((struct mp_audio*)arg)->nch;
+ if(af->data->nch == 2) {
+ /* 2 channel input */
+ if(s->decode_mode != HRTF_MIX_MATRIX2CH) {
+ /* Default behavior is stereo mixing. */
+ s->decode_mode = HRTF_MIX_STEREO;
+ }
+ }
+ else if (af->data->nch < 5)
+ af->data->nch = 5;
+ af->data->format = AF_FORMAT_S16_NE;
+ af->data->bps = 2;
+ test_output_res = af_test_output(af, (struct mp_audio*)arg);
+ af->mul = 2.0 / af->data->nch;
+ // after testing input set the real output format
+ af->data->nch = 2;
+ s->print_flag = 1;
+ return test_output_res;
+ case AF_CONTROL_COMMAND_LINE:
+ sscanf((char*)arg, "%c", &mode);
+ switch(mode) {
+ case 'm':
+ /* Use matrix rear decoding. */
+ s->matrix_mode = 1;
+ break;
+ case 's':
+ /* Input needs matrix decoding. */
+ s->decode_mode = HRTF_MIX_MATRIX2CH;
+ break;
+ case '0':
+ s->matrix_mode = 0;
+ break;
+ default:
+ mp_msg(MSGT_AFILTER, MSGL_ERR,
+ "[hrtf] Mode is neither 'm', 's', nor '0' (%c).\n",
+ mode);
+ return AF_ERROR;
+ }
+ s->print_flag = 1;
+ return AF_OK;
+ }
+
+ return AF_UNKNOWN;
+}
+
+/* Deallocate memory */
+static void uninit(struct af_instance *af)
+{
+ if(af->setup) {
+ af_hrtf_t *s = af->setup;
+
+ free(s->lf);
+ free(s->rf);
+ free(s->lr);
+ free(s->rr);
+ free(s->cf);
+ free(s->cr);
+ free(s->ba_l);
+ free(s->ba_r);
+ free(s->ba_ir);
+ free(s->fwrbuf_l);
+ free(s->fwrbuf_r);
+ free(s->fwrbuf_lr);
+ free(s->fwrbuf_rr);
+ free(af->setup);
+ }
+ if(af->data)
+ free(af->data->audio);
+ free(af->data);
+}
+
+/* Filter data through filter
+
+Two "tricks" are used to compensate the "color" of the KEMAR data:
+
+1. The KEMAR data is refiltered to ensure that the front L, R channels
+on the same side of the ear are equalized (especially in the high
+frequencies).
+
+2. A bass compensation is introduced to ensure that 0-200 Hz are not
+damped (without any real 3D acoustical image, however).
+*/
+static struct mp_audio* play(struct af_instance *af, struct mp_audio *data)
+{
+ af_hrtf_t *s = af->setup;
+ short *in = data->audio; // Input audio data
+ short *out = NULL; // Output audio data
+ short *end = in + data->len / sizeof(short); // Loop end
+ float common, left, right, diff, left_b, right_b;
+ const int dblen = s->dlbuflen, hlen = s->hrflen, blen = s->basslen;
+
+ if(AF_OK != RESIZE_LOCAL_BUFFER(af, data))
+ return NULL;
+
+ if(s->print_flag) {
+ s->print_flag = 0;
+ switch (s->decode_mode) {
+ case HRTF_MIX_51:
+ mp_msg(MSGT_AFILTER, MSGL_INFO,
+ "[hrtf] Using HRTF to mix %s discrete surround into "
+ "L, R channels\n", s->matrix_mode ? "5+1" : "5");
+ break;
+ case HRTF_MIX_STEREO:
+ mp_msg(MSGT_AFILTER, MSGL_INFO,
+ "[hrtf] Using HRTF to mix stereo into "
+ "L, R channels\n");
+ break;
+ case HRTF_MIX_MATRIX2CH:
+ mp_msg(MSGT_AFILTER, MSGL_INFO,
+ "[hrtf] Using active matrix to decode 2 channel "
+ "input, HRTF to mix %s matrix surround into "
+ "L, R channels\n", "3/2");
+ break;
+ default:
+ mp_msg(MSGT_AFILTER, MSGL_WARN,
+ "[hrtf] bogus decode_mode: %d\n", s->decode_mode);
+ break;
+ }
+
+ if(s->matrix_mode)
+ mp_msg(MSGT_AFILTER, MSGL_INFO,
+ "[hrtf] Using active matrix to decode rear center "
+ "channel\n");
+ }
+
+ out = af->data->audio;
+
+ /* MPlayer's 5 channel layout (notation for the variable):
+ *
+ * 0: L (LF), 1: R (RF), 2: Ls (LR), 3: Rs (RR), 4: C (CF), matrix
+ * encoded: Cs (CR)
+ *
+ * or: L = left, C = center, R = right, F = front, R = rear
+ *
+ * Filter notation:
+ *
+ * CF
+ * OF AF
+ * Ear->
+ * OR AR
+ * CR
+ *
+ * or: C = center, A = same side, O = opposite, F = front, R = rear
+ */
+
+ while(in < end) {
+ const int k = s->cyc_pos;
+
+ update_ch(s, in, k);
+
+ /* Simulate a 7.5 ms -20 dB echo of the center channel in the
+ front channels (like reflection from a room wall) - a kind of
+ psycho-acoustically "cheating" to focus the center front
+ channel, which is normally hard to be perceived as front */
+ s->lf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];
+ s->rf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];
+
+ switch (s->decode_mode) {
+ case HRTF_MIX_51:
+ case HRTF_MIX_MATRIX2CH:
+ /* Mixer filter matrix */
+ common = conv(dblen, hlen, s->cf, s->cf_ir, k + s->cf_o);
+ if(s->matrix_mode) {
+ /* In matrix decoding mode, the rear channel gain must be
+ renormalized, as there is an additional channel. */
+ matrix_decode(in, k, 2, 3, 0, s->dlbuflen,
+ s->lr_fwr, s->rr_fwr,
+ s->lrprr_fwr, s->lrmrr_fwr,
+ &(s->adapt_lr_gain), &(s->adapt_rr_gain),
+ &(s->adapt_lrprr_gain), &(s->adapt_lrmrr_gain),
+ s->lr, s->rr, NULL, NULL, s->cr);
+ common +=
+ conv(dblen, hlen, s->cr, s->cr_ir, k + s->cr_o) *
+ M1_76DB;
+ left =
+ ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
+ (conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
+ conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o)) *
+ M1_76DB + common);
+ right =
+ ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
+ (conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
+ conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o)) *
+ M1_76DB + common);
+ } else {
+ left =
+ ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
+ conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
+ conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o) +
+ common);
+ right =
+ ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
+ conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
+ conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o) +
+ common);
+ }
+ break;
+ case HRTF_MIX_STEREO:
+ left =
+ ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o));
+ right =
+ ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
+ conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o));
+ break;
+ default:
+ /* make gcc happy */
+ left = 0.0;
+ right = 0.0;
+ break;
+ }
+
+ /* Bass compensation for the lower frequency cut of the HRTF. A
+ cross talk of the left and right channel is introduced to
+ match the directional characteristics of higher frequencies.
+ The bass will not have any real 3D perception, but that is
+ OK (note at 180 Hz, the wavelength is about 2 m, and any
+ spatial perception is impossible). */
+ left_b = conv(dblen, blen, s->ba_l, s->ba_ir, k);
+ right_b = conv(dblen, blen, s->ba_r, s->ba_ir, k);
+ left += (1 - BASSCROSS) * left_b + BASSCROSS * right_b;
+ right += (1 - BASSCROSS) * right_b + BASSCROSS * left_b;
+ /* Also mix the LFE channel (if available) */
+ if(data->nch >= 6) {
+ left += in[5] * M3_01DB;
+ right += in[5] * M3_01DB;
+ }
+
+ /* Amplitude renormalization. */
+ left *= AMPLNORM;
+ right *= AMPLNORM;
+
+ switch (s->decode_mode) {
+ case HRTF_MIX_51:
+ case HRTF_MIX_STEREO:
+ /* "Cheating": linear stereo expansion to amplify the 3D
+ perception. Note: Too much will destroy the acoustic space
+ and may even result in headaches. */
+ diff = STEXPAND2 * (left - right);
+ out[0] = av_clip_int16(left + diff);
+ out[1] = av_clip_int16(right - diff);
+ break;
+ case HRTF_MIX_MATRIX2CH:
+ /* Do attempt any stereo expansion with matrix encoded
+ sources. The L, R channels are already stereo expanded
+ by the steering, any further stereo expansion will sound
+ very unnatural. */
+ out[0] = av_clip_int16(left);
+ out[1] = av_clip_int16(right);
+ break;
+ }
+
+ /* Next sample... */
+ in = &in[data->nch];
+ out = &out[af->data->nch];
+ (s->cyc_pos)--;
+ if(s->cyc_pos < 0)
+ s->cyc_pos += dblen;
+ }
+
+ /* Set output data */
+ data->audio = af->data->audio;
+ data->len = data->len / data->nch * 2;
+ data->nch = 2;
+
+ return data;
+}
+
+static int allocate(af_hrtf_t *s)
+{
+ if ((s->lf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ if ((s->rf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ if ((s->lr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ if ((s->rr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ if ((s->cf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ if ((s->cr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ if ((s->ba_l = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ if ((s->ba_r = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ if ((s->fwrbuf_l =
+ malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ if ((s->fwrbuf_r =
+ malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ if ((s->fwrbuf_lr =
+ malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ if ((s->fwrbuf_rr =
+ malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
+ return 0;
+}
+
+/* Allocate memory and set function pointers */
+static int af_open(struct af_instance* af)
+{
+ int i;
+ af_hrtf_t *s;
+ float fc;
+
+ af->control = control;
+ af->uninit = uninit;
+ af->play = play;
+ af->mul = 1;
+ af->data = calloc(1, sizeof(struct mp_audio));
+ af->setup = calloc(1, sizeof(af_hrtf_t));
+ if((af->data == NULL) || (af->setup == NULL))
+ return AF_ERROR;
+
+ s = af->setup;
+
+ s->dlbuflen = DELAYBUFLEN;
+ s->hrflen = HRTFFILTLEN;
+ s->basslen = BASSFILTLEN;
+
+ s->cyc_pos = s->dlbuflen - 1;
+ /* With a full (two axis) steering matrix decoder, s->matrix_mode
+ should not be enabled lightly (it will also steer the Ls, Rs
+ channels). */
+ s->matrix_mode = 0;
+ s->decode_mode = HRTF_MIX_51;
+
+ s->print_flag = 1;
+
+ if (allocate(s) != 0) {
+ mp_msg(MSGT_AFILTER, MSGL_ERR, "[hrtf] Memory allocation error.\n");
+ return AF_ERROR;
+ }
+
+ for(i = 0; i < s->dlbuflen; i++)
+ s->lf[i] = s->rf[i] = s->lr[i] = s->rr[i] = s->cf[i] =
+ s->cr[i] = 0;
+
+ s->lr_fwr =
+ s->rr_fwr = 0;
+
+ s->cf_ir = cf_filt + (s->cf_o = pulse_detect(cf_filt));
+ s->af_ir = af_filt + (s->af_o = pulse_detect(af_filt));
+ s->of_ir = of_filt + (s->of_o = pulse_detect(of_filt));
+ s->ar_ir = ar_filt + (s->ar_o = pulse_detect(ar_filt));
+ s->or_ir = or_filt + (s->or_o = pulse_detect(or_filt));
+ s->cr_ir = cr_filt + (s->cr_o = pulse_detect(cr_filt));
+
+ if((s->ba_ir = malloc(s->basslen * sizeof(float))) == NULL) {
+ mp_msg(MSGT_AFILTER, MSGL_ERR, "[hrtf] Memory allocation error.\n");
+ return AF_ERROR;
+ }
+ fc = 2.0 * BASSFILTFREQ / (float)af->data->rate;
+ if(af_filter_design_fir(s->basslen, s->ba_ir, &fc, LP | KAISER, 4 * M_PI) ==
+ -1) {
+ mp_msg(MSGT_AFILTER, MSGL_ERR, "[hrtf] Unable to design low-pass "
+ "filter.\n");
+ return AF_ERROR;
+ }
+ for(i = 0; i < s->basslen; i++)
+ s->ba_ir[i] *= BASSGAIN;
+
+ return AF_OK;
+}
+
+/* Description of this filter */
+struct af_info af_info_hrtf = {
+ "HRTF Headphone",
+ "hrtf",
+ "ylai",
+ "",
+ AF_FLAGS_REENTRANT,
+ af_open
+};