summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorwm4 <wm4@nowhere>2015-03-12 21:57:54 +0100
committerwm4 <wm4@nowhere>2015-03-12 23:20:20 +0100
commite74a4d5bc0b101fbfb371942c00d3a77267dc4a6 (patch)
treea9cc46910567eaf32ba0b47c9539f47418565d41
parentae6019cbc98cfad2613e89a80bee79ce6b2f1319 (diff)
downloadmpv-e74a4d5bc0b101fbfb371942c00d3a77267dc4a6.tar.bz2
mpv-e74a4d5bc0b101fbfb371942c00d3a77267dc4a6.tar.xz
vo_opengl: refactor shader generation (part 1)
The basic idea is to use dynamically generated shaders instead of a single monolithic file + a ton of ifdefs. Instead of having to setup every aspect of it separately (like compiling shaders, setting uniforms, perfoming the actual rendering steps, the GLSL parts), we generate the GLSL on the fly, and perform the rendering at the same time. The GLSL is regenerated every frame, but the actual compiled OpenGL-level shaders are cached, which makes it fast again. Almost all logic can be in a single place. The new code is significantly more flexible, which allows us to improve the code clarity, performance and add more features easily. This commit is incomplete. It drops almost all previous code, and readds only the most important things (some of them actually buggy). The next commit will complete it - it's separate to preserve authorship information.
-rw-r--r--.gitignore1
-rw-r--r--old-makefile5
-rw-r--r--video/out/gl_osd.c200
-rw-r--r--video/out/gl_osd.h39
-rw-r--r--video/out/gl_utils.c496
-rw-r--r--video/out/gl_utils.h39
-rw-r--r--video/out/gl_video.c1925
-rw-r--r--video/out/gl_video.h4
-rw-r--r--video/out/gl_video_shaders.glsl542
-rw-r--r--video/out/vo_opengl.c5
-rw-r--r--video/out/vo_opengl_cb.c20
-rw-r--r--wscript_build.py4
12 files changed, 1280 insertions, 2000 deletions
diff --git a/.gitignore b/.gitignore
index b8ff3a8426..159e409d7d 100644
--- a/.gitignore
+++ b/.gitignore
@@ -14,7 +14,6 @@
/input/input_conf.h
/tags
/TAGS
-/video/out/gl_video_shaders.h
/video/out/x11_icon.inc
/demux/ebml_defs.c
/demux/ebml_types.h
diff --git a/old-makefile b/old-makefile
index b9fbbaaa50..b81b106e60 100644
--- a/old-makefile
+++ b/old-makefile
@@ -358,10 +358,6 @@ demux/ebml.c: demux/ebml_defs.c
demux/ebml_defs.c: TOOLS/matroska.pl $(MKVLIB_DEPS)
./$< --generate-definitions > $@
-video/out/gl_video.c: video/out/gl_video_shaders.h
-video/out/gl_video_shaders.h: TOOLS/file2string.pl video/out/gl_video_shaders.glsl
- ./$^ >$@
-
video/out/x11_common.c: video/out/x11_icon.inc
video/out/x11_icon.inc: TOOLS/file2string.pl video/out/x11_icon.bin
./$^ >$@
@@ -475,7 +471,6 @@ clean:
-$(RM) input/input_conf.h
-$(RM) video/out/vdpau_template.c
-$(RM) demux/ebml_types.h demux/ebml_defs.c
- -$(RM) video/out/gl_video_shaders.h
-$(RM) video/out/x11_icon.inc
-$(RM) sub/osd_font.h
-$(RM) player/lua/defaults.inc
diff --git a/video/out/gl_osd.c b/video/out/gl_osd.c
index 117d7feedb..0ab85f59c4 100644
--- a/video/out/gl_osd.c
+++ b/video/out/gl_osd.c
@@ -55,20 +55,46 @@ static const struct osd_fmt_entry osd_to_gl2_formats[SUBBITMAP_COUNT] = {
struct vertex {
float position[2];
- uint8_t color[4];
float texcoord[2];
+ uint8_t ass_color[4];
};
static const struct gl_vao_entry vertex_vao[] = {
- {"vertex_position", 2, GL_FLOAT, false, offsetof(struct vertex, position)},
- {"vertex_color", 4, GL_UNSIGNED_BYTE, true, offsetof(struct vertex, color)},
- {"vertex_texcoord", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord)},
+ {"position", 2, GL_FLOAT, false, offsetof(struct vertex, position)},
+ {"texcoord" , 2, GL_FLOAT, false, offsetof(struct vertex, texcoord)},
+ {"ass_color", 4, GL_UNSIGNED_BYTE, true, offsetof(struct vertex, ass_color)},
{0}
};
-// programs: SUBBITMAP_COUNT elements
-struct mpgl_osd *mpgl_osd_init(GL *gl, struct mp_log *log, struct osd_state *osd,
- GLuint *programs)
+struct mpgl_osd_part {
+ enum sub_bitmap_format format;
+ int bitmap_id, bitmap_pos_id;
+ GLuint texture;
+ int w, h;
+ GLuint buffer;
+ int num_subparts;
+ struct sub_bitmap *subparts;
+ struct vertex *vertices;
+ struct bitmap_packer *packer;
+};
+
+struct mpgl_osd {
+ struct mp_log *log;
+ struct osd_state *osd;
+ GL *gl;
+ bool use_pbo;
+ bool scaled;
+ struct mpgl_osd_part *parts[MAX_OSD_PARTS];
+ const struct osd_fmt_entry *fmt_table;
+ bool formats[SUBBITMAP_COUNT];
+ struct gl_vao vao;
+ // temporary
+ int stereo_mode;
+ int display_size[2];
+ void *scratch;
+};
+
+struct mpgl_osd *mpgl_osd_init(GL *gl, struct mp_log *log, struct osd_state *osd)
{
GLint max_texture_size;
gl->GetIntegerv(GL_MAX_TEXTURE_SIZE, &max_texture_size);
@@ -79,7 +105,6 @@ struct mpgl_osd *mpgl_osd_init(GL *gl, struct mp_log *log, struct osd_state *osd
.osd = osd,
.gl = gl,
.fmt_table = osd_to_gl3_formats,
- .programs = programs,
.scratch = talloc_zero_size(ctx, 1),
};
@@ -126,6 +151,11 @@ void mpgl_osd_destroy(struct mpgl_osd *ctx)
talloc_free(ctx);
}
+void mpgl_osd_set_options(struct mpgl_osd *ctx, bool pbo)
+{
+ ctx->use_pbo = pbo;
+}
+
static bool upload_pbo(struct mpgl_osd *ctx, struct mpgl_osd_part *osd,
struct sub_bitmaps *imgs)
{
@@ -154,8 +184,7 @@ static bool upload_pbo(struct mpgl_osd *ctx, struct mpgl_osd_part *osd,
if (!gl->UnmapBuffer(GL_PIXEL_UNPACK_BUFFER))
success = false;
glUploadTex(gl, GL_TEXTURE_2D, fmt.format, fmt.type, NULL, stride,
- bb[0].x, bb[0].y, bb[1].x - bb[0].x, bb[1].y - bb[0].y,
- 0);
+ bb[0].x, bb[0].y, bb[1].x - bb[0].x, bb[1].y - bb[0].y, 0);
}
gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
@@ -240,11 +269,12 @@ static bool upload_osd(struct mpgl_osd *ctx, struct mpgl_osd_part *osd,
return true;
}
-static struct mpgl_osd_part *mpgl_osd_generate(struct mpgl_osd *ctx,
- struct sub_bitmaps *imgs)
+static void gen_osd_cb(void *pctx, struct sub_bitmaps *imgs)
{
+ struct mpgl_osd *ctx = pctx;
+
if (imgs->num_parts == 0 || !ctx->formats[imgs->format])
- return NULL;
+ return;
struct mpgl_osd_part *osd = ctx->parts[imgs->render_index];
@@ -256,83 +286,76 @@ static struct mpgl_osd_part *mpgl_osd_generate(struct mpgl_osd *ctx,
osd->bitmap_id = imgs->bitmap_id;
osd->bitmap_pos_id = imgs->bitmap_pos_id;
- osd->num_vertices = 0;
}
+ osd->num_subparts = osd->packer->count;
- return osd->packer->count ? osd : NULL;
+ MP_TARRAY_GROW(osd, osd->subparts, osd->num_subparts);
+ memcpy(osd->subparts, imgs->parts,
+ osd->num_subparts * sizeof(osd->subparts[0]));
}
-static void write_quad(struct vertex *va,
+static void write_quad(struct vertex *va, float matrix[3][3],
float x0, float y0, float x1, float y1,
float tx0, float ty0, float tx1, float ty1,
float tex_w, float tex_h, const uint8_t color[4])
{
+ gl_matrix_mul_vec(matrix, &x0, &y0);
+ gl_matrix_mul_vec(matrix, &x1, &y1);
+
#define COLOR_INIT {color[0], color[1], color[2], color[3]}
- va[0] = (struct vertex){ {x0, y0}, COLOR_INIT, {tx0 / tex_w, ty0 / tex_h} };
- va[1] = (struct vertex){ {x0, y1}, COLOR_INIT, {tx0 / tex_w, ty1 / tex_h} };
- va[2] = (struct vertex){ {x1, y0}, COLOR_INIT, {tx1 / tex_w, ty0 / tex_h} };
- va[3] = (struct vertex){ {x1, y1}, COLOR_INIT, {tx1 / tex_w, ty1 / tex_h} };
+ va[0] = (struct vertex){ {x0, y0}, {tx0 / tex_w, ty0 / tex_h}, COLOR_INIT };
+ va[1] = (struct vertex){ {x0, y1}, {tx0 / tex_w, ty1 / tex_h}, COLOR_INIT };
+ va[2] = (struct vertex){ {x1, y0}, {tx1 / tex_w, ty0 / tex_h}, COLOR_INIT };
+ va[3] = (struct vertex){ {x1, y1}, {tx1 / tex_w, ty1 / tex_h}, COLOR_INIT };
va[4] = va[2];
va[5] = va[1];
#undef COLOR_INIT
}
-static void draw_osd_cb(void *pctx, struct sub_bitmaps *imgs)
+static int generate_verts(struct mpgl_osd_part *part, float matrix[3][3])
{
- struct mpgl_osd *ctx = pctx;
- GL *gl = ctx->gl;
+ int num_vertices = part->num_subparts * 6;
+ MP_TARRAY_GROW(part, part->vertices, num_vertices);
- struct mpgl_osd_part *part = mpgl_osd_generate(ctx, imgs);
- if (!part)
- return;
+ for (int n = 0; n < part->num_subparts; n++) {
+ struct sub_bitmap *b = &part->subparts[n];
+ struct pos pos = part->packer->result[n];
+ struct vertex *va = part->vertices;
- assert(part->format != SUBBITMAP_EMPTY);
+ // NOTE: the blend color is used with SUBBITMAP_LIBASS only, so it
+ // doesn't matter that we upload garbage for the other formats
+ uint32_t c = b->libass.color;
+ uint8_t color[4] = { c >> 24, (c >> 16) & 0xff,
+ (c >> 8) & 0xff, 255 - (c & 0xff) };
- if (!part->num_vertices) {
- part->vertices = talloc_realloc(part, part->vertices, struct vertex,
- part->packer->count * 6);
+ write_quad(&va[n * 6], matrix,
+ b->x, b->y, b->x + b->dw, b->y + b->dh,
+ pos.x, pos.y, pos.x + b->w, pos.y + b->h,
+ part->w, part->h, color);
+ }
- struct vertex *va = part->vertices;
+ return num_vertices;
+}
- for (int n = 0; n < part->packer->count; n++) {
- struct sub_bitmap *b = &imgs->parts[n];
- struct pos pos = part->packer->result[n];
-
- // NOTE: the blend color is used with SUBBITMAP_LIBASS only, so it
- // doesn't matter that we upload garbage for the other formats
- uint32_t c = b->libass.color;
- uint8_t color[4] = { c >> 24, (c >> 16) & 0xff,
- (c >> 8) & 0xff, 255 - (c & 0xff) };
-
- write_quad(&va[part->num_vertices],
- b->x, b->y, b->x + b->dw, b->y + b->dh,
- pos.x, pos.y, pos.x + b->w, pos.y + b->h,
- part->w, part->h, color);
- part->num_vertices += 6;
- }
- }
+static void draw_part(struct mpgl_osd *ctx, int index, float matrix[3][3])
+{
+ GL *gl = ctx->gl;
+ struct mpgl_osd_part *part = ctx->parts[index];
+
+ int num_vertices = generate_verts(part, matrix);
+ if (!num_vertices)
+ return;
+ gl->Enable(GL_BLEND);
gl->BindTexture(GL_TEXTURE_2D, part->texture);
const int *factors = &blend_factors[part->format][0];
gl->BlendFuncSeparate(factors[0], factors[1], factors[2], factors[3]);
- int program = ctx->programs[part->format];
-
- gl->UseProgram(program);
- bool set_offset = ctx->offset[0] != 0.0f || ctx->offset[1] != 0.0f;
- if (set_offset) {
- gl->Uniform3f(gl->GetUniformLocation(program, "translation"),
- ctx->offset[0], ctx->offset[1], 0);
- }
-
- gl_vao_draw_data(&ctx->vao, GL_TRIANGLES, part->vertices, part->num_vertices);
+ gl_vao_draw_data(&ctx->vao, GL_TRIANGLES, part->vertices, num_vertices);
- if (set_offset)
- gl->Uniform3f(gl->GetUniformLocation(program, "translation"), 0, 0, 0);
-
- gl->UseProgram(0);
gl->BindTexture(GL_TEXTURE_2D, 0);
+ gl->Disable(GL_BLEND);
}
// number of screen divisions per axis (x=0, y=1) for the current 3D mode
@@ -347,26 +370,51 @@ static void get_3d_side_by_side(int stereo_mode, int div[2])
}
}
-void mpgl_osd_draw(struct mpgl_osd *ctx, struct mp_osd_res res, double pts,
- int stereo_mode)
+void mpgl_osd_draw_part(struct mpgl_osd *ctx, int vp_w, int vp_h, int index)
{
- GL *gl = ctx->gl;
-
- gl->Enable(GL_BLEND);
-
int div[2];
- get_3d_side_by_side(stereo_mode, div);
+ get_3d_side_by_side(ctx->stereo_mode, div);
for (int x = 0; x < div[0]; x++) {
for (int y = 0; y < div[1]; y++) {
- struct mp_osd_res s_res = res;
- s_res.w /= div[0];
- s_res.h /= div[1];
- ctx->offset[0] = s_res.w * x;
- ctx->offset[1] = s_res.h * y;
- osd_draw(ctx->osd, s_res, pts, 0, ctx->formats, draw_osd_cb, ctx);
+ float matrix[3][3];
+
+ gl_matrix_ortho2d(matrix, 0, vp_w, 0, vp_h);
+
+ float a_x = ctx->display_size[0] * x;
+ float a_y = ctx->display_size[1] * y;
+ matrix[2][0] += a_x * matrix[0][0] + a_y * matrix[1][0];
+ matrix[2][1] += a_x * matrix[0][1] + a_y * matrix[1][1];
+
+ draw_part(ctx, index, matrix);
}
}
+}
- gl->Disable(GL_BLEND);
+enum sub_bitmap_format mpgl_osd_get_part_format(struct mpgl_osd *ctx, int index)
+{
+ assert(index >= 0 && index < MAX_OSD_PARTS);
+ return ctx->parts[index]->format;
+}
+
+struct gl_vao *mpgl_osd_get_vao(struct mpgl_osd *ctx)
+{
+ return &ctx->vao;
+}
+
+void mpgl_osd_generate(struct mpgl_osd *ctx, struct mp_osd_res res, double pts,
+ int stereo_mode)
+{
+ for (int n = 0; n < MAX_OSD_PARTS; n++)
+ ctx->parts[n]->num_subparts = 0;
+
+ int div[2];
+ get_3d_side_by_side(stereo_mode, div);
+
+ struct mp_osd_res s_res = res;
+ ctx->display_size[0] = s_res.w = s_res.w / div[0];
+ ctx->display_size[1] = s_res.h = s_res.h / div[1];
+
+ osd_draw(ctx->osd, s_res, pts, 0, ctx->formats, gen_osd_cb, ctx);
+ ctx->stereo_mode = stereo_mode;
}
diff --git a/video/out/gl_osd.h b/video/out/gl_osd.h
index 5c34911e22..0acd200ab4 100644
--- a/video/out/gl_osd.h
+++ b/video/out/gl_osd.h
@@ -7,38 +7,15 @@
#include "gl_utils.h"
#include "sub/osd.h"
-struct mpgl_osd_part {
- enum sub_bitmap_format format;
- int bitmap_id, bitmap_pos_id;
- GLuint texture;
- int w, h;
- GLuint buffer;
- int num_vertices;
- void *vertices;
- struct bitmap_packer *packer;
-};
-
-struct mpgl_osd {
- struct mp_log *log;
- struct osd_state *osd;
- GL *gl;
- bool use_pbo;
- bool scaled;
- struct mpgl_osd_part *parts[MAX_OSD_PARTS];
- const struct osd_fmt_entry *fmt_table;
- bool formats[SUBBITMAP_COUNT];
- struct gl_vao vao;
- GLuint *programs; // SUBBITMAP_COUNT elements
- // temporary
- float offset[2];
- void *scratch;
-};
-
-struct mpgl_osd *mpgl_osd_init(GL *gl, struct mp_log *log, struct osd_state *osd,
- GLuint *programs);
+struct mpgl_osd *mpgl_osd_init(GL *gl, struct mp_log *log, struct osd_state *osd);
void mpgl_osd_destroy(struct mpgl_osd *ctx);
-void mpgl_osd_draw(struct mpgl_osd *ctx, struct mp_osd_res res, double pts,
- int stereo_mode);
+void mpgl_osd_set_options(struct mpgl_osd *ctx, bool pbo);
+
+void mpgl_osd_generate(struct mpgl_osd *ctx, struct mp_osd_res res, double pts,
+ int stereo_mode);
+enum sub_bitmap_format mpgl_osd_get_part_format(struct mpgl_osd *ctx, int index);
+struct gl_vao *mpgl_osd_get_vao(struct mpgl_osd *ctx);
+void mpgl_osd_draw_part(struct mpgl_osd *ctx, int vp_w, int vp_h, int index);
#endif
diff --git a/video/out/gl_utils.c b/video/out/gl_utils.c
index 80ec840582..ca2fef10bf 100644
--- a/video/out/gl_utils.c
+++ b/video/out/gl_utils.c
@@ -25,6 +25,7 @@
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
+#include <stdarg.h>
#include <assert.h>
#include "common/common.h"
@@ -290,14 +291,6 @@ void gl_vao_unbind(struct gl_vao *vao)
}
}
-void gl_vao_bind_attribs(struct gl_vao *vao, GLuint program)
-{
- GL *gl = vao->gl;
-
- for (int n = 0; vao->entries[n].name; n++)
- gl->BindAttribLocation(program, n, vao->entries[n].name);
-}
-
// Draw the vertex data (as described by the gl_vao_entry entries) in ptr
// to the screen. num is the number of vertexes. prim is usually GL_TRIANGLES.
// If ptr is NULL, then skip the upload, and use the data uploaded with the
@@ -320,24 +313,47 @@ void gl_vao_draw_data(struct gl_vao *vao, GLenum prim, void *ptr, size_t num)
}
// Create a texture and a FBO using the texture as color attachments.
-// gl_target: GL_TEXTURE_2D
-// gl_filter: GL_LINEAR
// iformat: texture internal format
// Returns success.
bool fbotex_init(struct fbotex *fbo, GL *gl, struct mp_log *log, int w, int h,
- GLenum gl_target, GLenum gl_filter, GLenum iformat)
+ GLenum iformat)
{
- bool res = true;
-
assert(!fbo->fbo);
assert(!fbo->texture);
+ return fbotex_change(fbo, gl, log, w, h, iformat, 0);
+}
+
+// Like fbotex_init(), except it can be called on an already initialized FBO;
+// and if the parameters are the same as the previous call, do not touch it.
+// flags can be 0, or a combination of FBOTEX_FUZZY_W and FBOTEX_FUZZY_H.
+// Enabling FUZZY for W or H means the w or h does not need to be exact.
+bool fbotex_change(struct fbotex *fbo, GL *gl, struct mp_log *log, int w, int h,
+ GLenum iformat, int flags)
+{
+ bool res = true;
+
+ int cw = w, ch = h;
+
+ if ((flags & FBOTEX_FUZZY_W) && cw < fbo->tex_w)
+ cw = fbo->tex_w;
+ if ((flags & FBOTEX_FUZZY_H) && ch < fbo->tex_h)
+ ch = fbo->tex_h;
+
+ if (fbo->tex_w == cw && fbo->tex_h == ch && fbo->iformat == iformat)
+ return true;
+
+ if (flags & FBOTEX_FUZZY_W)
+ w = MP_ALIGN_UP(w, 256);
+ if (flags & FBOTEX_FUZZY_H)
+ h = MP_ALIGN_UP(h, 256);
+
+ GLenum filter = fbo->tex_filter;
*fbo = (struct fbotex) {
.gl = gl,
- .vp_w = w,
- .vp_h = h,
.tex_w = w,
.tex_h = h,
+ .iformat = iformat,
};
mp_verbose(log, "Create FBO: %dx%d\n", fbo->tex_w, fbo->tex_h);
@@ -347,19 +363,20 @@ bool fbotex_init(struct fbotex *fbo, GL *gl, struct mp_log *log, int w, int h,
gl->GenFramebuffers(1, &fbo->fbo);
gl->GenTextures(1, &fbo->texture);
- gl->BindTexture(gl_target, fbo->texture);
- gl->TexImage2D(gl_target, 0, iformat, fbo->tex_w, fbo->tex_h, 0,
+ gl->BindTexture(GL_TEXTURE_2D, fbo->texture);
+ gl->TexImage2D(GL_TEXTURE_2D, 0, iformat, fbo->tex_w, fbo->tex_h, 0,
GL_RGBA, GL_UNSIGNED_BYTE, NULL);
- gl->TexParameteri(gl_target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
- gl->TexParameteri(gl_target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
- gl->TexParameteri(gl_target, GL_TEXTURE_MIN_FILTER, gl_filter);
- gl->TexParameteri(gl_target, GL_TEXTURE_MAG_FILTER, gl_filter);
+ gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+ gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+ gl->BindTexture(GL_TEXTURE_2D, 0);
+
+ fbotex_set_filter(fbo, filter ? filter : GL_LINEAR);
glCheckError(gl, log, "after creating framebuffer texture");
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo);
gl->FramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
- gl_target, fbo->texture, 0);
+ GL_TEXTURE_2D, fbo->texture, 0);
GLenum err = gl->CheckFramebufferStatus(GL_FRAMEBUFFER);
if (err != GL_FRAMEBUFFER_COMPLETE) {
@@ -375,6 +392,19 @@ bool fbotex_init(struct fbotex *fbo, GL *gl, struct mp_log *log, int w, int h,
return res;
}
+void fbotex_set_filter(struct fbotex *fbo, GLenum tex_filter)
+{
+ GL *gl = fbo->gl;
+
+ if (fbo->tex_filter != tex_filter && fbo->texture) {
+ gl->BindTexture(GL_TEXTURE_2D, fbo->texture);
+ gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, tex_filter);
+ gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, tex_filter);
+ gl->BindTexture(GL_TEXTURE_2D, 0);
+ }
+ fbo->tex_filter = tex_filter;
+}
+
void fbotex_uninit(struct fbotex *fbo)
{
GL *gl = fbo->gl;
@@ -386,8 +416,16 @@ void fbotex_uninit(struct fbotex *fbo)
}
}
+// Standard parallel 2D projection, except y1 < y0 means that the coordinate
+// system is flipped, not the projection.
void gl_matrix_ortho2d(float m[3][3], float x0, float x1, float y0, float y1)
{
+ if (y1 < y0) {
+ float t = y0;
+ y0 = t - y1;
+ y1 = t;
+ }
+
memset(m, 0, 9 * sizeof(float));
m[0][0] = 2.0f / (x1 - x0);
m[1][1] = 2.0f / (y1 - y0);
@@ -422,3 +460,417 @@ void gl_set_debug_logger(GL *gl, struct mp_log *log)
}
}
}
+
+#define SC_ENTRIES 10
+#define SC_UNIFORM_ENTRIES 20
+
+enum uniform_type {
+ UT_invalid,
+ UT_i,
+ UT_f,
+ UT_m,
+};
+
+struct sc_uniform {
+ char *name;
+ enum uniform_type type;
+ const char *glsl_type;
+ int size;
+ GLint loc;
+ union {
+ GLfloat f[9];
+ GLint i[4];
+ } v;
+};
+
+struct sc_entry {
+ GLuint gl_shader;
+ // the following fields define the shader's contents
+ char *key; // vertex+frag shader (mangled)
+ struct gl_vao *vao;
+};
+
+struct gl_shader_cache {
+ GL *gl;
+ struct mp_log *log;
+
+ // this is modified during use (gl_sc_add() etc.)
+ char *text;
+ struct gl_vao *vao;
+
+ struct sc_entry entries[SC_ENTRIES];
+ int num_entries;
+
+ struct sc_uniform uniforms[SC_UNIFORM_ENTRIES];
+ int num_uniforms;
+};
+
+struct gl_shader_cache *gl_sc_create(GL *gl, struct mp_log *log)
+{
+ struct gl_shader_cache *sc = talloc_ptrtype(NULL, sc);
+ *sc = (struct gl_shader_cache){
+ .gl = gl,
+ .log = log,
+ .text = talloc_strdup(sc, ""),
+ };
+ return sc;
+}
+
+void gl_sc_reset(struct gl_shader_cache *sc)
+{
+ sc->text[0] = '\0';
+ for (int n = 0; n < sc->num_uniforms; n++)
+ talloc_free(sc->uniforms[n].name);
+ sc->num_uniforms = 0;
+}
+
+static void sc_flush_cache(struct gl_shader_cache *sc)
+{
+ for (int n = 0; n < sc->num_entries; n++) {
+ struct sc_entry *e = &sc->entries[n];
+ sc->gl->DeleteProgram(e->gl_shader);
+ talloc_free(e->key);
+ }
+ sc->num_entries = 0;
+}
+
+void gl_sc_destroy(struct gl_shader_cache *sc)
+{
+ gl_sc_reset(sc);
+ sc_flush_cache(sc);
+ talloc_free(sc);
+}
+
+void gl_sc_add(struct gl_shader_cache *sc, const char *text)
+{
+ sc->text = talloc_strdup_append(sc->text, text);
+}
+
+void gl_sc_addf(struct gl_shader_cache *sc, const char *textf, ...)
+{
+ va_list ap;
+ va_start(ap, textf);
+ ta_xvasprintf_append(&sc->text, textf, ap);
+ va_end(ap);
+}
+
+static struct sc_uniform *find_uniform(struct gl_shader_cache *sc,
+ const char *name)
+{
+ for (int n = 0; n < sc->num_uniforms; n++) {
+ if (strcmp(sc->uniforms[n].name, name) == 0)
+ return &sc->uniforms[n];
+ }
+ // not found -> add it
+ assert(sc->num_uniforms < SC_UNIFORM_ENTRIES); // just don't have too many
+ struct sc_uniform *new = &sc->uniforms[sc->num_uniforms++];
+ *new = (struct sc_uniform) { .loc = -1, .name = talloc_strdup(NULL, name) };
+ return new;
+}
+
+void gl_sc_uniform_sampler(struct gl_shader_cache *sc, char *name, GLenum target,
+ int unit)
+{
+ struct sc_uniform *u = find_uniform(sc, name);
+ u->type = UT_i;
+ u->size = 1;
+ switch (target) {
+ case GL_TEXTURE_1D: u->glsl_type = "sampler1D"; break;
+ case GL_TEXTURE_2D: u->glsl_type = "sampler2D"; break;
+ case GL_TEXTURE_RECTANGLE: u->glsl_type = "sampler2DRect"; break;
+ case GL_TEXTURE_3D: u->glsl_type = "sampler3D"; break;
+ default: abort();
+ }
+ u->v.i[0] = unit;
+}
+
+void gl_sc_uniform_f(struct gl_shader_cache *sc, char *name, GLfloat f)
+{
+ struct sc_uniform *u = find_uniform(sc, name);
+ u->type = UT_f;
+ u->size = 1;
+ u->glsl_type = "float";
+ u->v.f[0] = f;
+}
+
+void gl_sc_uniform_vec2(struct gl_shader_cache *sc, char *name, GLfloat f[2])
+{
+ struct sc_uniform *u = find_uniform(sc, name);
+ u->type = UT_f;
+ u->size = 2;
+ u->glsl_type = "vec2";
+ u->v.f[0] = f[0];
+ u->v.f[1] = f[1];
+}
+
+void gl_sc_uniform_vec3(struct gl_shader_cache *sc, char *name, GLfloat f[3])
+{
+ struct sc_uniform *u = find_uniform(sc, name);
+ u->type = UT_f;
+ u->size = 3;
+ u->glsl_type = "vec3";
+ u->v.f[0] = f[0];
+ u->v.f[1] = f[1];
+ u->v.f[2] = f[2];
+}
+
+static void transpose2x2(float r[2 * 2])
+{
+ MPSWAP(float, r[0+2*1], r[1+2*0]);
+}
+
+void gl_sc_uniform_mat2(struct gl_shader_cache *sc, char *name,
+ bool transpose, GLfloat *v)
+{
+ struct sc_uniform *u = find_uniform(sc, name);
+ u->type = UT_m;
+ u->size = 2;
+ u->glsl_type = "mat2";
+ for (int n = 0; n < 4; n++)
+ u->v.f[n] = v[n];
+ if (transpose)
+ transpose2x2(&u->v.f[0]);
+}
+
+static void transpose3x3(float r[3 * 3])
+{
+ MPSWAP(float, r[0+3*1], r[1+3*0]);
+ MPSWAP(float, r[0+3*2], r[2+3*0]);
+ MPSWAP(float, r[1+3*2], r[2+3*1]);
+}
+
+void gl_sc_uniform_mat3(struct gl_shader_cache *sc, char *name,
+ bool transpose, GLfloat *v)
+{
+ struct sc_uniform *u = find_uniform(sc, name);
+ u->type = UT_m;
+ u->size = 3;
+ u->glsl_type = "mat3";
+ for (int n = 0; n < 9; n++)
+ u->v.f[n] = v[n];
+ if (transpose)
+ transpose3x3(&u->v.f[0]);
+}
+
+// This will call glBindAttribLocation() on the shader before it's linked
+// (OpenGL requires this to happen before linking). Basically, it associates
+// the input variable names with the fields in the vao.
+// The vertex shader is setup such that the elements are available as fragment
+// shader variables using the names in the vao entries, which "position" being
+// set to gl_Position.
+void gl_sc_set_vao(struct gl_shader_cache *sc, struct gl_vao *vao)
+{
+ sc->vao = vao;
+}
+
+static const char *vao_glsl_type(const struct gl_vao_entry *e)
+{
+ // pretty dumb... too dumb, but works for us
+ switch (e->num_elems) {
+ case 1: return "float";
+ case 2: return "vec2";
+ case 3: return "vec3";
+ case 4: return "vec4";
+ default: abort();
+ }
+}
+
+// Assumes program is current (gl->UseProgram(program)).
+static void update_uniform(GL *gl, GLuint program, struct sc_uniform *u)
+{
+ GLint loc = gl->GetUniformLocation(program, u->name);
+ if (loc < 0)
+ return;
+ switch (u->type) {
+ case UT_i:
+ assert(u->size == 1);
+ gl->Uniform1i(loc, u->v.i[0]);
+ break;
+ case UT_f:
+ switch (u->size) {
+ case 1: gl->Uniform1f(loc, u->v.f[0]); break;
+ case 2: gl->Uniform2f(loc, u->v.f[0], u->v.f[1]); break;
+ case 3: gl->Uniform3f(loc, u->v.f[0], u->v.f[1], u->v.f[2]); break;
+ case 4: gl->Uniform4f(loc, u->v.f[0], u->v.f[1], u->v.f[2], u->v.f[3]); break;
+ default: abort();
+ }
+ break;
+ case UT_m:
+ switch (u->size) {
+ case 2: gl->UniformMatrix2fv(loc, 1, GL_FALSE, &u->v.f[0]); break;
+ case 3: gl->UniformMatrix3fv(loc, 1, GL_FALSE, &u->v.f[0]); break;
+ default: abort();
+ }
+ break;
+ default:
+ abort();
+ }
+}
+
+static void compile_attach_shader(struct gl_shader_cache *sc, GLuint program,
+ GLenum type, const char *source)
+{
+ GL *gl = sc->gl;
+
+ GLuint shader = gl->CreateShader(type);
+ gl->ShaderSource(shader, 1, &source, NULL);
+ gl->CompileShader(shader);
+ GLint status;
+ gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status);
+ GLint log_length;
+ gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
+
+ int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
+ const char *typestr = type == GL_VERTEX_SHADER ? "vertex" : "fragment";
+ if (mp_msg_test(sc->log, pri)) {
+ MP_MSG(sc, pri, "%s shader source:\n", typestr);
+ mp_log_source(sc->log, pri, source);
+ }
+ if (log_length > 1) {
+ GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
+ gl->GetShaderInfoLog(shader, log_length, NULL, logstr);
+ MP_MSG(sc, pri, "%s shader compile log (status=%d):\n%s\n",
+ typestr, status, logstr);
+ talloc_free(logstr);
+ }
+
+ gl->AttachShader(program, shader);
+ gl->DeleteShader(shader);
+}
+
+static void link_shader(struct gl_shader_cache *sc, GLuint program)
+{
+ GL *gl = sc->gl;
+ gl->LinkProgram(program);
+ GLint status;
+ gl->GetProgramiv(program, GL_LINK_STATUS, &status);
+ GLint log_length;
+ gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length);
+
+ int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
+ if (mp_msg_test(sc->log, pri)) {
+ GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
+ gl->GetProgramInfoLog(program, log_length, NULL, logstr);
+ MP_MSG(sc, pri, "shader link log (status=%d): %s\n", status, logstr);
+ talloc_free(logstr);
+ }
+}
+
+static GLuint create_program(struct gl_shader_cache *sc, const char *vertex,
+ const char *frag)
+{
+ GL *gl = sc->gl;
+ MP_VERBOSE(sc, "recompiling a shader program:\n");
+ mp_log_source(sc->log, MSGL_V, sc->text);
+ GLuint prog = gl->CreateProgram();
+ compile_attach_shader(sc, prog, GL_VERTEX_SHADER, vertex);
+ compile_attach_shader(sc, prog, GL_FRAGMENT_SHADER, frag);
+ for (int n = 0; sc->vao->entries[n].name; n++) {
+ char vname[80];
+ snprintf(vname, sizeof(vname), "vertex_%s", sc->vao->entries[n].name);
+ gl->BindAttribLocation(prog, n, vname);
+ }
+ link_shader(sc, prog);
+ return prog;
+}
+
+#define ADD(x, ...) (x) = talloc_asprintf_append(x, __VA_ARGS__)
+
+// 1. Generate vertex and fragment shaders from the fragment shader text added
+// with gl_sc_add(). The generated shader program is cached (based on the
+// text), so actual compilation happens only the first time.
+// 2. Update the uniforms set with gl_sc_uniform_*.
+// 3. Make the new shader program current (glUseProgram()).
+// 4. Reset the sc state and prepare for a new shader program. (All uniforms
+// and fragment operations needed for the next program have to be re-added.)
+void gl_sc_gen_shader_and_reset(struct gl_shader_cache *sc)
+{
+ GL *gl = sc->gl;
+ void *tmp = talloc_new(NULL);
+
+ assert(sc->vao);
+
+ // set up shader text (header + uniforms + body)
+ char *header = talloc_asprintf(tmp, "#version %d%s\n", gl->glsl_version,
+ gl->es >= 300 ? " es" : "");
+ if (gl->es)
+ ADD(header, "precision mediump float;\n");
+ char *vert_in = gl->glsl_version >= 130 ? "in" : "attribute";
+ char *vert_out = gl->glsl_version >= 130 ? "out" : "varying";
+ char *frag_in = gl->glsl_version >= 130 ? "in" : "varying";
+
+ // vertex shader: we don't use the vertex shader, so just setup a dummy,
+ // which passes through the vertex array attributes.
+ char *vert_head = talloc_strdup(tmp, header);
+ char *vert_body = talloc_strdup(tmp, "void main() {\n");
+ char *frag_vaos = talloc_strdup(tmp, "");
+ for (int n = 0; sc->vao->entries[n].name; n++) {
+ const struct gl_vao_entry *e = &sc->vao->entries[n];
+ const char *glsl_type = vao_glsl_type(e);
+ if (strcmp(e->name, "position") == 0) {
+ // setting raster pos. requires setting gl_Position magic variable
+ assert(e->num_elems == 2 && e->type == GL_FLOAT);
+ ADD(vert_head, "%s vec2 position;\n", vert_in);
+ ADD(vert_body, "gl_Position = vec4(position, 1.0, 1.0);\n");
+ } else {
+ ADD(vert_head, "%s %s vertex_%s;\n", vert_in, glsl_type, e->name);
+ ADD(vert_head, "%s %s %s;\n", vert_out, glsl_type, e->name);
+ ADD(vert_body, "%s = vertex_%s;\n", e->name, e->name);
+ ADD(frag_vaos, "%s %s %s;\n", frag_in, glsl_type, e->name);
+ }
+ }
+ ADD(vert_body, "}\n");
+ char *vert = talloc_asprintf(tmp, "%s%s", vert_head, vert_body);
+
+ // fragment shader; still requires adding used uniforms and VAO elements
+ char *frag = talloc_strdup(tmp, header);
+ ADD(frag, "#define RG %s\n", gl->mpgl_caps & MPGL_CAP_TEX_RG ? "rg" : "ra");
+ if (gl->glsl_version >= 130) {
+ ADD(frag, "#define texture1D texture\n");
+ ADD(frag, "#define texture3D texture\n");
+ ADD(frag, "out vec4 out_color;\n");
+ }
+ ADD(frag, "%s", frag_vaos);
+ for (int n = 0; n < sc->num_uniforms; n++) {
+ struct sc_uniform *u = &sc->uniforms[n];
+ ADD(frag, "uniform %s %s;\n", u->glsl_type, u->name);
+ }
+ ADD(frag, "void main() {\n");
+ ADD(frag, "%s", sc->text);
+ // we require _all_ frag shaders to write to a "vec4 color"
+ if (gl->glsl_version >= 130) {
+ ADD(frag, "out_color = color;\n");
+ } else {
+ ADD(frag, "gl_FragColor = color;\n");
+ }
+ ADD(frag, "}\n");
+
+ char *key = talloc_asprintf(tmp, "%s%s", vert, frag);
+ struct sc_entry *entry = NULL;
+ for (int n = 0; n < sc->num_entries; n++) {
+ if (strcmp(key, sc->entries[n].key) == 0) {
+ entry = &sc->entries[n];
+ break;
+ }
+ }
+ if (!entry) {
+ if (sc->num_entries == SC_ENTRIES)
+ sc_flush_cache(sc);
+ entry = &sc->entries[sc->num_entries++];
+ *entry = (struct sc_entry){.key = talloc_strdup(NULL, key)};
+ }
+ // build vertex shader from vao
+ if (!entry->gl_shader)
+ entry->gl_shader = create_program(sc, vert, frag);
+
+ gl->UseProgram(entry->gl_shader);
+
+ // For now we set the uniforms every time. This is probably bad, and we
+ // should switch to caching them.
+ for (int n = 0; n < sc->num_uniforms; n++)
+ update_uniform(gl, entry->gl_shader, &sc->uniforms[n]);
+
+ talloc_free(tmp);
+
+ gl_sc_reset(sc);
+}
diff --git a/video/out/gl_utils.h b/video/out/gl_utils.h
index 1934396afe..a1bb2ecafb 100644
--- a/video/out/gl_utils.h
+++ b/video/out/gl_utils.h
@@ -66,23 +66,54 @@ void gl_vao_init(struct gl_vao *vao, GL *gl, int stride,
void gl_vao_uninit(struct gl_vao *vao);
void gl_vao_bind(struct gl_vao *vao);
void gl_vao_unbind(struct gl_vao *vao);
-void gl_vao_bind_attribs(struct gl_vao *vao, GLuint program);
void gl_vao_draw_data(struct gl_vao *vao, GLenum prim, void *ptr, size_t num);
struct fbotex {
GL *gl;
GLuint fbo;
GLuint texture;
- int tex_w, tex_h; // size of .texture
- int vp_x, vp_y, vp_w, vp_h; // viewport of fbo / used part of the texture
+ GLenum iformat;
+ GLenum tex_filter;
+ int tex_w, tex_h; // size of .texture
};
bool fbotex_init(struct fbotex *fbo, GL *gl, struct mp_log *log, int w, int h,
- GLenum gl_target, GLenum gl_filter, GLenum iformat);
+ GLenum iformat);
void fbotex_uninit(struct fbotex *fbo);
+bool fbotex_change(struct fbotex *fbo, GL *gl, struct mp_log *log, int w, int h,
+ GLenum iformat, int flags);
+#define FBOTEX_FUZZY_W 1
+#define FBOTEX_FUZZY_H 2
+void fbotex_set_filter(struct fbotex *fbo, GLenum gl_filter);
void gl_matrix_ortho2d(float m[3][3], float x0, float x1, float y0, float y1);
+static inline void gl_matrix_mul_vec(float m[3][3], float *x, float *y)
+{
+ float vx = *x, vy = *y;
+ *x = vx * m[0][0] + vy * m[1][0] + m[2][0];
+ *y = vx * m[0][1] + vy * m[1][1] + m[2][1];
+}
+
void gl_set_debug_logger(GL *gl, struct mp_log *log);
+struct gl_shader_cache;
+
+struct gl_shader_cache *gl_sc_create(GL *gl, struct mp_log *log);
+void gl_sc_destroy(struct gl_shader_cache *sc);
+void gl_sc_add(struct gl_shader_cache *sc, const char *text);
+void gl_sc_addf(struct gl_shader_cache *sc, const char *textf, ...);
+void gl_sc_uniform_sampler(struct gl_shader_cache *sc, char *name, GLenum target,
+ int unit);
+void gl_sc_uniform_f(struct gl_shader_cache *sc, char *name, GLfloat f);
+void gl_sc_uniform_vec2(struct gl_shader_cache *sc, char *name, GLfloat f[2]);
+void gl_sc_uniform_vec3(struct gl_shader_cache *sc, char *name, GLfloat f[3]);
+void gl_sc_uniform_mat2(struct gl_shader_cache *sc, char *name,
+ bool transpose, GLfloat *v);
+void gl_sc_uniform_mat3(struct gl_shader_cache *sc, char *name,
+ bool transpose, GLfloat *v);
+void gl_sc_set_vao(struct gl_shader_cache *sc, struct gl_vao *vao);
+void gl_sc_gen_shader_and_reset(struct gl_shader_cache *sc);
+void gl_sc_reset(struct gl_shader_cache *sc);
+
#endif
diff --git a/video/out/gl_video.c b/video/out/gl_video.c
index 5ddb6c5cad..a52bd82020 100644
--- a/video/out/gl_video.c
+++ b/video/out/gl_video.c
@@ -41,11 +41,6 @@
#include "bitmap_packer.h"
#include "dither.h"
-static const char vo_opengl_shaders[] =
-// Generated from gl_video_shaders.glsl
-#include "video/out/gl_video_shaders.h"
-;
-
// Pixel width of 1D lookup textures.
#define LOOKUP_TEXTURE_SIZE 256
@@ -70,14 +65,21 @@ static const char *const fixed_scale_filters[] = {
int filter_sizes[] =
{2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 0};
+struct vertex_pt {
+ float x, y;
+};
+
struct vertex {
- float position[2];
- float texcoord[2];
+ struct vertex_pt position;
+ struct vertex_pt texcoord[4];
};
static const struct gl_vao_entry vertex_vao[] = {
- {"vertex_position", 2, GL_FLOAT, false, offsetof(struct vertex, position)},
- {"vertex_texcoord", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord)},
+ {"position", 2, GL_FLOAT, false, offsetof(struct vertex, position)},
+ {"texcoord0", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[0])},
+ {"texcoord1", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[1])},
+ {"texcoord2", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[2])},
+ {"texcoord3", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord[3])},
{0}
};
@@ -85,6 +87,7 @@ struct texplane {
int w, h;
int tex_w, tex_h;
GLint gl_internal_format;
+ GLenum gl_target;
GLenum gl_format;
GLenum gl_type;
GLuint gl_texture;
@@ -102,11 +105,15 @@ struct video_image {
struct scaler {
int index;
const char *name;
+ double scale_factor;
float params[2];
float antiring;
+
+ bool initialized;
struct filter_kernel *kernel;
GLuint gl_lut;
- const char *lut_name;
+ GLenum gl_target;
+ struct fbotex sep_fbo;
bool insufficient;
// kernel points here
@@ -121,6 +128,13 @@ struct fbosurface {
#define FBOSURFACES_MAX 2
+struct src_tex {
+ GLuint gl_tex;
+ GLenum gl_target;
+ int tex_w, tex_h;
+ struct mp_rect src;
+};
+
struct gl_video {
GL *gl;
@@ -131,13 +145,12 @@ struct gl_video {
int depth_g;
int texture_16bit_depth; // actual bits available in 16 bit textures
+ struct gl_shader_cache *sc;
+
GLenum gl_target; // texture target (GL_TEXTURE_2D, ...) for video and FBOs
struct gl_vao vao;
- GLuint osd_programs[SUBBITMAP_COUNT];
- GLuint indirect_program, scale_sep_program, final_program, inter_program;
-
struct osd_state *osd_state;
struct mpgl_osd *osd;
double osd_pts;
@@ -146,8 +159,6 @@ struct gl_video {
bool use_lut_3d;
GLuint dither_texture;
- float dither_quantization;
- float dither_center;
int dither_size;
struct mp_image_params real_image_params; // configured format
@@ -159,7 +170,6 @@ struct gl_video {
bool is_yuv, is_rgb, is_packed_yuv;
bool has_alpha;
char color_swizzle[5];
- float chroma_fix[2];
float input_gamma, conv_gamma;
float user_gamma;
@@ -169,8 +179,9 @@ struct gl_video {
struct video_image image;
struct fbotex indirect_fbo; // RGB target
- struct fbotex scale_sep_fbo; // first pass when doing 2 pass scaling
+ struct fbotex chroma_merge_fbo;
struct fbosurface surfaces[FBOSURFACES_MAX];
+
size_t surface_idx;
// state for luma (0) and chroma (1) scalers
@@ -179,9 +190,6 @@ struct gl_video {
// true if scaler is currently upscaling
bool upscaling;
- // reinit_rendering must be called
- bool need_reinit_rendering;
-
bool is_interpolated;
struct mp_csp_equalizer video_eq;
@@ -192,8 +200,11 @@ struct gl_video {
struct mp_rect src_rect; // displayed part of the source video
struct mp_rect dst_rect; // video rectangle on output window
struct mp_osd_res osd_rect; // OSD size/margins
- int vp_x, vp_y, vp_w, vp_h; // GL viewport
- bool vp_vflipped;
+ int vp_w, vp_h;
+
+ // temporary during rendering
+ struct src_tex pass_tex[4];
+ bool use_indirect;
int frames_rendered;
@@ -203,8 +214,6 @@ struct gl_video {
struct gl_hwdec *hwdec;
bool hwdec_active;
-
- void *scratch;
};
struct fmt_entry {
@@ -323,6 +332,7 @@ const struct gl_video_opts gl_video_opts_def = {
.sigmoid_center = 0.75,
.sigmoid_slope = 6.5,
.scalers = { "bilinear", "bilinear" },
+ .dscaler = "bilinear",
.scaler_params = {{NAN, NAN}, {NAN, NAN}},
.scaler_radius = {3, 3},
.alpha_mode = 2,
@@ -431,10 +441,12 @@ const struct m_sub_options gl_video_conf = {
};
static void uninit_rendering(struct gl_video *p);
-static void delete_shaders(struct gl_video *p);
+static void uninit_scaler(struct gl_video *p, int scaler_unit);
static void check_gl_features(struct gl_video *p);
static bool init_format(int fmt, struct gl_video *init);
-static double get_scale_factor(struct gl_video *p);
+
+#define GLSL(x) gl_sc_add(p->sc, #x "\n");
+#define GLSLF(...) gl_sc_addf(p->sc, __VA_ARGS__)
static const struct fmt_entry *find_tex_format(GL *gl, int bytes_per_comp,
int n_channels)
@@ -467,977 +479,34 @@ void gl_video_set_debug(struct gl_video *p, bool enable)
gl_set_debug_logger(gl, enable ? p->log : NULL);
}
-// Draw a textured quad.
-// x0, y0, x1, y1 = destination coordinates of the quad in pixels
-// tx0, ty0, tx1, ty1 = source texture coordinates in pixels
-// tex_w, tex_h = size of the texture in pixels
-// flags = bits 0-1: rotate, bits 2: flip vertically
-static void draw_quad(struct gl_video *p,
- float x0, float y0, float x1, float y1,
- float tx0, float ty0, float tx1, float ty1,
- float tex_w, float tex_h, int flags)
-{
- if (p->gl_target != GL_TEXTURE_2D)
- tex_w = tex_h = 1.0f;
-
- if (flags & 4) {
- float tmp = ty0;
- ty0 = ty1;
- ty1 = tmp;
- }
-
- struct vertex va[4] = {
- { {x0, y0}, {tx0 / tex_w, ty0 / tex_h} },
- { {x0, y1}, {tx0 / tex_w, ty1 / tex_h} },
- { {x1, y0}, {tx1 / tex_w, ty0 / tex_h} },
- { {x1, y1}, {tx1 / tex_w, ty1 / tex_h} },
- };
-
- int rot = flags & 3;
- while (rot--) {
- static const int perm[4] = {1, 3, 0, 2};
- struct vertex vb[4];
- memcpy(vb, va, sizeof(vb));
- for (int n = 0; n < 4; n++)
- memcpy(va[n].texcoord, vb[perm[n]].texcoord, sizeof(float[2]));
- }
-
- gl_vao_draw_data(&p->vao, GL_TRIANGLE_STRIP, va, 4);
-
- debug_check_gl(p, "after rendering");
-}
-
-static void transpose3x3(float r[3][3])
-{
- MPSWAP(float, r[0][1], r[1][0]);
- MPSWAP(float, r[0][2], r[2][0]);
- MPSWAP(float, r[1][2], r[2][1]);
-}
-
-static void update_uniforms(struct gl_video *p, GLuint program)
-{
- GL *gl = p->gl;
- GLint loc;
-
- if (program == 0)
- return;
-
- gl->UseProgram(program);
-
- struct mp_csp_params cparams = MP_CSP_PARAMS_DEFAULTS;
- cparams.gray = p->is_yuv && !p->is_packed_yuv && p->plane_count == 1;
- cparams.input_bits = p->image_desc.component_bits;
- cparams.texture_bits = (cparams.input_bits + 7) & ~7;
- mp_csp_set_image_params(&cparams, &p->image_params);
- mp_csp_copy_equalizer_values(&cparams, &p->video_eq);
- if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
- cparams.colorspace = MP_CSP_XYZ;
- cparams.input_bits = 8;
- cparams.texture_bits = 8;
- }
-
- loc = gl->GetUniformLocation(program, "transform");
- if (loc >= 0 && p->vp_w > 0 && p->vp_h > 0) {
- float matrix[3][3];
- int vvp[2] = {p->vp_h, 0};
- if (p->vp_vflipped)
- MPSWAP(int, vvp[0], vvp[1]);
- gl_matrix_ortho2d(matrix, 0, p->vp_w, vvp[0], vvp[1]);
- gl->UniformMatrix3fv(loc, 1, GL_FALSE, &matrix[0][0]);
- }
-
- loc = gl->GetUniformLocation(program, "colormatrix");
- if (loc >= 0) {
- struct mp_cmat m = {{{0}}};
- if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
- // Hard-coded as relative colorimetric for now, since this transforms
- // from the source file's D55 material to whatever color space our
- // projector/display lives in, which should be D55 for a proper
- // home cinema setup either way.
- mp_get_xyz2rgb_coeffs(&cparams, p->csp_src,
- MP_INTENT_RELATIVE_COLORIMETRIC, &m);
- } else {
- mp_get_yuv2rgb_coeffs(&cparams, &m);
- }
- transpose3x3(m.m); // GLES2 can not transpose in glUniformMatrix3fv
- gl->UniformMatrix3fv(loc, 1, GL_FALSE, &m.m[0][0]);
- loc = gl->GetUniformLocation(program, "colormatrix_c");
- gl->Uniform3f(loc, m.c[0], m.c[1], m.c[2]);
- }
-
- gl->Uniform1f(gl->GetUniformLocation(program, "input_gamma"),
- p->input_gamma);
-
- gl->Uniform1f(gl->GetUniformLocation(program, "conv_gamma"),
- p->conv_gamma);
-
- // Coefficients for the sigmoidal transform are taken from the
- // formula here: http://www.imagemagick.org/Usage/color_mods/#sigmoidal
- float sig_center = p->opts.sigmoid_center;
- float sig_slope = p->opts.sigmoid_slope;
-
- // This function needs to go through (0,0) and (1,1) so we compute the
- // values at 1 and 0, and then scale/shift them, respectively.
- float sig_offset = 1.0/(1+expf(sig_slope * sig_center));
- float sig_scale = 1.0/(1+expf(sig_slope * (sig_center-1))) - sig_offset;
-
- gl->Uniform1f(gl->GetUniformLocation(program, "sig_center"), sig_center);
- gl->Uniform1f(gl->GetUniformLocation(program, "sig_slope"), sig_slope);
- gl->Uniform1f(gl->GetUniformLocation(program, "sig_scale"), sig_scale);
- gl->Uniform1f(gl->GetUniformLocation(program, "sig_offset"), sig_offset);
-
- gl->Uniform1f(gl->GetUniformLocation(program, "inv_gamma"),
- 1.0f / p->user_gamma);
-
- for (int n = 0; n < p->plane_count; n++) {
- char textures_n[32];
- char textures_size_n[32];
- snprintf(textures_n, sizeof(textures_n), "texture%d", n);
- snprintf(textures_size_n, sizeof(textures_size_n), "textures_size[%d]", n);
-
- gl->Uniform1i(gl->GetUniformLocation(program, textures_n), n);
- if (p->gl_target == GL_TEXTURE_2D) {
- gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n),
- p->image.planes[n].tex_w, p->image.planes[n].tex_h);
- } else {
- // Makes the pixel size calculation code think they are 1x1
- gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n), 1, 1);
- }
- }
-
- loc = gl->GetUniformLocation(program, "chroma_div");
- if (loc >= 0) {
- int xs = p->image_desc.chroma_xs;
- int ys = p->image_desc.chroma_ys;
- gl->Uniform2f(loc, 1.0 / (1 << xs), 1.0 / (1 << ys));
- }
-
- gl->Uniform2f(gl->GetUniformLocation(program, "chroma_fix"),
- p->chroma_fix[0], p->chroma_fix[1]);
-
- loc = gl->GetUniformLocation(program, "chroma_center_offset");
- if (loc >= 0) {
- int chr = p->opts.chroma_location;
- if (!chr)
- chr = p->image_params.chroma_location;
- int cx, cy;
- mp_get_chroma_location(chr, &cx, &cy);
- // By default texture coordinates are such that chroma is centered with
- // any chroma subsampling. If a specific direction is given, make it
- // so that the luma and chroma sample line up exactly.
- // For 4:4:4, setting chroma location should have no effect at all.
- // luma sample size (in chroma coord. space)
- float ls_w = 1.0 / (1 << p->image_desc.chroma_xs);
- float ls_h = 1.0 / (1 << p->image_desc.chroma_ys);
- // move chroma center to luma center (in chroma coord. space)
- float o_x = ls_w < 1 ? ls_w * -cx / 2 : 0;
- float o_y = ls_h < 1 ? ls_h * -cy / 2 : 0;
- int c = p->gl_target == GL_TEXTURE_2D ? 1 : 0;
- gl->Uniform2f(loc, o_x / FFMAX(p->image.planes[1].w * c, 1),
- o_y / FFMAX(p->image.planes[1].h * c, 1));
- }
-
- gl->Uniform2f(gl->GetUniformLocation(program, "dither_size"),
- p->dither_size, p->dither_size);
-
- gl->Uniform1i(gl->GetUniformLocation(program, "lut_3d"), TEXUNIT_3DLUT);
-
- loc = gl->GetUniformLocation(program, "cms_matrix");
- if (loc >= 0) {
- float cms_matrix[3][3] = {{0}};
- // Hard-coded to relative colorimetric - for a BT.2020 3DLUT we expect
- // the input to be actual BT.2020 and not something red- or blueshifted,
- // and for sRGB monitors we most likely want relative scaling either way.
- mp_get_cms_matrix(p->csp_src, p->csp_dest, MP_INTENT_RELATIVE_COLORIMETRIC, cms_matrix);
- gl->UniformMatrix3fv(loc, 1, GL_TRUE, &cms_matrix[0][0]);
- }
-
- for (int n = 0; n < 2; n++) {
- const char *lut = p->scalers[n].lut_name;
- if (lut)
- gl->Uniform1i(gl->GetUniformLocation(program, lut),
- TEXUNIT_SCALERS + n);
- }
-
- gl->Uniform1i(gl->GetUniformLocation(program, "dither"), TEXUNIT_DITHER);
- gl->Uniform1f(gl->GetUniformLocation(program, "dither_quantization"),
- p->dither_quantization);
- gl->Uniform1f(gl->GetUniformLocation(program, "dither_center"),
- p->dither_center);
-
- float sparam1_l = p->opts.scaler_params[0][0];
- float sparam1_c = p->opts.scaler_params[1][0];
- gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1_l"),
- isnan(sparam1_l) ? 0.5f : sparam1_l);
- gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1_c"),
- isnan(sparam1_c) ? 0.5f : sparam1_c);
-
- gl->Uniform3f(gl->GetUniformLocation(program, "translation"), 0, 0, 0);
-
- gl->UseProgram(0);
-
- debug_check_gl(p, "update_uniforms()");
-}
-
-static void update_all_uniforms(struct gl_video *p)
-{
- for (int n = 0; n < SUBBITMAP_COUNT; n++)
- update_uniforms(p, p->osd->programs[n]);
- update_uniforms(p, p->indirect_program);
- update_uniforms(p, p->scale_sep_program);
- update_uniforms(p, p->final_program);
- update_uniforms(p, p->inter_program);
-}
-
-#define SECTION_HEADER "#!section "
-
-static char *get_section(void *talloc_ctx, struct bstr source,
- const char *section)
-{
- char *res = talloc_strdup(talloc_ctx, "");
- bool copy = false;
- while (source.len) {
- struct bstr line = bstr_strip_linebreaks(bstr_getline(source, &source));
- if (bstr_eatstart(&line, bstr0(SECTION_HEADER))) {
- copy = bstrcmp0(line, section) == 0;
- } else if (copy) {
- res = talloc_asprintf_append_buffer(res, "%.*s\n", BSTR_P(line));
- }
- }
- return res;
-}
-
-static char *t_concat(void *talloc_ctx, const char *s1, const char *s2)
-{
- return talloc_asprintf(talloc_ctx, "%s%s", s1, s2);
-}
-
-static GLuint create_shader(struct gl_video *p, GLenum type, const char *header,
- const char *source)
-{
- GL *gl = p->gl;
-
- void *tmp = talloc_new(NULL);
- const char *full_source = t_concat(tmp, header, source);
-
- GLuint shader = gl->CreateShader(type);
- gl->ShaderSource(shader, 1, &full_source, NULL);
- gl->CompileShader(shader);
- GLint status;
- gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status);
- GLint log_length;
- gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length);
-
- int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
- const char *typestr = type == GL_VERTEX_SHADER ? "vertex" : "fragment";
- if (mp_msg_test(p->log, pri)) {
- MP_MSG(p, pri, "%s shader source:\n", typestr);
- mp_log_source(p->log, pri, full_source);
- }
- if (log_length > 1) {
- GLchar *logstr = talloc_zero_size(tmp, log_length + 1);
- gl->GetShaderInfoLog(shader, log_length, NULL, logstr);
- MP_MSG(p, pri, "%s shader compile log (status=%d):\n%s\n",
- typestr, status, logstr);
- }
-
- talloc_free(tmp);
-
- return shader;
-}
-
-static void prog_create_shader(struct gl_video *p, GLuint program, GLenum type,
- const char *header, const char *source)
-{
- GL *gl = p->gl;
- GLuint shader = create_shader(p, type, header, source);
- gl->AttachShader(program, shader);
- gl->DeleteShader(shader);
-}
-
-static void link_shader(struct gl_video *p, GLuint program)
-{
- GL *gl = p->gl;
- gl->LinkProgram(program);
- GLint status;
- gl->GetProgramiv(program, GL_LINK_STATUS, &status);
- GLint log_length;
- gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length);
-
- int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR;
- if (mp_msg_test(p->log, pri)) {
- GLchar *logstr = talloc_zero_size(NULL, log_length + 1);
- gl->GetProgramInfoLog(program, log_length, NULL, logstr);
- MP_MSG(p, pri, "shader link log (status=%d): %s\n", status, logstr);
- talloc_free(logstr);
- }
-}
-
-#define PRELUDE_END "// -- prelude end\n"
-
-static GLuint create_program(struct gl_video *p, const char *name,
- const char *header, const char *vertex,
- const char *frag, struct gl_vao *vao)
-{
- GL *gl = p->gl;
- MP_VERBOSE(p, "compiling shader program '%s', header:\n", name);
- const char *real_header = strstr(header, PRELUDE_END);
- real_header = real_header ? real_header + strlen(PRELUDE_END) : header;
- mp_log_source(p->log, MSGL_V, real_header);
- GLuint prog = gl->CreateProgram();
- prog_create_shader(p, prog, GL_VERTEX_SHADER, header, vertex);
- prog_create_shader(p, prog, GL_FRAGMENT_SHADER, header, frag);
- gl_vao_bind_attribs(vao, prog);
- link_shader(p, prog);
- return prog;
-}
-
-static void shader_def(char **shader, const char *name,
- const char *value)
-{
- *shader = talloc_asprintf_append(*shader, "#define %s %s\n", name, value);
-}
-
-static void shader_def_opt(char **shader, const char *name, bool b)
-{
- if (b)
- shader_def(shader, name, "1");
-}
-
-#define APPENDF(s_ptr, ...) \
- *(s_ptr) = talloc_asprintf_append(*(s_ptr), __VA_ARGS__)
-
-static void shader_setup_scaler(char **shader, struct scaler *scaler, int pass)
-{
- int unit = scaler->index;
- const char *target = unit == 0 ? "SAMPLE" : "SAMPLE_C";
- if (!scaler->kernel) {
- APPENDF(shader, "#define %s(p0, p1, p2) "
- "sample_%s(p0, p1, p2, filter_param1_%c)\n",
- target, scaler->name, "lc"[unit]);
- } else {
- int size = scaler->kernel->size;
- const char *lut_tex = scaler->lut_name;
- char name[40];
- snprintf(name, sizeof(name), "sample_scaler%d", unit);
- APPENDF(shader, "#define DEF_SCALER%d \\\n ", unit);
- char lut_fn[40];
- if (scaler->kernel->polar) {
- double radius = scaler->kernel->radius;
- int bound = (int)ceil(radius);
- // SAMPLE_CONVOLUTION_POLAR_R(NAME, R, LUT, WEIGHTS_FN, ANTIRING)
- APPENDF(shader, "SAMPLE_CONVOLUTION_POLAR_R(%s, %f, %s, WEIGHTS%d, %f)\n",
- name, radius, lut_tex, unit, scaler->antiring);
-
- // Pre-compute unrolled weights matrix
- APPENDF(shader, "#define WEIGHTS%d(LUT) \\\n ", unit);
- for (int y = 1-bound; y <= bound; y++) {
- for (int x = 1-bound; x <= bound; x++) {
- // Since we can't know the subpixel position in advance,
- // assume a worst case scenario.
- int yy = y > 0 ? y-1 : y;
- int xx = x > 0 ? x-1 : x;
- double d = sqrt(xx*xx + yy*yy);
-
- if (d < radius - 1) {
- // Samples definitely inside the main ring
- APPENDF(shader, "SAMPLE_POLAR_%s(LUT, %f, %d, %d) \\\n ",
- // The center 4 coefficients are the primary
- // contributors, used to clamp the result for
- // anti-ringing
- (x >= 0 && y >= 0 && x <= 1 && y <= 1)
- ? "PRIMARY" : "HELPER",
- radius, x, y);
- } else if (d < radius) {
- // Samples on the edge, these are potential values
- APPENDF(shader, "SAMPLE_POLAR_POTENTIAL(LUT, %f, %d, %d) \\\n ",
- radius, x, y);
- }
- }
- }
- APPENDF(shader, "\n");
- } else {
- if (size == 2 || size == 6) {
- snprintf(lut_fn, sizeof(lut_fn), "weights%d", size);
- } else {
- snprintf(lut_fn, sizeof(lut_fn), "weights_scaler%d", unit);
- APPENDF(shader, "WEIGHTS_N(%s, %d) \\\n ", lut_fn, size);
- }
- if (pass != -1) {
- // The direction/pass assignment is rather arbitrary, but fixed in
- // other parts of the code (like FBO setup).
- const char *direction = pass == 0 ? "0, 1" : "1, 0";
- // SAMPLE_CONVOLUTION_SEP_N(NAME, DIR, N, LUT, WEIGHTS_FUNC, ANTIRING)
- APPENDF(shader, "SAMPLE_CONVOLUTION_SEP_N(%s, vec2(%s), %d, %s, %s, %f)\n",
- name, direction, size, lut_tex, lut_fn, scaler->antiring);
- } else {
- // SAMPLE_CONVOLUTION_N(NAME, N, LUT, WEIGHTS_FUNC)
- APPENDF(shader, "SAMPLE_CONVOLUTION_N(%s, %d, %s, %s)\n",
- name, size, lut_tex, lut_fn);
- }
- }
- APPENDF(shader, "#define %s %s\n", target, name);
- }
-}
-
-static void compile_shaders(struct gl_video *p)
-{
- GL *gl = p->gl;
-
- debug_check_gl(p, "before shaders");
-
- delete_shaders(p);
-
- void *tmp = talloc_new(NULL);
-
- struct bstr src = bstr0(vo_opengl_shaders);
- char *vertex_shader = get_section(tmp, src, "vertex_all");
- char *shader_prelude = get_section(tmp, src, "prelude");
- char *s_video = get_section(tmp, src, "frag_video");
-
- bool rg = gl->mpgl_caps & MPGL_CAP_TEX_RG;
- bool tex1d = gl->mpgl_caps & MPGL_CAP_1D_TEX;
- bool tex3d = gl->mpgl_caps & MPGL_CAP_3D_TEX;
- bool arrays = gl->mpgl_caps & MPGL_CAP_1ST_CLASS_ARRAYS;
- char *header =
- talloc_asprintf(tmp, "#version %d%s\n"
- "#define HAVE_RG %d\n"
- "#define HAVE_1DTEX %d\n"
- "#define HAVE_3DTEX %d\n"
- "#define HAVE_ARRAYS %d\n"
- "%s%s",
- gl->glsl_version, gl->es >= 300 ? " es" : "",
- rg, tex1d, tex3d, arrays, shader_prelude, PRELUDE_END);
-
- bool use_cms = p->opts.srgb || p->use_lut_3d;
- // 3DLUT overrides sRGB
- bool use_srgb = p->opts.srgb && !p->use_lut_3d;
-
- float input_gamma = 1.0;
- float conv_gamma = 1.0;
-
- bool is_xyz = p->image_desc.flags & MP_IMGFLAG_XYZ;
- if (is_xyz) {
- input_gamma *= 2.6;
- // Note that this results in linear light, so we make sure to enable
- // use_linear_light for XYZ inputs as well.
- }
-
- p->input_gamma = input_gamma;
- p->conv_gamma = conv_gamma;
-
- bool use_input_gamma = p->input_gamma != 1.0;
- bool use_conv_gamma = p->conv_gamma != 1.0;
- bool use_const_luma = p->image_params.colorspace == MP_CSP_BT_2020_C;
- enum mp_csp_trc gamma_fun = p->image_params.gamma;
-
- // If either color correction option (3dlut or srgb) is enabled, or if
- // sigmoidal upscaling is requested, or if the source is linear XYZ, we
- // always scale in linear light
- bool use_linear_light = p->opts.linear_scaling || p->opts.sigmoid_upscaling
- || use_cms || is_xyz;
-
- // The inverse of the above transformation is normally handled by
- // the CMS cases, but if CMS is disabled we need to go back manually
- bool use_inv_bt1886 = false;
- if (use_linear_light && !use_cms) {
- if (gamma_fun == MP_CSP_TRC_SRGB) {
- use_srgb = true;
- } else {
- use_inv_bt1886 = true;
- }
- }
-
- // Optionally transform to sigmoidal color space if requested.
- p->sigmoid_enabled = p->opts.sigmoid_upscaling;
- bool use_sigmoid = p->sigmoid_enabled && p->upscaling;
-
- // Figure out the right color spaces we need to convert, if any
- enum mp_csp_prim prim_src = p->image_params.primaries, prim_dest;
- if (use_cms) {
- // sRGB mode wants sRGB aka BT.709 primaries, but the 3DLUT is
- // always built against BT.2020.
- prim_dest = p->opts.srgb ? MP_CSP_PRIM_BT_709 : MP_CSP_PRIM_BT_2020;
- } else {
- // If no CMS is being done we just want to output stuff as-is,
- // in the native colorspace of the source.
- prim_dest = prim_src;
- }
-
- // XYZ input has no defined input color space, so we can directly convert
- // it to whatever output space we actually need.
- if (p->image_desc.flags & MP_IMGFLAG_XYZ)
- prim_src = prim_dest;
-
- // Set the colorspace primaries and figure out whether we need to perform
- // an extra conversion.
- p->csp_src = mp_get_csp_primaries(prim_src);
- p->csp_dest = mp_get_csp_primaries(prim_dest);
-
- bool use_cms_matrix = prim_src != prim_dest;
-
- if (p->gl_target == GL_TEXTURE_RECTANGLE) {
- shader_def(&header, "VIDEO_SAMPLER", "sampler2DRect");
- shader_def_opt(&header, "USE_RECTANGLE", true);
- } else {
- shader_def(&header, "VIDEO_SAMPLER", "sampler2D");
- }
-
- // Need to pass alpha through the whole chain. (Not needed for OSD shaders.)
- if (p->opts.alpha_mode == 1)
- shader_def_opt(&header, "USE_ALPHA", p->has_alpha);
-
- char *header_osd = talloc_strdup(tmp, header);
- shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_BT1886",
- use_cms && gamma_fun == MP_CSP_TRC_BT_1886);
- shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_SRGB",
- use_cms && gamma_fun == MP_CSP_TRC_SRGB);
- shader_def_opt(&header_osd, "USE_OSD_CMS_MATRIX", use_cms_matrix);
- shader_def_opt(&header_osd, "USE_OSD_3DLUT", p->use_lut_3d);
- shader_def_opt(&header_osd, "USE_OSD_SRGB", use_cms && use_srgb);
-
- for (int n = 0; n < SUBBITMAP_COUNT; n++) {
- const char *name = osd_shaders[n];
- if (name) {
- char *s_osd = get_section(tmp, src, name);
- p->osd_programs[n] = create_program(p, name, header_osd,
- vertex_shader, s_osd,
- &p->osd->vao);
- }
- }
-
- struct gl_vao *v = &p->vao; // VAO to use to draw primitives
-
- char *header_conv = talloc_strdup(tmp, "");
- char *header_final = talloc_strdup(tmp, "");
- char *header_inter = talloc_strdup(tmp, "");
- char *header_sep = NULL;
-
- if (p->image_desc.id == IMGFMT_NV12 || p->image_desc.id == IMGFMT_NV21) {
- shader_def(&header_conv, "USE_CONV", "CONV_NV12");
- } else if (p->plane_count > 1) {
- shader_def(&header_conv, "USE_CONV", "CONV_PLANAR");
- }
-
- if (p->color_swizzle[0])
- shader_def(&header_conv, "USE_COLOR_SWIZZLE", p->color_swizzle);
- shader_def_opt(&header_conv, "USE_INPUT_GAMMA", use_input_gamma);
- shader_def_opt(&header_conv, "USE_COLORMATRIX", !p->is_rgb);
- shader_def_opt(&header_conv, "USE_CONV_GAMMA", use_conv_gamma);
- shader_def_opt(&header_conv, "USE_CONST_LUMA", use_const_luma);
- shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_BT1886",
- use_linear_light && gamma_fun == MP_CSP_TRC_BT_1886);
- shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_SRGB",
- use_linear_light && gamma_fun == MP_CSP_TRC_SRGB);
- shader_def_opt(&header_conv, "USE_SIGMOID", use_sigmoid);
- if (p->opts.alpha_mode > 0 && p->has_alpha && p->plane_count > 3)
- shader_def(&header_conv, "USE_ALPHA_PLANE", "3");
- if (p->opts.alpha_mode == 2 && p->has_alpha)
- shader_def(&header_conv, "USE_ALPHA_BLEND", "1");
- shader_def_opt(&header_conv, "USE_CHROMA_FIX",
- p->chroma_fix[0] != 1.0f || p->chroma_fix[1] != 1.0f);
-
- shader_def_opt(&header_final, "USE_SIGMOID_INV", use_sigmoid);
- shader_def_opt(&header_final, "USE_INV_GAMMA", p->user_gamma_enabled);
- shader_def_opt(&header_final, "USE_CMS_MATRIX", use_cms_matrix);
- shader_def_opt(&header_final, "USE_3DLUT", p->use_lut_3d);
- shader_def_opt(&header_final, "USE_SRGB", use_srgb);
- shader_def_opt(&header_final, "USE_INV_BT1886", use_inv_bt1886);
- shader_def_opt(&header_final, "USE_DITHER", p->dither_texture != 0);
- shader_def_opt(&header_final, "USE_TEMPORAL_DITHER", p->opts.temporal_dither);
-
- if (p->scalers[0].kernel && !p->scalers[0].kernel->polar) {
- header_sep = talloc_strdup(tmp, "");
- shader_def_opt(&header_sep, "FIXED_SCALE", true);
- shader_setup_scaler(&header_sep, &p->scalers[0], 0);
- shader_setup_scaler(&header_inter, &p->scalers[0], 1);
- } else {
- shader_setup_scaler(&header_inter, &p->scalers[0], -1);
- }
-
- bool use_interpolation = p->opts.smoothmotion;
-
- if (use_interpolation) {
- shader_def_opt(&header_inter, "FIXED_SCALE", true);
- shader_def_opt(&header_final, "USE_LINEAR_INTERPOLATION", 1);
- }
-
- // The indirect pass is used to preprocess the image before scaling.
- bool use_indirect = false;
-
- // Don't sample from input video textures before converting the input to
- // its proper gamma.
- if (use_input_gamma || use_conv_gamma || use_linear_light || use_const_luma)
- use_indirect = true;
-
- // Trivial scalers are implemented directly and efficiently by the GPU.
- // This only includes bilinear and nearest neighbour in OpenGL, but we
- // don't support nearest neighbour upsampling.
- bool trivial_scaling = strcmp(p->scalers[0].name, "bilinear") == 0 &&
- strcmp(p->scalers[1].name, "bilinear") == 0;
-
- // If the video is subsampled, chroma information needs to be pulled up to
- // the input size before scaling can be done. Even for 4:4:4 or planar RGB
- // this is also faster because it means the scalers can operate on all
- // channels simultaneously. This is unnecessary for trivial scaling.
- if (p->plane_count > 1 && !trivial_scaling)
- use_indirect = true;
-
- if (p->image_desc.flags & MP_IMGFLAG_SUBSAMPLED) {
- shader_setup_scaler(&header_conv, &p->scalers[1], -1);
- } else {
- // Force using the normal scaler on chroma. If the "indirect" stage is
- // used, the actual scaling will happen in the next stage.
- shader_def(&header_conv, "SAMPLE_C",
- use_indirect ? "SAMPLE_TRIVIAL" : "SAMPLE");
- }
-
- if (use_indirect) {
- // We don't use filtering for the Y-plane (luma), because it's never
- // scaled in this scenario.
- shader_def(&header_conv, "SAMPLE", "SAMPLE_TRIVIAL");
- shader_def_opt(&header_conv, "FIXED_SCALE", true);
- header_conv = t_concat(tmp, header, header_conv);
- p->indirect_program =
- create_program(p, "indirect", header_conv, vertex_shader, s_video, v);
- } else if (header_sep) {
- header_sep = t_concat(tmp, header_sep, header_conv);
- } else {
- header_inter = t_concat(tmp, header_inter, header_conv);
- }
-
- if (header_sep) {
- header_sep = t_concat(tmp, header, header_sep);
- p->scale_sep_program =
- create_program(p, "scale_sep", header_sep, vertex_shader, s_video, v);
- }
-
- if (use_interpolation) {
- header_inter = t_concat(tmp, header, header_inter);
- p->inter_program =
- create_program(p, "inter", header_inter, vertex_shader, s_video, v);
- } else {
- header_final = t_concat(tmp, header_final, header_inter);
- }
-
- header_final = t_concat(tmp, header, header_final);
- p->final_program =
- create_program(p, "final", header_final, vertex_shader, s_video, v);
-
- debug_check_gl(p, "shader compilation");
-
- talloc_free(tmp);
-}
-
-static void delete_program(GL *gl, GLuint *prog)
-{
- gl->DeleteProgram(*prog);
- *prog = 0;
-}
-
-static void delete_shaders(struct gl_video *p)
-{
- GL *gl = p->gl;
-
- for (int n = 0; n < SUBBITMAP_COUNT; n++)
- delete_program(gl, &p->osd->programs[n]);
- delete_program(gl, &p->indirect_program);
- delete_program(gl, &p->scale_sep_program);
- delete_program(gl, &p->final_program);
- delete_program(gl, &p->inter_program);
-}
-
-static void get_scale_factors(struct gl_video *p, double xy[2])
-{
- xy[0] = (p->dst_rect.x1 - p->dst_rect.x0) /
- (double)(p->src_rect.x1 - p->src_rect.x0);
- xy[1] = (p->dst_rect.y1 - p->dst_rect.y0) /
- (double)(p->src_rect.y1 - p->src_rect.y0);
-}
-
-static double get_scale_factor(struct gl_video *p)
-{
- double xy[2];
- get_scale_factors(p, xy);
- return FFMIN(xy[0], xy[1]);
-}
-
-static void update_scale_factor(struct gl_video *p, struct scaler *scaler)
-{
- double scale = 1.0;
- double xy[2];
- get_scale_factors(p, xy);
- double f = MPMIN(xy[0], xy[1]);
- if (p->opts.fancy_downscaling && scaler->index == 0 && f < 1.0 &&
- fabs(xy[0] - f) < 0.01 && fabs(xy[1] - f) < 0.01)
- {
- MP_VERBOSE(p, "Using fancy-downscaling (scaler %d).\n", scaler->index);
- scale = FFMAX(1.0, 1.0 / f);
- }
- scaler->insufficient = !mp_init_filter(scaler->kernel, filter_sizes, scale);
-}
-
-static void init_scaler(struct gl_video *p, struct scaler *scaler)
-{
- GL *gl = p->gl;
-
- assert(scaler->name);
-
- scaler->kernel = NULL;
- scaler->insufficient = false;
-
- const struct filter_kernel *t_kernel = mp_find_filter_kernel(scaler->name);
- if (!t_kernel)
- return;
-
- scaler->kernel_storage = *t_kernel;
- scaler->kernel = &scaler->kernel_storage;
-
- for (int n = 0; n < 2; n++) {
- if (!isnan(p->opts.scaler_params[scaler->index][n]))
- scaler->kernel->params[n] = p->opts.scaler_params[scaler->index][n];
- }
-
- scaler->antiring = p->opts.scaler_antiring[scaler->index];
-
- if (scaler->kernel->radius < 0)
- scaler->kernel->radius = p->opts.scaler_radius[scaler->index];
-
- update_scale_factor(p, scaler);
-
- int size = scaler->kernel->size;
- int elems_per_pixel = 4;
- if (size == 1) {
- elems_per_pixel = 1;
- } else if (size == 2) {
- elems_per_pixel = 2;
- } else if (size == 6) {
- elems_per_pixel = 3;
- }
- int width = size / elems_per_pixel;
- assert(size == width * elems_per_pixel);
- const struct fmt_entry *fmt = &gl_float16_formats[elems_per_pixel - 1];
- int target;
-
- if (scaler->kernel->polar) {
- target = GL_TEXTURE_1D;
- scaler->lut_name = scaler->index == 0 ? "lut_1d_l" : "lut_1d_c";
- } else {
- target = GL_TEXTURE_2D;
- scaler->lut_name = scaler->index == 0 ? "lut_2d_l" : "lut_2d_c";
- }
-
- gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_SCALERS + scaler->index);
-
- if (!scaler->gl_lut)
- gl->GenTextures(1, &scaler->gl_lut);
-
- gl->BindTexture(target, scaler->gl_lut);
-
- float *weights = talloc_array(NULL, float, LOOKUP_TEXTURE_SIZE * size);
- mp_compute_lut(scaler->kernel, LOOKUP_TEXTURE_SIZE, weights);
-
- if (target == GL_TEXTURE_1D) {
- gl->TexImage1D(target, 0, fmt->internal_format, LOOKUP_TEXTURE_SIZE,
- 0, fmt->format, GL_FLOAT, weights);
- } else {
- gl->TexImage2D(target, 0, fmt->internal_format, width, LOOKUP_TEXTURE_SIZE,
- 0, fmt->format, GL_FLOAT, weights);
- }
-
- talloc_free(weights);
-
- gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
- gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
- gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
- if (target != GL_TEXTURE_1D)
- gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
-
- gl->ActiveTexture(GL_TEXTURE0);
-
- debug_check_gl(p, "after initializing scaler");
-}
-
-static void init_dither(struct gl_video *p)
-{
- GL *gl = p->gl;
-
- // Assume 8 bits per component if unknown.
- int dst_depth = p->depth_g ? p->depth_g : 8;
- if (p->opts.dither_depth > 0)
- dst_depth = p->opts.dither_depth;
-
- if (p->opts.dither_depth < 0 || p->opts.dither_algo < 0)
- return;
-
- MP_VERBOSE(p, "Dither to %d.\n", dst_depth);
-
- int tex_size;
- void *tex_data;
- GLint tex_iformat;
- GLint tex_format;
- GLenum tex_type;
- unsigned char temp[256];
-
- if (p->opts.dither_algo == 0) {
- int sizeb = p->opts.dither_size;
- int size = 1 << sizeb;
-
- if (p->last_dither_matrix_size != size) {
- p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix,
- float, size * size);
- mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb);
- p->last_dither_matrix_size = size;
- }
-
- tex_size = size;
- tex_iformat = gl_float16_formats[0].internal_format;
- tex_format = gl_float16_formats[0].format;
- tex_type = GL_FLOAT;
- tex_data = p->last_dither_matrix;
- } else {
- assert(sizeof(temp) >= 8 * 8);
- mp_make_ordered_dither_matrix(temp, 8);
-
- const struct fmt_entry *fmt = find_tex_format(gl, 1, 1);
- tex_size = 8;
- tex_iformat = fmt->internal_format;
- tex_format = fmt->format;
- tex_type = fmt->type;
- tex_data = temp;
- }
-
- // This defines how many bits are considered significant for output on
- // screen. The superfluous bits will be used for rounding according to the
- // dither matrix. The precision of the source implicitly decides how many
- // dither patterns can be visible.
- p->dither_quantization = (1 << dst_depth) - 1;
- p->dither_center = 0.5 / (tex_size * tex_size);
- p->dither_size = tex_size;
-
- gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_DITHER);
- gl->GenTextures(1, &p->dither_texture);
- gl->BindTexture(GL_TEXTURE_2D, p->dither_texture);
- gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1);
- gl->TexImage2D(GL_TEXTURE_2D, 0, tex_iformat, tex_size, tex_size, 0,
- tex_format, tex_type, tex_data);
- gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
- gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
- gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
- gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
- gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
- gl->ActiveTexture(GL_TEXTURE0);
-
- debug_check_gl(p, "dither setup");
-}
-
static void recreate_osd(struct gl_video *p)
{
if (p->osd)
mpgl_osd_destroy(p->osd);
- p->osd = mpgl_osd_init(p->gl, p->log, p->osd_state, p->osd_programs);
- p->osd->use_pbo = p->opts.pbo;
-}
-
-static bool does_resize(struct mp_rect src, struct mp_rect dst)
-{
- return src.x1 - src.x0 != dst.x1 - dst.x0 ||
- src.y1 - src.y0 != dst.y1 - dst.y0;
-}
-
-static const char *expected_scaler(struct gl_video *p, int unit)
-{
- if (p->opts.scaler_resizes_only && unit == 0 &&
- !does_resize(p->src_rect, p->dst_rect))
- {
- return "bilinear";
- }
- if (unit == 0 && p->opts.dscaler && get_scale_factor(p) < 1.0)
- return p->opts.dscaler;
- return p->opts.scalers[unit];
-}
-
-static void update_settings(struct gl_video *p)
-{
- struct mp_csp_params params;
- mp_csp_copy_equalizer_values(&params, &p->video_eq);
-
- p->user_gamma = params.gamma * p->opts.gamma;
-
- // Lazy gamma shader initialization (a microoptimization)
- if (p->user_gamma != 1.0f && !p->user_gamma_enabled) {
- p->user_gamma_enabled = true;
- p->need_reinit_rendering = true;
- }
+ p->osd = mpgl_osd_init(p->gl, p->log, p->osd_state);
+ mpgl_osd_set_options(p->osd, p->opts.pbo);
}
static void reinit_rendering(struct gl_video *p)
{
- GL *gl = p->gl;
-
MP_VERBOSE(p, "Reinit rendering.\n");
debug_check_gl(p, "before scaler initialization");
uninit_rendering(p);
- if (!p->image_params.imgfmt)
- return;
-
- update_settings(p);
-
- for (int n = 0; n < 2; n++)
- p->scalers[n].name = expected_scaler(p, n);
-
- init_dither(p);
-
- init_scaler(p, &p->scalers[0]);
- init_scaler(p, &p->scalers[1]);
-
- compile_shaders(p);
- update_all_uniforms(p);
-
- int w = p->image_w;
- int h = p->image_h;
-
- // Convolution filters don't need linear sampling, so using nearest is
- // often faster.
- GLenum filter = p->scalers[0].kernel ? GL_NEAREST : GL_LINEAR;
-
- if (p->indirect_program) {
- fbotex_init(&p->indirect_fbo, gl, p->log, w, h, p->gl_target, filter,
- p->opts.fbo_format);
- }
-
recreate_osd(p);
-
- p->need_reinit_rendering = false;
}
static void uninit_rendering(struct gl_video *p)
{
GL *gl = p->gl;
- delete_shaders(p);
-
- for (int n = 0; n < 2; n++) {
- gl->DeleteTextures(1, &p->scalers[n].gl_lut);
- p->scalers[n].gl_lut = 0;
- p->scalers[n].lut_name = NULL;
- p->scalers[n].kernel = NULL;
- }
+ for (int n = 0; n < 2; n++)
+ uninit_scaler(p, n);
gl->DeleteTextures(1, &p->dither_texture);
p->dither_texture = 0;
-
- fbotex_uninit(&p->indirect_fbo);
-
- for (int i = 0; i < FBOSURFACES_MAX; i++) {
- fbotex_uninit(&p->surfaces[i].fbotex);
- p->surfaces[i].valid = false;
- }
-
- fbotex_uninit(&p->scale_sep_fbo);
}
void gl_video_set_lut3d(struct gl_video *p, struct lut3d *lut3d)
@@ -1477,16 +546,31 @@ void gl_video_set_lut3d(struct gl_video *p, struct lut3d *lut3d)
reinit_rendering(p);
}
-static void set_image_textures(struct gl_video *p, struct video_image *vimg,
- GLuint imgtex[4])
+static void pass_set_image_textures(struct gl_video *p, struct video_image *vimg)
{
- GL *gl = p->gl;
- GLuint dummy[4] = {0};
- if (!imgtex)
- imgtex = dummy;
+ GLuint imgtex[4] = {0};
assert(vimg->mpi);
+ float offset[2] = {0};
+ int chroma_loc = p->opts.chroma_location;
+ if (!chroma_loc)
+ chroma_loc = p->image_params.chroma_location;
+ if (chroma_loc != MP_CHROMA_CENTER) {
+ int cx, cy;
+ mp_get_chroma_location(chroma_loc, &cx, &cy);
+ // By default texture coordinates are such that chroma is centered with
+ // any chroma subsampling. If a specific direction is given, make it
+ // so that the luma and chroma sample line up exactly.
+ // For 4:4:4, setting chroma location should have no effect at all.
+ // luma sample size (in chroma coord. space)
+ float ls_w = 1.0 / (1 << p->image_desc.chroma_xs);
+ float ls_h = 1.0 / (1 << p->image_desc.chroma_ys);
+ // move chroma center to luma center (in chroma coord. space)
+ offset[0] = ls_w < 1 ? ls_w * -cx / 2 : 0;
+ offset[1] = ls_h < 1 ? ls_h * -cy / 2 : 0;
+ }
+
if (p->hwdec_active) {
p->hwdec->driver->map_image(p->hwdec, vimg->mpi, imgtex);
} else {
@@ -1495,24 +579,25 @@ static void set_image_textures(struct gl_video *p, struct video_image *vimg,
}
for (int n = 0; n < 4; n++) {
- gl->ActiveTexture(GL_TEXTURE0 + n);
- gl->BindTexture(p->gl_target, imgtex[n]);
+ struct texplane *t = &vimg->planes[n];
+ p->pass_tex[n] = (struct src_tex){
+ .gl_tex = imgtex[n],
+ .gl_target = t->gl_target,
+ .tex_w = t->tex_w,
+ .tex_h = t->tex_h,
+ //.src = {0, 0, t->w, t->h},
+ .src = {
+ // xxx this is wrong; we want to crop the source when sampling
+ // from indirect_fbo, but not when rendering to indirect_fbo
+ // also, this should apply offset, and take care of odd video
+ // dimensions properly; and it should use floats instead
+ .x0 = p->src_rect.x0 >> p->image_desc.xs[n],
+ .y0 = p->src_rect.y0 >> p->image_desc.ys[n],
+ .x1 = p->src_rect.x1 >> p->image_desc.xs[n],
+ .y1 = p->src_rect.y1 >> p->image_desc.ys[n],
+ },
+ };
}
- gl->ActiveTexture(GL_TEXTURE0);
-}
-
-static void unset_image_textures(struct gl_video *p)
-{
- GL *gl = p->gl;
-
- for (int n = 0; n < 4; n++) {
- gl->ActiveTexture(GL_TEXTURE0 + n);
- gl->BindTexture(p->gl_target, 0);
- }
- gl->ActiveTexture(GL_TEXTURE0);
-
- if (p->hwdec_active)
- p->hwdec->driver->unmap_image(p->hwdec);
}
static int align_pow2(int s)
@@ -1558,6 +643,8 @@ static void init_video(struct gl_video *p)
for (int n = 0; n < p->plane_count; n++) {
struct texplane *plane = &vimg->planes[n];
+ plane->gl_target = p->gl_target;
+
plane->w = mp_chroma_div_up(p->image_w, p->image_desc.xs[n]);
plane->h = mp_chroma_div_up(p->image_h, p->image_desc.ys[n]);
@@ -1589,17 +676,6 @@ static void init_video(struct gl_video *p)
}
gl->ActiveTexture(GL_TEXTURE0);
- // If the dimensions of the Y plane are not aligned on the luma.
- // Assume 4:2:0 with size (3,3). The last luma pixel is (2,2).
- // The last chroma pixel is (1,1), not (0,0). So for luma, the
- // coordinate range is [0,3), for chroma it is [0,2). This means the
- // texture coordinates for chroma are stretched by adding 1 luma pixel
- // to the range. Undo this.
- p->chroma_fix[0] = p->image.planes[0].tex_w / (double)p->image.planes[1].tex_w
- / (1 << p->image_desc.chroma_xs);
- p->chroma_fix[1] = p->image.planes[0].tex_h / (double)p->image.planes[1].tex_h
- / (1 << p->image_desc.chroma_ys);
-
debug_check_gl(p, "after video texture creation");
reinit_rendering(p);
@@ -1631,186 +707,539 @@ static void uninit_video(struct gl_video *p)
p->image_params = p->real_image_params;
}
-static void change_dither_trafo(struct gl_video *p)
+static void pass_prepare_src_tex(struct gl_video *p)
{
GL *gl = p->gl;
- int program = p->final_program;
+ struct gl_shader_cache *sc = p->sc;
- int phase = p->frames_rendered % 8u;
- float r = phase * (M_PI / 2); // rotate
- float m = phase < 4 ? 1 : -1; // mirror
+ for (int n = 0; n < p->plane_count; n++) {
+ struct src_tex *s = &p->pass_tex[n];
+ if (!s->gl_tex)
+ continue;
+
+ char texture_name[32];
+ char texture_size[32];
+ snprintf(texture_name, sizeof(texture_name), "texture%d", n);
+ snprintf(texture_size, sizeof(texture_size), "texture_size%d", n);
+
+ gl_sc_uniform_sampler(sc, texture_name, p->gl_target, n);
+ float f[2] = {1, 1};
+ if (p->gl_target != GL_TEXTURE_RECTANGLE) {
+ f[0] = s->tex_w;
+ f[1] = s->tex_h;
+ }
+ gl_sc_uniform_vec2(sc, texture_size, f);
+
+ gl->ActiveTexture(GL_TEXTURE0 + n);
+ gl->BindTexture(s->gl_target, s->gl_tex);
+ }
+ gl->ActiveTexture(GL_TEXTURE0);
+}
- gl->UseProgram(program);
+static void render_pass_quad(struct gl_video *p, int vp_w, int vp_h,
+ const struct mp_rect *dst)
+{
+ struct vertex va[4];
- float matrix[2][2] = {{cos(r), -sin(r) },
- {sin(r) * m, cos(r) * m}};
- gl->UniformMatrix2fv(gl->GetUniformLocation(program, "dither_trafo"),
- 1, GL_TRUE, &matrix[0][0]);
+ float matrix[3][3];
+ gl_matrix_ortho2d(matrix, 0, vp_w, 0, vp_h);
- gl->UseProgram(0);
+ float x[2] = {dst->x0, dst->x1};
+ float y[2] = {dst->y0, dst->y1};
+ gl_matrix_mul_vec(matrix, &x[0], &y[0]);
+ gl_matrix_mul_vec(matrix, &x[1], &y[1]);
+
+ for (int n = 0; n < 4; n++) {
+ struct vertex *v = &va[n];
+ v->position.x = x[n / 2];
+ v->position.y = y[n % 2];
+ for (int i = 0; i < 4; i++) {
+ struct src_tex *s = &p->pass_tex[i];
+ if (s->gl_tex) {
+ float tx[2] = {s->src.x0, s->src.x1};
+ float ty[2] = {s->src.y0, s->src.y1};
+ bool rect = s->gl_target == GL_TEXTURE_RECTANGLE;
+ v->texcoord[i].x = tx[n / 2] / (rect ? 1 : s->tex_w);
+ v->texcoord[i].y = ty[n % 2] / (rect ? 1 : s->tex_h);
+ }
+ }
+ }
+
+ gl_vao_draw_data(&p->vao, GL_TRIANGLE_STRIP, va, 4);
+
+ debug_check_gl(p, "after rendering");
}
-struct pass {
- int num;
- // Not necessarily a FBO; we just abuse this struct because it's convenient.
- // It specifies the source texture/sub-rectangle for the next pass.
- struct fbotex f;
- // If true, render source (f) to dst, instead of the full dest. fbo viewport
- bool use_dst;
- struct mp_rect dst;
- int flags; // for write_quad
-};
+static void finish_pass_direct(struct gl_video *p, GLint fbo, int vp_w, int vp_h,
+ const struct mp_rect *dst)
+{
+ GL *gl = p->gl;
+ pass_prepare_src_tex(p);
+ gl->BindFramebuffer(GL_FRAMEBUFFER, fbo);
+ gl->Viewport(0, 0, vp_w, vp_h < 0 ? -vp_h : vp_h);
+ gl_sc_gen_shader_and_reset(p->sc);
+ render_pass_quad(p, vp_w, vp_h, dst);
+ gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
+ memset(&p->pass_tex, 0, sizeof(p->pass_tex));
+}
+
+// dst_fbo: this will be used for rendering; possibly reallocating the whole
+// FBO, if the required parameters have changed
+// w, h: required FBO target dimension, and also defines the target rectangle
+// used for rasterization
+// flags: 0 or combination of FBOTEX_FUZZY_W/FBOTEX_FUZZY_H (setting the fuzzy
+// flags allows the FBO to be larger than the target)
+static void finish_pass_fbo(struct gl_video *p, struct fbotex *dst_fbo,
+ int w, int h, int flags)
+{
+ fbotex_change(dst_fbo, p->gl, p->log, w, h, p->opts.fbo_format, flags);
-// *chain contains the source, and is overwritten with a copy of the result
-// fbo is used as destination texture/render target.
-static void handle_pass(struct gl_video *p, struct pass *chain,
- struct fbotex *fbo, GLuint program)
+ finish_pass_direct(p, dst_fbo->fbo, dst_fbo->tex_w, dst_fbo->tex_h,
+ &(struct mp_rect){0, 0, w, h});
+ p->pass_tex[0] = (struct src_tex){
+ .gl_tex = dst_fbo->texture,
+ .gl_target = GL_TEXTURE_2D,
+ .tex_w = dst_fbo->tex_w,
+ .tex_h = dst_fbo->tex_h,
+ .src = {0, 0, w, h},
+ };
+}
+
+static void uninit_scaler(struct gl_video *p, int scaler_unit)
{
GL *gl = p->gl;
+ struct scaler *scaler = &p->scalers[scaler_unit];
- if (!program)
+ gl->DeleteTextures(1, &scaler->gl_lut);
+ scaler->gl_lut = 0;
+ scaler->kernel = NULL;
+ scaler->initialized = false;
+}
+
+static void reinit_scaler(struct gl_video *p, int scaler_unit, const char *name,
+ double scale_factor)
+{
+ GL *gl = p->gl;
+ struct scaler *scaler = &p->scalers[scaler_unit];
+
+ if (scaler->name && strcmp(scaler->name, name) == 0 &&
+ scaler->scale_factor == scale_factor &&
+ scaler->initialized)
return;
- gl->BindTexture(p->gl_target, chain->f.texture);
- gl->UseProgram(program);
+ uninit_scaler(p, scaler_unit);
- gl->Viewport(fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h);
- gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo);
+ scaler->name = name;
+ scaler->scale_factor = scale_factor;
+ scaler->insufficient = false;
+ scaler->initialized = true;
- int tex_w = chain->f.tex_w;
- int tex_h = chain->f.tex_h;
- struct mp_rect src = {
- .x0 = chain->f.vp_x,
- .y0 = chain->f.vp_y,
- .x1 = chain->f.vp_x + chain->f.vp_w,
- .y1 = chain->f.vp_y + chain->f.vp_h,
- };
+ const struct filter_kernel *t_kernel = mp_find_filter_kernel(scaler->name);
+ if (!t_kernel)
+ return;
- struct mp_rect dst = {-1, -1, 1, 1};
- if (chain->use_dst)
- dst = chain->dst;
+ scaler->kernel_storage = *t_kernel;
+ scaler->kernel = &scaler->kernel_storage;
- MP_TRACE(p, "Pass %d: [%d,%d,%d,%d] -> [%d,%d,%d,%d][%d,%d@%dx%d/%dx%d] (%d)\n",
- chain->num, src.x0, src.y0, src.x1, src.y1,
- dst.x0, dst.y0, dst.x1, dst.y1,
- fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h,
- fbo->tex_w, fbo->tex_h, chain->flags);
+ for (int n = 0; n < 2; n++) {
+ if (!isnan(p->opts.scaler_params[scaler->index][n]))
+ scaler->kernel->params[n] = p->opts.scaler_params[scaler->index][n];
+ }
- draw_quad(p,
- dst.x0, dst.y0, dst.x1, dst.y1,
- src.x0, src.y0, src.x1, src.y1,
- tex_w, tex_h, chain->flags);
+ scaler->antiring = p->opts.scaler_antiring[scaler->index];
- *chain = (struct pass){
- .num = chain->num + 1,
- .f = *fbo,
- };
+ if (scaler->kernel->radius < 0)
+ scaler->kernel->radius = p->opts.scaler_radius[scaler->index];
+
+ scaler->insufficient = !mp_init_filter(scaler->kernel, filter_sizes,
+ scale_factor);
+
+ if (scaler->kernel->polar) {
+ scaler->gl_target = GL_TEXTURE_1D;
+ } else {
+ scaler->gl_target = GL_TEXTURE_2D;
+ }
+
+ int size = scaler->kernel->size;
+ int elems_per_pixel = 4;
+ if (size == 1) {
+ elems_per_pixel = 1;
+ } else if (size == 2) {
+ elems_per_pixel = 2;
+ } else if (size == 6) {
+ elems_per_pixel = 3;
+ }
+ int width = size / elems_per_pixel;
+ assert(size == width * elems_per_pixel);
+ const struct fmt_entry *fmt = &gl_float16_formats[elems_per_pixel - 1];
+ GLenum target = scaler->gl_target;
+
+ gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_SCALERS + scaler->index);
+
+ if (!scaler->gl_lut)
+ gl->GenTextures(1, &scaler->gl_lut);
+
+ gl->BindTexture(target, scaler->gl_lut);
+
+ float *weights = talloc_array(NULL, float, LOOKUP_TEXTURE_SIZE * size);
+ mp_compute_lut(scaler->kernel, LOOKUP_TEXTURE_SIZE, weights);
+
+ if (target == GL_TEXTURE_1D) {
+ gl->TexImage1D(target, 0, fmt->internal_format, LOOKUP_TEXTURE_SIZE,
+ 0, fmt->format, GL_FLOAT, weights);
+ } else {
+ gl->TexImage2D(target, 0, fmt->internal_format, width, LOOKUP_TEXTURE_SIZE,
+ 0, fmt->format, GL_FLOAT, weights);
+ }
+
+ talloc_free(weights);
+
+ gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+ gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
+ gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+ if (target != GL_TEXTURE_1D)
+ gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+
+ gl->ActiveTexture(GL_TEXTURE0);
+
+ debug_check_gl(p, "after initializing scaler");
}
-static size_t fbosurface_next(struct gl_video *p)
+static void pass_sample_separated_get_weights(struct gl_video *p,
+ struct scaler *scaler)
{
- return (p->surface_idx + 1) % FBOSURFACES_MAX;
+ gl_sc_uniform_sampler(p->sc, "lut", scaler->gl_target,
+ TEXUNIT_SCALERS + scaler->index);
+
+ int N = scaler->kernel->size;
+ if (N == 2) {
+ GLSL(vec2 c1 = texture(lut, vec2(0.5, fcoord)).RG;)
+ GLSL(float weights[2] = float[](c1.r, c1.g);)
+ } else if (N == 6) {
+ GLSL(vec4 c1 = texture(lut, vec2(0.25, fcoord));)
+ GLSL(vec4 c2 = texture(lut, vec2(0.75, fcoord));)
+ GLSL(float weights[6] = float[](c1.r, c1.g, c1.b, c2.r, c2.g, c2.b);)
+ } else {
+ GLSL(float weights[N];)
+ GLSL(for (int n = 0; n < N / 4; n++) {)
+ GLSL( vec4 c = texture(lut, vec2(1.0 / (N / 2) + n / float(N / 4), fcoord));)
+ GLSL( weights[n * 4 + 0] = c.r;)
+ GLSL( weights[n * 4 + 1] = c.g;)
+ GLSL( weights[n * 4 + 2] = c.b;)
+ GLSL( weights[n * 4 + 3] = c.a;)
+ GLSL(})
+ }
+}
+
+// Handle a single pass (either vertical or horizontal). The direction is given
+// by the vector (d_x, d_y)
+static void pass_sample_separated_gen(struct gl_video *p, struct scaler *scaler,
+ int d_x, int d_y)
+{
+ int N = scaler->kernel->size;
+ GLSLF("vec2 dir = vec2(%d, %d);\n", d_x, d_y);
+ GLSLF("#define N %d\n", N);
+ GLSLF("#define ANTIRING %f\n", scaler->antiring);
+ GLSL(vec2 pt = (vec2(1.0) / texture_size0) * dir;)
+ GLSL(float fcoord = dot(fract(texcoord0 * texture_size0 - vec2(0.5)), dir);)
+ GLSL(vec2 base = texcoord0 - fcoord * pt - pt * vec2(N / 2 - 1);)
+ pass_sample_separated_get_weights(p, scaler);
+ GLSL(vec4 color = vec4(0);)
+ GLSL(vec4 hi = vec4(0);)
+ GLSL(vec4 lo = vec4(1);)
+ GLSL(for (int n = 0; n < N; n++) {)
+ GLSL( vec4 c = texture(texture0, base + pt * vec2(n));)
+ GLSL( color += vec4(weights[n]) * c;)
+ GLSL( if (n == N/2-1 || n == N/2) {)
+ GLSL( lo = min(lo, c);)
+ GLSL( hi = max(hi, c);)
+ GLSL( })
+ GLSL(})
+ GLSL(color = mix(color, clamp(color, lo, hi), ANTIRING);)
+}
+
+static void pass_sample_separated(struct gl_video *p, struct scaler *scaler,
+ int w, int h)
+{
+ GLSLF("// pass 1\n");
+ pass_sample_separated_gen(p, scaler, 0, 1);
+ int src_w = p->pass_tex[0].src.x1 - p->pass_tex[0].src.x0;
+ finish_pass_fbo(p, &scaler->sep_fbo, src_w, h, 0);
+ GLSLF("// pass 2\n");
+ pass_sample_separated_gen(p, scaler, 1, 0);
+}
+
+// Scale. This uses the p->pass_tex[0] texture as source. It's hardcoded to
+// use all variables and values associated with p->pass_tex[0] (which includes
+// texture0/texcoord0/texture_size0).
+// The src rectangle is implicit in p->pass_tex.
+// The dst rectangle is implicit by what the caller will do next, but w and h
+// must still be what is going to be used (to dimension FBOs correctly).
+// This will declare "vec4 color;", which contains the scaled contents.
+// The scaler unit is initialized by this function; in order to avoid cache
+// thrashing, the scaler unit should usually use the same parameters.
+static void pass_scale(struct gl_video *p, int scaler_unit, const char *name,
+ double scale_factor, int w, int h)
+{
+ struct scaler *scaler = &p->scalers[scaler_unit];
+ reinit_scaler(p, scaler_unit, name, scale_factor);
+
+ // Dispatch the scaler. They're all wildly different.
+ if (strcmp(scaler->name, "bilinear") == 0) {
+ GLSL(vec4 color = texture(texture0, texcoord0);)
+ } else if (scaler->kernel && !scaler->kernel->polar) {
+ pass_sample_separated(p, scaler, w, h);
+ } else {
+ abort(); //not implemented yet
+ }
}
-// Handle all of the frame passes upto and including upscaling, assuming
-// upscaling is not part of the final pass
-static void gl_video_upscale_frame(struct gl_video *p, struct pass *chain, struct fbotex *inter_fbo)
+// sample from video textures, set "color" variable to yuv value
+// (not sure how exactly this should involve the resamplers)
+static void pass_read_video(struct gl_video *p, bool *use_indirect)
{
- // Order of processing: [indirect -> [scale_sep ->]] inter
- handle_pass(p, chain, &p->indirect_fbo, p->indirect_program);
-
- // compensated for optional rotation
- struct mp_rect src_rect_rot = p->src_rect;
- if ((p->image_params.rotate % 180) == 90) {
- MPSWAP(int, src_rect_rot.x0, src_rect_rot.y0);
- MPSWAP(int, src_rect_rot.x1, src_rect_rot.y1);
+ pass_set_image_textures(p, &p->image);
+
+ if (p->plane_count > 1) {
+ if (p->plane_count == 2) {
+ GLSL(vec2 chroma = texture(texture1, texcoord1).RG;) // NV formats
+ } else {
+ GLSL(vec2 chroma = vec2(texture(texture1, texcoord1).r,
+ texture(texture2, texcoord2).r);)
+ }
+
+ const char *cscale = p->opts.scalers[1];
+ if (p->image_desc.flags & MP_IMGFLAG_SUBSAMPLED &&
+ strcmp(cscale, "bilinear") != 0) {
+ GLSLF("// chroma merging\n");
+ GLSL(vec4 color = vec4(chroma.r, chroma.g, 0.0, 0.0);)
+ if (1) { //p->plane_count > 2) {
+ // For simplicity - and maybe also for performance - we merge
+ // the chroma planes into one texture before scaling. So the
+ // scaler doesn't need to deal with more than 1 source texture.
+ int c_w = p->pass_tex[1].src.x1 - p->pass_tex[1].src.x0;
+ int c_h = p->pass_tex[1].src.y1 - p->pass_tex[1].src.y0;
+ finish_pass_fbo(p, &p->chroma_merge_fbo, c_w, c_h, 0);
+ }
+ GLSLF("// chroma scaling\n");
+ pass_scale(p, 1, cscale, 1.0, p->image_w, p->image_h);
+ GLSL(vec2 chroma = color.rg;)
+ // Always force rendering to a FBO before main scaling, or we would
+ // scale chroma incorrectly.
+ *use_indirect = true;
+
+ // What we'd really like to do is putting the output of the chroma
+ // scaler on texture unit 1, and leave luma on unit 0 (alpha on 3).
+ // But this obviously doesn't work, so here's an extremely shitty
+ // hack. Keep in mind that the shader already uses tex unit 0, so
+ // it can't be changed. alpha is missing too.
+ struct src_tex prev = p->pass_tex[0];
+ pass_set_image_textures(p, &p->image);
+ p->pass_tex[1] = p->pass_tex[0];
+ p->pass_tex[0] = prev;
+ GLSL(color = vec4(texture(texture1, texcoord1).r, chroma, 0);)
+ } else {
+ GLSL(vec4 color = vec4(0.0, chroma, 0.0);)
+ // These always use bilinear; either because the scaler is bilinear,
+ // or because we use an indirect pass.
+ GLSL(color.r = texture(texture0, texcoord0).r;)
+ if (p->has_alpha && p->plane_count >= 4)
+ GLSL(color.a = texture(texture3, texcoord3).r;)
+ }
+ } else {
+ GLSL(vec4 color = texture(texture0, texcoord0);)
}
+}
- // Clip to visible height so that separate scaling scales the visible part
- // only (and the target FBO texture can have a bounded size).
- // Don't clamp width; too hard to get correct final scaling on l/r borders.
- chain->f.vp_y = src_rect_rot.y0;
- chain->f.vp_h = src_rect_rot.y1 - src_rect_rot.y0;
+// yuv conversion, and any other conversions before main up/down-scaling
+static void pass_convert_yuv(struct gl_video *p)
+{
+ struct gl_shader_cache *sc = p->sc;
+
+ GLSLF("// color conversion\n");
+
+ if (p->color_swizzle[0])
+ GLSLF("color = color.%s;\n", p->color_swizzle);
+
+ // Conversion from Y'CbCr or other spaces to RGB
+ if (!p->is_rgb) {
+ struct mp_csp_params cparams = MP_CSP_PARAMS_DEFAULTS;
+ cparams.gray = p->is_yuv && !p->is_packed_yuv && p->plane_count == 1;
+ cparams.input_bits = p->image_desc.component_bits;
+ cparams.texture_bits = (cparams.input_bits + 7) & ~7;
+ mp_csp_set_image_params(&cparams, &p->image_params);
+ mp_csp_copy_equalizer_values(&cparams, &p->video_eq);
+ if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
+ cparams.colorspace = MP_CSP_XYZ;
+ cparams.input_bits = 8;
+ cparams.texture_bits = 8;
+ }
- handle_pass(p, chain, &p->scale_sep_fbo, p->scale_sep_program);
+ struct mp_cmat m = {{{0}}};
+ if (p->image_desc.flags & MP_IMGFLAG_XYZ) {
+ // Hard-coded as relative colorimetric for now, since this transforms
+ // from the source file's D55 material to whatever color space our
+ // projector/display lives in, which should be D55 for a proper
+ // home cinema setup either way.
+ mp_get_xyz2rgb_coeffs(&cparams, p->csp_src,
+ MP_INTENT_RELATIVE_COLORIMETRIC, &m);
+ } else {
+ mp_get_yuv2rgb_coeffs(&cparams, &m);
+ }
+ gl_sc_uniform_mat3(sc, "colormatrix", true, &m.m[0][0]);
+ gl_sc_uniform_vec3(sc, "colormatrix_c", m.c);
- // For Y direction, use the whole source viewport; it has been fit to the
- // correct origin/height before.
- // For X direction, assume the texture wasn't scaled yet, so we can
- // select the correct portion, which will be scaled to screen.
- chain->f.vp_x = src_rect_rot.x0;
- chain->f.vp_w = src_rect_rot.x1 - src_rect_rot.x0;
+ GLSL(color.rgb = mat3(colormatrix) * color.rgb + colormatrix_c;)
+ }
+}
- if (inter_fbo)
- handle_pass(p, chain, inter_fbo, p->inter_program);
+static void get_scale_factors(struct gl_video *p, double xy[2])
+{
+ xy[0] = (p->dst_rect.x1 - p->dst_rect.x0) /
+ (double)(p->src_rect.x1 - p->src_rect.x0);
+ xy[1] = (p->dst_rect.y1 - p->dst_rect.y0) /
+ (double)(p->src_rect.y1 - p->src_rect.y0);
}
-static double gl_video_interpolate_frame(struct gl_video *p,
- struct pass *chain,
- struct frame_timing *t)
+static void pass_scale_main(struct gl_video *p, bool use_indirect)
{
- GL *gl = p->gl;
- double inter_coeff = 0.0;
- int64_t prev_pts = p->surfaces[fbosurface_next(p)].pts;
-
- // Make sure all surfaces are actually valid, and redraw them manually
- // if this is not the case
- for (int i = 0; i < FBOSURFACES_MAX; i++) {
- if (!p->surfaces[i].valid) {
- struct pass frame = { .f = chain->f };
- gl_video_upscale_frame(p, &frame, &p->surfaces[i].fbotex);
- p->surfaces[i].valid = true;
- }
+ // Figure out the main scaler.
+ double xy[2];
+ get_scale_factors(p, xy);
+ bool downscaling = xy[0] < 1.0 || xy[1] < 1.0;
+ bool upscaling = !downscaling && (xy[0] > 1.0 || xy[1] > 1.0);
+ double scale_factor = 1.0;
+
+ char *scaler = p->opts.scalers[0];
+ if (p->opts.scaler_resizes_only && !downscaling && !upscaling)
+ scaler = "bilinear";
+ if (downscaling)
+ scaler = p->opts.dscaler;
+
+ double f = MPMIN(xy[0], xy[1]);
+ if (p->opts.fancy_downscaling && f < 1.0 &&
+ fabs(xy[0] - f) < 0.01 && fabs(xy[1] - f) < 0.01)
+ {
+ scale_factor = FFMAX(1.0, 1.0 / f);
}
- if (t && prev_pts < t->pts) {
- MP_STATS(p, "new-pts");
- gl_video_upscale_frame(p, chain, &p->surfaces[p->surface_idx].fbotex);
- p->surfaces[p->surface_idx].valid = true;
- p->surfaces[p->surface_idx].pts = t->pts;
- p->surface_idx = fbosurface_next(p);
+ GLSLF("// main scaling\n");
+ if (!use_indirect && strcmp(scaler, "bilinear") == 0) {
+ // implicitly scale in pass_video_to_screen
} else {
- // re-use the previously rendered surface as source
- chain->f = p->surfaces[fbosurface_next(p)].fbotex;
+ finish_pass_fbo(p, &p->indirect_fbo, p->image_w, p->image_h, 0);
+
+ int w = p->dst_rect.x1 - p->dst_rect.x0;
+ int h = p->dst_rect.y1 - p->dst_rect.y0;
+ pass_scale(p, 0, scaler, scale_factor, w, h);
}
+}
- // fbosurface 0 is bound by handle_pass
- gl->ActiveTexture(GL_TEXTURE0 + 1);
- gl->BindTexture(p->gl_target, p->surfaces[p->surface_idx].fbotex.texture);
- gl->ActiveTexture(GL_TEXTURE0);
+static void pass_dither(struct gl_video *p)
+{
+ GL *gl = p->gl;
- if (!t) {
- p->is_interpolated = false;
- return 0.0;
+ // Assume 8 bits per component if unknown.
+ int dst_depth = p->depth_g ? p->depth_g : 8;
+ if (p->opts.dither_depth > 0)
+ dst_depth = p->opts.dither_depth;
+
+ if (p->opts.dither_depth < 0 || p->opts.dither_algo < 0)
+ return;
+
+ if (!p->dither_texture) {
+ MP_VERBOSE(p, "Dither to %d.\n", dst_depth);
+
+ int tex_size;
+ void *tex_data;
+ GLint tex_iformat;
+ GLint tex_format;
+ GLenum tex_type;
+ unsigned char temp[256];
+
+ if (p->opts.dither_algo == 0) {
+ int sizeb = p->opts.dither_size;
+ int size = 1 << sizeb;
+
+ if (p->last_dither_matrix_size != size) {
+ p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix,
+ float, size * size);
+ mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb);
+ p->last_dither_matrix_size = size;
+ }
+
+ tex_size = size;
+ tex_iformat = gl_float16_formats[0].internal_format;
+ tex_format = gl_float16_formats[0].format;
+ tex_type = GL_FLOAT;
+ tex_data = p->last_dither_matrix;
+ } else {
+ assert(sizeof(temp) >= 8 * 8);
+ mp_make_ordered_dither_matrix(temp, 8);
+
+ const struct fmt_entry *fmt = find_tex_format(gl, 1, 1);
+ tex_size = 8;
+ tex_iformat = fmt->internal_format;
+ tex_format = fmt->format;
+ tex_type = fmt->type;
+ tex_data = temp;
+ }
+
+ p->dither_size = tex_size;
+
+ gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_DITHER);
+ gl->GenTextures(1, &p->dither_texture);
+ gl->BindTexture(GL_TEXTURE_2D, p->dither_texture);
+ gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1);
+ gl->TexImage2D(GL_TEXTURE_2D, 0, tex_iformat, tex_size, tex_size, 0,
+ tex_format, tex_type, tex_data);
+ gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
+ gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
+ gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
+ gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
+ gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4);
+ gl->ActiveTexture(GL_TEXTURE0);
+
+ debug_check_gl(p, "dither setup");
}
- int64_t vsync_interval = t->next_vsync - t->prev_vsync;
-
- if (t->pts > t->next_vsync && t->pts < t->next_vsync + vsync_interval) {
- // current frame overlaps PTS boundary, blend
- double R = t->pts - t->next_vsync;
- float ts = p->opts.smoothmotion_threshold;
- inter_coeff = R / vsync_interval;
- inter_coeff = inter_coeff <= 0.0 + ts ? 0.0 : inter_coeff;
- inter_coeff = inter_coeff >= 1.0 - ts ? 1.0 : inter_coeff;
- MP_DBG(p, "inter frame ppts: %lld, pts: %lld, "
- "vsync: %lld, mix: %f\n",
- (long long)prev_pts, (long long)t->pts,
- (long long)t->next_vsync, inter_coeff);
- MP_STATS(p, "frame-mix");
-
- // the value is scaled to fit in the graph with the completely
- // unrelated "phase" value (which is stupid)
- MP_STATS(p, "value-timed %lld %f mix-value",
- (long long)t->pts, inter_coeff * 10000);
- } else if (t->pts > t->next_vsync) {
- // there's a new frame, but we haven't displayed or blended it yet,
- // so we still draw the old frame
- inter_coeff = 1.0;
+ GLSLF("// dithering\n");
+
+ // This defines how many bits are considered significant for output on
+ // screen. The superfluous bits will be used for rounding according to the
+ // dither matrix. The precision of the source implicitly decides how many
+ // dither patterns can be visible.
+ float dither_quantization = (1 << dst_depth) - 1;
+ float dither_center = 0.5 / (p->dither_size * p->dither_size);
+
+ gl_sc_uniform_f(p->sc, "dither_size", p->dither_size);
+ gl_sc_uniform_f(p->sc, "dither_quantization", dither_quantization);
+ gl_sc_uniform_f(p->sc, "dither_center", dither_center);
+ gl_sc_uniform_sampler(p->sc, "dither", GL_TEXTURE_2D, TEXUNIT_DITHER);
+
+ GLSL(vec2 dither_pos = gl_FragCoord.xy / dither_size;)
+
+ if (p->opts.temporal_dither) {
+ int phase = p->frames_rendered % 8u;
+ float r = phase * (M_PI / 2); // rotate
+ float m = phase < 4 ? 1 : -1; // mirror
+
+ float matrix[2][2] = {{cos(r), -sin(r) },
+ {sin(r) * m, cos(r) * m}};
+ gl_sc_uniform_mat2(p->sc, "dither_trafo", true, &matrix[0][0]);
+
+ GLSL(dither_pos = dither_trafo * dither_pos;)
}
- p->is_interpolated = inter_coeff > 0.0;
- return inter_coeff;
+ GLSL(float dither_value = texture(dither, dither_pos).r;)
+ GLSL(color = floor(color * dither_quantization + dither_value + dither_center) /
+ dither_quantization;)
+}
+
+static void pass_video_to_screen(struct gl_video *p, int fbo)
+{
+ pass_dither(p);
+ finish_pass_direct(p, fbo, p->vp_w, p->vp_h, &p->dst_rect);
}
// (fbo==0 makes BindFramebuffer select the screen backbuffer)
@@ -1819,17 +1248,10 @@ void gl_video_render_frame(struct gl_video *p, int fbo, struct frame_timing *t)
GL *gl = p->gl;
struct video_image *vimg = &p->image;
- p->is_interpolated = false;
-
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo);
- gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h);
- if (p->opts.temporal_dither)
- change_dither_trafo(p);
-
- if (p->dst_rect.x0 > p->vp_x || p->dst_rect.y0 > p->vp_y
- || p->dst_rect.x1 < p->vp_x + p->vp_w
- || p->dst_rect.y1 < p->vp_y + p->vp_h)
+ if (p->dst_rect.x0 > 0 || p->dst_rect.y0 > 0
+ || p->dst_rect.x1 < p->vp_w || p->dst_rect.y1 < abs(p->vp_h))
{
gl->Clear(GL_COLOR_BUFFER_BIT);
}
@@ -1839,151 +1261,70 @@ void gl_video_render_frame(struct gl_video *p, int fbo, struct frame_timing *t)
goto draw_osd;
}
- GLuint imgtex[4] = {0};
- set_image_textures(p, vimg, imgtex);
-
- struct pass chain = {
- .f = {
- .vp_w = p->image_w,
- .vp_h = p->image_h,
- .tex_w = vimg->planes[0].tex_w,
- .tex_h = vimg->planes[0].tex_h,
- .texture = imgtex[0],
- },
- };
+ gl_sc_set_vao(p->sc, &p->vao);
- double inter_coeff = 0.0;
- if (p->opts.smoothmotion) {
- inter_coeff = gl_video_interpolate_frame(p, &chain, t);
- } else {
- gl_video_upscale_frame(p, &chain, NULL);
- }
-
- struct fbotex screen = {
- .vp_x = p->vp_x,
- .vp_y = p->vp_y,
- .vp_w = p->vp_w,
- .vp_h = p->vp_h,
- .fbo = fbo,
- };
-
- chain.use_dst = true;
- chain.dst = p->dst_rect;
- chain.flags = (p->image_params.rotate % 90 ? 0 : p->image_params.rotate / 90)
- | (vimg->image_flipped ? 4 : 0);
-
- gl->UseProgram(p->final_program);
- GLint loc = gl->GetUniformLocation(p->final_program, "inter_coeff");
- gl->Uniform1f(loc, inter_coeff);
- handle_pass(p, &chain, &screen, p->final_program);
-
- gl->UseProgram(0);
-
- unset_image_textures(p);
-
- p->frames_rendered++;
+ bool indirect = false;
+ pass_read_video(p, &indirect);
+ pass_convert_yuv(p);
+ pass_scale_main(p, indirect);
+ pass_video_to_screen(p, fbo);
debug_check_gl(p, "after video rendering");
-draw_osd:
- mpgl_osd_draw(p->osd, p->osd_rect, p->osd_pts, p->image_params.stereo_out);
+ if (p->hwdec_active)
+ p->hwdec->driver->unmap_image(p->hwdec);
- gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
-}
+draw_osd:
-static void update_window_sized_objects(struct gl_video *p)
-{
- int w = p->dst_rect.x1 - p->dst_rect.x0;
- int h = p->dst_rect.y1 - p->dst_rect.y0;
- if ((p->image_params.rotate % 180) == 90)
- MPSWAP(int, w, h);
-
- // Round up to an arbitrary alignment to make window resizing or
- // panscan controls smoother (less texture reallocations).
- int width = FFALIGN(w, 256);
- int height = FFALIGN(h, 256);
-
- if (p->scale_sep_program) {
- if (h > p->scale_sep_fbo.tex_h) {
- fbotex_uninit(&p->scale_sep_fbo);
- fbotex_init(&p->scale_sep_fbo, p->gl, p->log, p->image_w, height,
- p->gl_target, GL_NEAREST, p->opts.fbo_format);
+ gl->BindFramebuffer(GL_FRAMEBUFFER, fbo);
+ gl->Viewport(0, 0, p->vp_w, abs(p->vp_h));
+
+ mpgl_osd_generate(p->osd, p->osd_rect, p->osd_pts, p->image_params.stereo_out);
+
+ for (int n = 0; n < MAX_OSD_PARTS; n++) {
+ enum sub_bitmap_format fmt = mpgl_osd_get_part_format(p->osd, n);
+ if (!fmt)
+ continue;
+ gl_sc_uniform_sampler(p->sc, "osdtex", GL_TEXTURE_2D, 0);
+ switch (fmt) {
+ case SUBBITMAP_RGBA: {
+ GLSLF("// OSD (RGBA)\n");
+ GLSL(vec4 color = texture(osdtex, texcoord).bgra;)
+ break;
}
- p->scale_sep_fbo.vp_w = p->image_w;
- p->scale_sep_fbo.vp_h = h;
- }
-
- if (p->opts.smoothmotion) {
- for (int i = 0; i < FBOSURFACES_MAX; i++) {
- struct fbotex *fbo = &p->surfaces[i].fbotex;
- if (w > fbo->tex_w || h > fbo->tex_h) {
- fbotex_uninit(fbo);
- fbotex_init(fbo, p->gl, p->log, width, height,
- p->gl_target, GL_NEAREST, p->opts.fbo_format);
- }
- fbo->vp_w = w;
- fbo->vp_h = h;
- p->surfaces[i].valid = false;
+ case SUBBITMAP_LIBASS: {
+ GLSLF("// OSD (libass)\n");
+ GLSL(vec4 color =
+ vec4(ass_color.rgb, ass_color.a * texture(osdtex, texcoord).r);)
+ break;
}
- }
-}
-
-static void check_resize(struct gl_video *p)
-{
- bool need_scaler_reinit = false; // filter size change needed
- bool need_scaler_update = false; // filter LUT change needed
- bool too_small = false;
- for (int n = 0; n < 2; n++) {
- if (p->scalers[n].kernel) {
- struct filter_kernel old = *p->scalers[n].kernel;
- update_scale_factor(p, &p->scalers[n]);
- struct filter_kernel new = *p->scalers[n].kernel;
- need_scaler_reinit |= (new.size != old.size);
- need_scaler_update |= (new.inv_scale != old.inv_scale);
- too_small |= p->scalers[n].insufficient;
+ default:
+ abort();
}
+ gl_sc_set_vao(p->sc, mpgl_osd_get_vao(p->osd));
+ gl_sc_gen_shader_and_reset(p->sc);
+ mpgl_osd_draw_part(p->osd, p->vp_w, p->vp_h, n);
}
- for (int n = 0; n < 2; n++) {
- if (strcmp(p->scalers[n].name, expected_scaler(p, n)) != 0)
- need_scaler_reinit = true;
- }
- if (p->upscaling != (get_scale_factor(p) > 1.0)) {
- p->upscaling = !p->upscaling;
- // Switching between upscaling and downscaling also requires sigmoid
- // to be toggled
- need_scaler_reinit |= p->sigmoid_enabled;
- }
- if (need_scaler_reinit) {
- reinit_rendering(p);
- } else if (need_scaler_update) {
- init_scaler(p, &p->scalers[0]);
- init_scaler(p, &p->scalers[1]);
- }
- if (too_small) {
- MP_WARN(p, "Can't downscale that much, window "
- "output may look suboptimal.\n");
- }
- update_window_sized_objects(p);
- update_all_uniforms(p);
+ debug_check_gl(p, "after OSD rendering");
+
+ gl->UseProgram(0);
+ gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
+
+ p->frames_rendered++;
}
-void gl_video_resize(struct gl_video *p, struct mp_rect *window,
+// vp_w/vp_h is the implicit size of the target framebuffer.
+// vp_h can be negative to flip the screen.
+void gl_video_resize(struct gl_video *p, int vp_w, int vp_h,
struct mp_rect *src, struct mp_rect *dst,
- struct mp_osd_res *osd, bool vflip)
+ struct mp_osd_res *osd)
{
p->src_rect = *src;
p->dst_rect = *dst;
p->osd_rect = *osd;
-
- p->vp_x = window->x0;
- p->vp_y = window->y0;
- p->vp_w = window->x1 - window->x0;
- p->vp_h = window->y1 - window->y0;
-
- p->vp_vflipped = vflip;
-
- check_resize(p);
+ p->vp_w = vp_w;
+ p->vp_h = vp_h;
}
static bool get_image(struct gl_video *p, struct mp_image *mpi)
@@ -2078,9 +1419,7 @@ static bool test_fbo(struct gl_video *p, bool *success)
MP_VERBOSE(p, "Testing user-set FBO format (0x%x)\n",
(unsigned)p->opts.fbo_format);
struct fbotex fbo = {0};
- if (fbotex_init(&fbo, p->gl, p->log, 16, 16, p->gl_target, GL_LINEAR,
- p->opts.fbo_format))
- {
+ if (fbotex_init(&fbo, p->gl, p->log, 16, 16, p->opts.fbo_format)) {
gl->BindFramebuffer(GL_FRAMEBUFFER, fbo.fbo);
gl->BindFramebuffer(GL_FRAMEBUFFER, 0);
*success = true;
@@ -2229,6 +1568,8 @@ void gl_video_uninit(struct gl_video *p)
uninit_video(p);
+ gl_sc_destroy(p->sc);
+
gl_vao_uninit(&p->vao);
gl->DeleteTextures(1, &p->lut_3d_texture);
@@ -2430,7 +1771,7 @@ void gl_video_config(struct gl_video *p, struct mp_image_params *params)
init_video(p);
}
- check_resize(p);
+ //check_resize(p);
}
void gl_video_set_output_depth(struct gl_video *p, int r, int g, int b)
@@ -2459,7 +1800,7 @@ struct gl_video *gl_video_init(GL *gl, struct mp_log *log, struct osd_state *osd
{ .index = 0, .name = "bilinear" },
{ .index = 1, .name = "bilinear" },
},
- .scratch = talloc_zero_array(p, char *, 1),
+ .sc = gl_sc_create(gl, log),
};
gl_video_set_debug(p, true);
init_gl(p);
@@ -2488,14 +1829,12 @@ static const char *handle_scaler_opt(const char *name)
void gl_video_set_options(struct gl_video *p, struct gl_video_opts *opts)
{
p->opts = *opts;
- for (int n = 0; n < 2; n++) {
+ for (int n = 0; n < 2; n++)
p->opts.scalers[n] = (char *)handle_scaler_opt(p->opts.scalers[n]);
- p->opts.dscaler = (char *)handle_scaler_opt(p->opts.dscaler);
- }
+ p->opts.dscaler = (char *)handle_scaler_opt(p->opts.dscaler);
check_gl_features(p);
- reinit_rendering(p);
- check_resize(p);
+ uninit_rendering(p);
}
void gl_video_get_colorspace(struct gl_video *p, struct mp_image_params *params)
@@ -2511,14 +1850,6 @@ struct mp_csp_equalizer *gl_video_eq_ptr(struct gl_video *p)
// Call when the mp_csp_equalizer returned by gl_video_eq_ptr() was changed.
void gl_video_eq_update(struct gl_video *p)
{
- update_settings(p);
-
- if (p->need_reinit_rendering) {
- reinit_rendering(p);
- check_resize(p);
- } else {
- update_all_uniforms(p);
- }
}
static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
diff --git a/video/out/gl_video.h b/video/out/gl_video.h
index 8c273faa9e..1de619870f 100644
--- a/video/out/gl_video.h
+++ b/video/out/gl_video.h
@@ -73,9 +73,9 @@ void gl_video_set_output_depth(struct gl_video *p, int r, int g, int b);
void gl_video_set_lut3d(struct gl_video *p, struct lut3d *lut3d);
void gl_video_upload_image(struct gl_video *p, struct mp_image *img);
void gl_video_render_frame(struct gl_video *p, int fbo, struct frame_timing *t);
-void gl_video_resize(struct gl_video *p, struct mp_rect *window,
+void gl_video_resize(struct gl_video *p, int vp_w, int vp_h,
struct mp_rect *src, struct mp_rect *dst,
- struct mp_osd_res *osd, bool vflip);
+ struct mp_osd_res *osd);
void gl_video_get_colorspace(struct gl_video *p, struct mp_image_params *params);
struct mp_csp_equalizer;
struct mp_csp_equalizer *gl_video_eq_ptr(struct gl_video *p);
diff --git a/video/out/gl_video_shaders.glsl b/video/out/gl_video_shaders.glsl
deleted file mode 100644
index 87fb4d04b0..0000000000
--- a/video/out/gl_video_shaders.glsl
+++ /dev/null
@@ -1,542 +0,0 @@
-/*
- * This file is part of mpv.
- *
- * mpv is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * mpv is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with mpv. If not, see <http://www.gnu.org/licenses/>.
- *
- * You can alternatively redistribute this file and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- */
-
-// Note that this file is not directly passed as shader, but run through some
-// text processing functions, and in fact contains multiple vertex and fragment
-// shaders.
-
-// inserted at the beginning of all shaders
-#!section prelude
-
-#ifdef GL_ES
-precision mediump float;
-#endif
-
-// GLSL 1.20 compatibility layer
-// texture() should be assumed to always map to texture2D()
-#if __VERSION__ >= 130
-# define texture1D texture
-# define texture3D texture
-# define DECLARE_FRAGPARMS \
- out vec4 out_color;
-#else
-# define texture texture2D
-# define DECLARE_FRAGPARMS
-# define out_color gl_FragColor
-# define in varying
-#endif
-
-#if HAVE_RG
-#define RG rg
-#else
-#define RG ra
-#endif
-
-// Earlier GLSL doesn't support mix() with bvec
-#if __VERSION__ >= 130
-vec3 srgb_expand(vec3 v)
-{
- return mix(v / vec3(12.92), pow((v + vec3(0.055))/vec3(1.055), vec3(2.4)),
- lessThanEqual(vec3(0.04045), v));
-}
-
-vec3 srgb_compand(vec3 v)
-{
- return mix(v * vec3(12.92), vec3(1.055) * pow(v, vec3(1.0/2.4)) - vec3(0.055),
- lessThanEqual(vec3(0.0031308), v));
-}
-
-vec3 bt2020_expand(vec3 v)
-{
- return mix(v / vec3(4.5), pow((v + vec3(0.0993))/vec3(1.0993), vec3(1.0/0.45)),
- lessThanEqual(vec3(0.08145), v));
-}
-
-vec3 bt2020_compand(vec3 v)
-{
- return mix(v * vec3(4.5), vec3(1.0993) * pow(v, vec3(0.45)) - vec3(0.0993),
- lessThanEqual(vec3(0.0181), v));
-}
-#endif
-
-#!section vertex_all
-
-#if __VERSION__ < 130
-# undef in
-# define in attribute
-# define out varying
-#endif
-
-uniform mat3 transform;
-uniform vec3 translation;
-#if HAVE_3DTEX
-uniform sampler3D lut_3d;
-#endif
-uniform mat3 cms_matrix; // transformation from file's gamut to bt.2020
-
-in vec2 vertex_position;
-in vec4 vertex_color;
-out vec4 color;
-in vec2 vertex_texcoord;
-out vec2 texcoord;
-
-void main() {
- vec3 position = vec3(vertex_position, 1) + translation;
-#ifndef FIXED_SCALE
- position = transform * position;
-#endif
- gl_Position = vec4(position, 1);
- color = vertex_color;
-
- // Although we are not scaling in linear light, both 3DLUT and SRGB still
- // operate on linear light inputs so we have to convert to it before
- // either step can be applied.
-#ifdef USE_OSD_LINEAR_CONV_BT1886
- color.rgb = pow(color.rgb, vec3(1.961));
-#endif
-#ifdef USE_OSD_LINEAR_CONV_SRGB
- color.rgb = srgb_expand(color.rgb);
-#endif
-#ifdef USE_OSD_CMS_MATRIX
- // Convert to the right target gamut first (to BT.709 for sRGB,
- // and to BT.2020 for 3DLUT). Normal clamping here as perceptually
- // accurate colorimetry is probably not worth the performance trade-off
- // here.
- color.rgb = clamp(cms_matrix * color.rgb, 0.0, 1.0);
-#endif
-#ifdef USE_OSD_3DLUT
- color.rgb = pow(color.rgb, vec3(1.0/2.4)); // linear -> 2.4 3DLUT space
- color = vec4(texture3D(lut_3d, color.rgb).rgb, color.a);
-#endif
-#ifdef USE_OSD_SRGB
- color.rgb = srgb_compand(color.rgb);
-#endif
-
- texcoord = vertex_texcoord;
-}
-
-#!section frag_osd_libass
-uniform sampler2D texture0;
-
-in vec2 texcoord;
-in vec4 color;
-DECLARE_FRAGPARMS
-
-void main() {
- out_color = vec4(color.rgb, color.a * texture(texture0, texcoord).r);
-}
-
-#!section frag_osd_rgba
-uniform sampler2D texture0;
-
-in vec2 texcoord;
-DECLARE_FRAGPARMS
-
-void main() {
- out_color = texture(texture0, texcoord).bgra;
-}
-
-#!section frag_video
-uniform VIDEO_SAMPLER texture0;
-uniform VIDEO_SAMPLER texture1;
-uniform VIDEO_SAMPLER texture2;
-uniform VIDEO_SAMPLER texture3;
-uniform vec2 textures_size[4];
-uniform vec2 chroma_center_offset;
-uniform vec2 chroma_div;
-uniform vec2 chroma_fix;
-uniform sampler2D lut_2d_c;
-uniform sampler2D lut_2d_l;
-#if HAVE_1DTEX
-uniform sampler1D lut_1d_c;
-uniform sampler1D lut_1d_l;
-#endif
-#if HAVE_3DTEX
-uniform sampler3D lut_3d;
-#endif
-uniform sampler2D dither;
-uniform mat3 colormatrix;
-uniform vec3 colormatrix_c;
-uniform mat3 cms_matrix;
-uniform mat2 dither_trafo;
-uniform float inv_gamma;
-uniform float input_gamma;
-uniform float conv_gamma;
-uniform float sig_center;
-uniform float sig_slope;
-uniform float sig_scale;
-uniform float sig_offset;
-uniform float dither_quantization;
-uniform float dither_center;
-uniform float filter_param1_l;
-uniform float filter_param1_c;
-uniform float antiring_factor;
-uniform vec2 dither_size;
-uniform float inter_coeff;
-
-in vec2 texcoord;
-DECLARE_FRAGPARMS
-
-#define CONV_NV12 1
-#define CONV_PLANAR 2
-
-vec4 sample_bilinear(VIDEO_SAMPLER tex, vec2 texsize, vec2 texcoord, float param1) {
- return texture(tex, texcoord);
-}
-
-#define SAMPLE_TRIVIAL(tex, texsize, texcoord) texture(tex, texcoord)
-
-// Explanation how bicubic scaling with only 4 texel fetches is done:
-// http://www.mate.tue.nl/mate/pdfs/10318.pdf
-// 'Efficient GPU-Based Texture Interpolation using Uniform B-Splines'
-// Explanation why this algorithm normally always blurs, even with unit scaling:
-// http://bigwww.epfl.ch/preprints/ruijters1001p.pdf
-// 'GPU Prefilter for Accurate Cubic B-spline Interpolation'
-vec4 calcweights(float s) {
- vec4 t = vec4(-0.5, 0.1666, 0.3333, -0.3333) * s + vec4(1, 0, -0.5, 0.5);
- t = t * s + vec4(0, 0, -0.5, 0.5);
- t = t * s + vec4(-0.6666, 0, 0.8333, 0.1666);
- vec2 a = vec2(1, 1) / vec2(t.z, t.w);
- t.xy = t.xy * a + vec2(1, 1);
- t.x = t.x + s;
- t.y = t.y - s;
- return t;
-}
-
-vec4 sample_bicubic_fast(VIDEO_SAMPLER tex, vec2 texsize, vec2 texcoord, float param1) {
- vec2 pt = 1.0 / texsize;
- vec2 fcoord = fract(texcoord * texsize + vec2(0.5, 0.5));
- vec4 parmx = calcweights(fcoord.x);
- vec4 parmy = calcweights(fcoord.y);
- vec4 cdelta;
- cdelta.xz = parmx.RG * vec2(-pt.x, pt.x);
- cdelta.yw = parmy.RG * vec2(-pt.y, pt.y);
- // first y-interpolation
- vec4 ar = texture(tex, texcoord + cdelta.xy);
- vec4 ag = texture(tex, texcoord + cdelta.xw);
- vec4 ab = mix(ag, ar, parmy.b);
- // second y-interpolation
- vec4 br = texture(tex, texcoord + cdelta.zy);
- vec4 bg = texture(tex, texcoord + cdelta.zw);
- vec4 aa = mix(bg, br, parmy.b);
- // x-interpolation
- return mix(aa, ab, parmx.b);
-}
-
-#if HAVE_ARRAYS
-float[2] weights2(sampler2D lookup, float f) {
- vec2 c = texture(lookup, vec2(0.5, f)).RG;
- return float[2](c.r, c.g);
-}
-float[6] weights6(sampler2D lookup, float f) {
- vec4 c1 = texture(lookup, vec2(0.25, f));
- vec4 c2 = texture(lookup, vec2(0.75, f));
- return float[6](c1.r, c1.g, c1.b, c2.r, c2.g, c2.b);
-}
-
-// For N=n*4 with n>1.
-#define WEIGHTS_N(NAME, N) \
- float[N] NAME(sampler2D lookup, float f) { \
- float r[N]; \
- for (int n = 0; n < N / 4; n++) { \
- vec4 c = texture(lookup, \
- vec2(1.0 / (N / 2) + n / float(N / 4), f)); \
- r[n * 4 + 0] = c.r; \
- r[n * 4 + 1] = c.g; \
- r[n * 4 + 2] = c.b; \
- r[n * 4 + 3] = c.a; \
- } \
- return r; \
- }
-
-// The DIR parameter is (0, 1) or (1, 0), and we expect the shader compiler to
-// remove all the redundant multiplications and additions, and also to unroll
-// the loop and remove the conditional completely
-#define SAMPLE_CONVOLUTION_SEP_N(NAME, DIR, N, LUT, WEIGHTS_FUNC, ANTIRING) \
- vec4 NAME(VIDEO_SAMPLER tex, vec2 texsize, vec2 texcoord) { \
- vec2 pt = (vec2(1.0) / texsize) * DIR; \
- float fcoord = dot(fract(texcoord * texsize - vec2(0.5)), DIR); \
- vec2 base = texcoord - fcoord * pt - pt * vec2(N / 2 - 1); \
- float weights[N] = WEIGHTS_FUNC(LUT, fcoord); \
- vec4 res = vec4(0); \
- vec4 hi = vec4(0); \
- vec4 lo = vec4(1); \
- for (int n = 0; n < N; n++) { \
- vec4 c = texture(tex, base + pt * vec2(n)); \
- res += vec4(weights[n]) * c; \
- if (n == N/2-1 || n == N/2) { \
- lo = min(lo, c); \
- hi = max(hi, c); \
- } \
- } \
- return mix(res, clamp(res, lo, hi), ANTIRING); \
- }
-
-#define SAMPLE_CONVOLUTION_N(NAME, N, LUT, WEIGHTS_FUNC) \
- vec4 NAME(VIDEO_SAMPLER tex, vec2 texsize, vec2 texcoord) { \
- vec2 pt = vec2(1.0) / texsize; \
- vec2 fcoord = fract(texcoord * texsize - vec2(0.5)); \
- vec2 base = texcoord - fcoord * pt - pt * vec2(N / 2 - 1); \
- vec4 res = vec4(0); \
- float w_x[N] = WEIGHTS_FUNC(LUT, fcoord.x); \
- float w_y[N] = WEIGHTS_FUNC(LUT, fcoord.y); \
- for (int y = 0; y < N; y++) { \
- vec4 line = vec4(0); \
- for (int x = 0; x < N; x++) \
- line += vec4(w_x[x]) * texture(tex, base + pt * vec2(x, y));\
- res += vec4(w_y[y]) * line; \
- } \
- return res; \
- }
-
-#define SAMPLE_POLAR_HELPER(LUT, R, X, Y) \
- w = texture1D(LUT, length(vec2(X, Y) - fcoord)/R).r; \
- c = texture(tex, base + pt * vec2(X, Y)); \
- wsum += w; \
- res += vec4(w) * c;
-
-#define SAMPLE_POLAR_PRIMARY(LUT, R, X, Y) \
- SAMPLE_POLAR_HELPER(LUT, R, X, Y) \
- lo = min(lo, c); \
- hi = max(hi, c);
-
-#define SAMPLE_POLAR_POTENTIAL(LUT, R, X, Y) \
- if (length(vec2(X, Y) - fcoord)/R < 1.0) { \
- SAMPLE_POLAR_HELPER(LUT, R, X, Y) \
- }
-
-#define SAMPLE_CONVOLUTION_POLAR_R(NAME, R, LUT, WEIGHTS_FN, ANTIRING) \
- vec4 NAME(VIDEO_SAMPLER tex, vec2 texsize, vec2 texcoord) { \
- vec2 pt = vec2(1.0) / texsize; \
- vec2 fcoord = fract(texcoord * texsize - vec2(0.5)); \
- vec2 base = texcoord - fcoord * pt; \
- vec4 res = vec4(0.0); \
- vec4 lo = vec4(1.0); \
- vec4 hi = vec4(0.0); \
- float wsum = 0.0; \
- float w; \
- vec4 c; \
- WEIGHTS_FN(LUT); \
- res = res / vec4(wsum); \
- return mix(res, clamp(res, lo, hi), ANTIRING); \
- }
-
-#endif /* HAVE_ARRAYS */
-
-#ifdef DEF_SCALER0
-DEF_SCALER0
-#endif
-#ifdef DEF_SCALER1
-DEF_SCALER1
-#endif
-
-// Unsharp masking
-vec4 sample_sharpen3(VIDEO_SAMPLER tex, vec2 texsize, vec2 texcoord, float param1) {
- vec2 pt = 1.0 / texsize;
- vec2 st = pt * 0.5;
- vec4 p = texture(tex, texcoord);
- vec4 sum = texture(tex, texcoord + st * vec2(+1, +1))
- + texture(tex, texcoord + st * vec2(+1, -1))
- + texture(tex, texcoord + st * vec2(-1, +1))
- + texture(tex, texcoord + st * vec2(-1, -1));
- return p + (p - 0.25 * sum) * param1;
-}
-
-vec4 sample_sharpen5(VIDEO_SAMPLER tex, vec2 texsize, vec2 texcoord, float param1) {
- vec2 pt = 1.0 / texsize;
- vec2 st1 = pt * 1.2;
- vec4 p = texture(tex, texcoord);
- vec4 sum1 = texture(tex, texcoord + st1 * vec2(+1, +1))
- + texture(tex, texcoord + st1 * vec2(+1, -1))
- + texture(tex, texcoord + st1 * vec2(-1, +1))
- + texture(tex, texcoord + st1 * vec2(-1, -1));
- vec2 st2 = pt * 1.5;
- vec4 sum2 = texture(tex, texcoord + st2 * vec2(+1, 0))
- + texture(tex, texcoord + st2 * vec2( 0, +1))
- + texture(tex, texcoord + st2 * vec2(-1, 0))
- + texture(tex, texcoord + st2 * vec2( 0, -1));
- vec4 t = p * 0.859375 + sum2 * -0.1171875 + sum1 * -0.09765625;
- return p + t * param1;
-}
-
-void main() {
- vec2 chr_texcoord = texcoord;
-#ifdef USE_CHROMA_FIX
- chr_texcoord = chr_texcoord * chroma_fix;
-#endif
-#ifdef USE_RECTANGLE
- chr_texcoord = chr_texcoord * chroma_div;
-#else
- // Texture coordinates are [0,1], and chroma plane coordinates are
- // magically rescaled.
-#endif
- chr_texcoord = chr_texcoord + chroma_center_offset;
-#ifndef USE_CONV
-#define USE_CONV 0
-#endif
-#ifndef USE_LINEAR_INTERPOLATION
-#define USE_LINEAR_INTERPOLATION 0
-#endif
-#if USE_LINEAR_INTERPOLATION == 1
- vec4 acolor = mix(
- texture(texture0, texcoord),
- texture(texture1, texcoord),
- inter_coeff);
-#elif USE_CONV == CONV_PLANAR
- vec4 acolor = vec4(SAMPLE(texture0, textures_size[0], texcoord).r,
- SAMPLE_C(texture1, textures_size[1], chr_texcoord).r,
- SAMPLE_C(texture2, textures_size[2], chr_texcoord).r,
- 1.0);
-#elif USE_CONV == CONV_NV12
- vec4 acolor = vec4(SAMPLE(texture0, textures_size[0], texcoord).r,
- SAMPLE_C(texture1, textures_size[1], chr_texcoord).RG,
- 1.0);
-#else
- vec4 acolor = SAMPLE(texture0, textures_size[0], texcoord);
-#endif
-#ifdef USE_COLOR_SWIZZLE
- acolor = acolor. USE_COLOR_SWIZZLE ;
-#endif
-#ifdef USE_ALPHA_PLANE
- acolor.a = SAMPLE(texture3, textures_size[3], texcoord).r;
-#endif
- vec3 color = acolor.rgb;
- float alpha = acolor.a;
-#ifdef USE_INPUT_GAMMA
- // Pre-colormatrix input gamma correction (eg. for MP_IMGFLAG_XYZ)
- color = pow(color, vec3(input_gamma));
-#endif
-#ifdef USE_COLORMATRIX
- // Conversion from Y'CbCr or other spaces to RGB
- color = mat3(colormatrix) * color + colormatrix_c;
-#endif
-#ifdef USE_CONV_GAMMA
- // Post-colormatrix converted gamma correction (eg. for MP_IMGFLAG_XYZ)
- color = pow(color, vec3(conv_gamma));
-#endif
-#ifdef USE_CONST_LUMA
- // Conversion from C'rcY'cC'bc to R'Y'cB' via the BT.2020 CL system:
- // C'bc = (B'-Y'c) / 1.9404 | C'bc <= 0
- // = (B'-Y'c) / 1.5816 | C'bc > 0
- //
- // C'rc = (R'-Y'c) / 1.7184 | C'rc <= 0
- // = (R'-Y'c) / 0.9936 | C'rc > 0
- //
- // as per the BT.2020 specification, table 4. This is a non-linear
- // transformation because (constant) luminance receives non-equal
- // contributions from the three different channels.
- color.br = color.br * mix(vec2(1.5816, 0.9936), vec2(1.9404, 1.7184),
- lessThanEqual(color.br, vec2(0))) + color.gg;
-
- // Expand channels to camera-linear light. This shader currently just
- // assumes everything uses the BT.2020 12-bit gamma function, since the
- // difference between 10 and 12-bit is negligible for anything other than
- // 12-bit content.
- color = bt2020_expand(color);
- // Calculate the green channel from the expanded RYcB
- // The BT.2020 specification says Yc = 0.2627*R + 0.6780*G + 0.0593*B
- color.g = (color.g - 0.2627*color.r - 0.0593*color.b)/0.6780;
- // Re-compand to receive the R'G'B' result, same as other systems
- color = bt2020_compand(color);
-#endif
-#ifdef USE_COLORMATRIX
- // CONST_LUMA involves numbers outside the [0,1] range so we make sure
- // to clip here, after the (possible) USE_CONST_LUMA calculations are done,
- // instead of immediately after the colormatrix conversion.
- color = clamp(color, 0.0, 1.0);
-#endif
- // If we are scaling in linear light (SRGB or 3DLUT option enabled), we
- // expand our source colors before scaling. We distinguish between
- // BT.1886 (typical video files) and sRGB (typical image files).
-#ifdef USE_LINEAR_LIGHT_BT1886
- // This calculation is derived from the BT.1886 recommendation which
- // is itself derived from the curves of typical CRT monitors. It claims
- // that a correct video playback environment should have a pure power
- // curve transfer function (in contrast to the complex BT.709 function)
- // with a gamma value of 2.40, but this includes the typical gamma boost
- // of ~1.2 for dark viewing environments. The figure used here instead
- // (1.961) is therefore a pure power curve but without the boost, which
- // is a very close approximation of the true BT.709 function.
- color = pow(color, vec3(1.961));
-#endif
-#ifdef USE_LINEAR_LIGHT_SRGB
- // This is not needed for most sRGB content since we can use GL_SRGB to
- // directly sample RGB texture in linear light, but for things which are
- // also sRGB but in a different format (such as JPEG's YUV), we need
- // to convert to linear light manually.
- color = srgb_expand(color);
-#endif
-#ifdef USE_SIGMOID
- color = sig_center - log(1.0/(color * sig_scale + sig_offset) - 1.0)/sig_slope;
-#endif
- // Image upscaling happens roughly here
-#ifdef USE_SIGMOID_INV
- // Inverse of USE_SIGMOID
- color = (1.0/(1.0 + exp(sig_slope * (sig_center - color))) - sig_offset) / sig_scale;
-#endif
-#ifdef USE_CMS_MATRIX
- // Convert to the right target gamut first (to BT.709 for sRGB,
- // and to BT.2020 for 3DLUT).
- color = cms_matrix * color;
-#endif
- // Clamp to the target gamut. This clamp is needed because the gamma
- // functions are not well-defined outside this range, which is related to
- // the fact that they're not representable on the target device.
- // TODO: Desaturate colorimetrically; this happens automatically for
- // 3dlut targets but not for sRGB mode. Not sure if this is a requirement.
- color = clamp(color, 0.0, 1.0);
-#ifdef USE_INV_GAMMA
- // User-defined gamma correction factor (via the gamma sub-option)
- color = pow(color, vec3(inv_gamma));
-#endif
-#ifdef USE_3DLUT
- // For the 3DLUT we are arbitrarily using 2.4 as input gamma to reduce
- // the amount of rounding errors, so we pull up to that space first and
- // then pass it through the 3D texture.
- color = pow(color, vec3(1.0/2.4));
- color = texture3D(lut_3d, color).rgb;
-#endif
-#ifdef USE_SRGB
- // Adapt and compand from the linear BT2020 source to the sRGB output
- color = srgb_compand(color);
-#endif
-#ifdef USE_INV_BT1886
- color = pow(color, vec3(1.0/1.961));
-#endif
-#ifdef USE_DITHER
- vec2 dither_pos = gl_FragCoord.xy / dither_size;
-#ifdef USE_TEMPORAL_DITHER
- dither_pos = dither_trafo * dither_pos;
-#endif
- float dither_value = texture(dither, dither_pos).r;
- color = floor(color * dither_quantization + dither_value + dither_center) /
- dither_quantization;
-#endif
-#ifdef USE_ALPHA_BLEND
- color = color * alpha;
-#endif
-#ifdef USE_ALPHA
- out_color = vec4(color, alpha);
-#else
- out_color = vec4(color, 1.0);
-#endif
-}
diff --git a/video/out/vo_opengl.c b/video/out/vo_opengl.c
index 887a8d8fbd..aa3dd0c9e0 100644
--- a/video/out/vo_opengl.c
+++ b/video/out/vo_opengl.c
@@ -93,12 +93,11 @@ static void resize(struct gl_priv *p)
MP_VERBOSE(vo, "Resize: %dx%d\n", vo->dwidth, vo->dheight);
- struct mp_rect wnd = {0, 0, vo->dwidth, vo->dheight};
struct mp_rect src, dst;
struct mp_osd_res osd;
vo_get_src_dst_rects(vo, &src, &dst, &osd);
- gl_video_resize(p->renderer, &wnd, &src, &dst, &osd, false);
+ gl_video_resize(p->renderer, vo->dwidth, -vo->dheight, &src, &dst, &osd);
vo->want_redraw = true;
}
@@ -198,7 +197,7 @@ static int query_format(struct vo *vo, int format)
static void video_resize_redraw_callback(struct vo *vo, int w, int h)
{
struct gl_priv *p = vo->priv;
- gl_video_resize_redraw(p->renderer, w, h);
+ gl_video_resize_redraw(p->renderer, w, -h);
}
diff --git a/video/out/vo_opengl_cb.c b/video/out/vo_opengl_cb.c
index cd04f5219b..e20be8dd67 100644
--- a/video/out/vo_opengl_cb.c
+++ b/video/out/vo_opengl_cb.c
@@ -66,7 +66,7 @@ struct mpv_opengl_cb_context {
int queued_frames;
struct mp_image_params img_params;
bool reconfigured;
- struct mp_rect wnd;
+ int vp_w, vp_h;
bool flip;
bool force_update;
bool imgfmt_supported[IMGFMT_END - IMGFMT_START];
@@ -282,28 +282,22 @@ int mpv_opengl_cb_render(struct mpv_opengl_cb_context *ctx, int fbo, int vp[4])
ctx->force_update |= ctx->reconfigured;
- int h = vp[3];
- bool flip = h < 0 && h > INT_MIN;
- if (flip)
- h = -h;
- struct mp_rect wnd = {vp[0], vp[1], vp[0] + vp[2], vp[1] + h};
- if (wnd.x0 != ctx->wnd.x0 || wnd.y0 != ctx->wnd.y0 ||
- wnd.x1 != ctx->wnd.x1 || wnd.y1 != ctx->wnd.y1 ||
- ctx->flip != flip)
+ int vp_w = vp[2], vp_h = vp[3];
+ if (ctx->vp_w != vp_w || ctx->vp_h != vp_h)
ctx->force_update = true;
if (ctx->force_update && vo) {
ctx->force_update = false;
- ctx->wnd = wnd;
- ctx->flip = flip;
+ ctx->vp_w = vp_w;
+ ctx->vp_h = vp_h;
struct mp_rect src, dst;
struct mp_osd_res osd;
mp_get_src_dst_rects(ctx->log, &ctx->vo_opts, vo->driver->caps,
- &ctx->img_params, wnd.x1 - wnd.x0, wnd.y1 - wnd.y0,
+ &ctx->img_params, vp_w, abs(vp_h),
1.0, &src, &dst, &osd);
- gl_video_resize(ctx->renderer, &wnd, &src, &dst, &osd, !ctx->flip);
+ gl_video_resize(ctx->renderer, vp_w, vp_h, &src, &dst, &osd);
}
if (ctx->reconfigured)
diff --git a/wscript_build.py b/wscript_build.py
index 8c6ec0107a..952d0370e6 100644
--- a/wscript_build.py
+++ b/wscript_build.py
@@ -54,10 +54,6 @@ def build(ctx):
target = "input/input_conf.h")
ctx.file2string(
- source = "video/out/gl_video_shaders.glsl",
- target = "video/out/gl_video_shaders.h")
-
- ctx.file2string(
source = "sub/osd_font.otf",
target = "sub/osd_font.h")