// This is free and unencumbered software released into the public domain under The Unlicense (http://unlicense.org/) // main repo: https://github.com/wangyi-fudan/wyhash // author: 王一 Wang Yi // contributors: Reini Urban, Dietrich Epp, Joshua Haberman, Tommy Ettinger, Daniel Lemire, Otmar Ertl, cocowalla, leo-yuriev, Diego Barrios Romero, paulie-g, dumblob, Yann Collet, ivte-ms, hyb, James Z.M. Gao, easyaspi314 (Devin), TheOneric /* quick example: string s="fjsakfdsjkf"; uint64_t hash=wyhash(s.c_str(), s.size(), 0, _wyp); */ #ifndef wyhash_final_version_3 #define wyhash_final_version_3 #ifndef WYHASH_CONDOM //protections that produce different results: //1: normal valid behavior //2: extra protection against entropy loss (probability=2^-63), aka. "blind multiplication" #define WYHASH_CONDOM 1 #endif #ifndef WYHASH_32BIT_MUM //0: normal version, slow on 32 bit systems //1: faster on 32 bit systems but produces different results, incompatible with wy2u0k function #define WYHASH_32BIT_MUM 0 #endif //includes #include #include #if defined(_MSC_VER) && defined(_M_X64) #include #pragma intrinsic(_umul128) #endif //likely and unlikely macros #if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) #define _likely_(x) __builtin_expect(x,1) #define _unlikely_(x) __builtin_expect(x,0) #else #define _likely_(x) (x) #define _unlikely_(x) (x) #endif //128bit multiply function static inline uint64_t _wyrot(uint64_t x) { return (x>>32)|(x<<32); } static inline void _wymum(uint64_t *A, uint64_t *B){ #if(WYHASH_32BIT_MUM) uint64_t hh=(*A>>32)*(*B>>32), hl=(*A>>32)*(uint32_t)*B, lh=(uint32_t)*A*(*B>>32), ll=(uint64_t)(uint32_t)*A*(uint32_t)*B; #if(WYHASH_CONDOM>1) *A^=_wyrot(hl)^hh; *B^=_wyrot(lh)^ll; #else *A=_wyrot(hl)^hh; *B=_wyrot(lh)^ll; #endif #elif defined(__SIZEOF_INT128__) __uint128_t r=*A; r*=*B; #if(WYHASH_CONDOM>1) *A^=(uint64_t)r; *B^=(uint64_t)(r>>64); #else *A=(uint64_t)r; *B=(uint64_t)(r>>64); #endif #elif defined(_MSC_VER) && defined(_M_X64) #if(WYHASH_CONDOM>1) uint64_t a, b; a=_umul128(*A,*B,&b); *A^=a; *B^=b; #else *A=_umul128(*A,*B,B); #endif #else uint64_t ha=*A>>32, hb=*B>>32, la=(uint32_t)*A, lb=(uint32_t)*B, hi, lo; uint64_t rh=ha*hb, rm0=ha*lb, rm1=hb*la, rl=la*lb, t=rl+(rm0<<32), c=t>32)+(rm1>>32)+c; #if(WYHASH_CONDOM>1) *A^=lo; *B^=hi; #else *A=lo; *B=hi; #endif #endif } //multiply and xor mix function, aka MUM static inline uint64_t _wymix(uint64_t A, uint64_t B){ _wymum(&A,&B); return A^B; } //endian macros #ifndef WYHASH_LITTLE_ENDIAN #if defined(_WIN32) || defined(__LITTLE_ENDIAN__) || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) #define WYHASH_LITTLE_ENDIAN 1 #elif defined(__BIG_ENDIAN__) || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) #define WYHASH_LITTLE_ENDIAN 0 #else #warning could not determine endianness! Falling back to little endian. #define WYHASH_LITTLE_ENDIAN 1 #endif #endif //read functions #if (WYHASH_LITTLE_ENDIAN) static inline uint64_t _wyr8(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return v;} static inline uint64_t _wyr4(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return v;} #elif defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) static inline uint64_t _wyr8(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return __builtin_bswap64(v);} static inline uint64_t _wyr4(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return __builtin_bswap32(v);} #elif defined(_MSC_VER) static inline uint64_t _wyr8(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return _byteswap_uint64(v);} static inline uint64_t _wyr4(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return _byteswap_ulong(v);} #else static inline uint64_t _wyr8(const uint8_t *p) { uint64_t v; memcpy(&v, p, 8); return (((v >> 56) & 0xff)| ((v >> 40) & 0xff00)| ((v >> 24) & 0xff0000)| ((v >> 8) & 0xff000000)| ((v << 8) & 0xff00000000)| ((v << 24) & 0xff0000000000)| ((v << 40) & 0xff000000000000)| ((v << 56) & 0xff00000000000000)); } static inline uint64_t _wyr4(const uint8_t *p) { uint32_t v; memcpy(&v, p, 4); return (((v >> 24) & 0xff)| ((v >> 8) & 0xff00)| ((v << 8) & 0xff0000)| ((v << 24) & 0xff000000)); } #endif static inline uint64_t _wyr3(const uint8_t *p, size_t k) { return (((uint64_t)p[0])<<16)|(((uint64_t)p[k>>1])<<8)|p[k-1];} //wyhash main function static inline uint64_t wyhash(const void *key, size_t len, uint64_t seed, const uint64_t *secret){ const uint8_t *p=(const uint8_t *)key; seed^=*secret; uint64_t a, b; if(_likely_(len<=16)){ if(_likely_(len>=4)){ a=(_wyr4(p)<<32)|_wyr4(p+((len>>3)<<2)); b=(_wyr4(p+len-4)<<32)|_wyr4(p+len-4-((len>>3)<<2)); } else if(_likely_(len>0)){ a=_wyr3(p,len); b=0;} else a=b=0; } else{ size_t i=len; if(_unlikely_(i>48)){ uint64_t see1=seed, see2=seed; do{ seed=_wymix(_wyr8(p)^secret[1],_wyr8(p+8)^seed); see1=_wymix(_wyr8(p+16)^secret[2],_wyr8(p+24)^see1); see2=_wymix(_wyr8(p+32)^secret[3],_wyr8(p+40)^see2); p+=48; i-=48; }while(_likely_(i>48)); seed^=see1^see2; } while(_unlikely_(i>16)){ seed=_wymix(_wyr8(p)^secret[1],_wyr8(p+8)^seed); i-=16; p+=16; } a=_wyr8(p+i-16); b=_wyr8(p+i-8); } return _wymix(secret[1]^len,_wymix(a^secret[1],b^seed)); } //the default secret parameters static const uint64_t _wyp[4] = {0xa0761d6478bd642full, 0xe7037ed1a0b428dbull, 0x8ebc6af09c88c6e3ull, 0x589965cc75374cc3ull}; //a useful 64bit-64bit mix function to produce deterministic pseudo random numbers that can pass BigCrush and PractRand static inline uint64_t wyhash64(uint64_t A, uint64_t B){ A^=0xa0761d6478bd642full; B^=0xe7037ed1a0b428dbull; _wymum(&A,&B); return _wymix(A^0xa0761d6478bd642full,B^0xe7037ed1a0b428dbull);} //The wyrand PRNG that pass BigCrush and PractRand static inline uint64_t wyrand(uint64_t *seed){ *seed+=0xa0761d6478bd642full; return _wymix(*seed,*seed^0xe7037ed1a0b428dbull);} //convert any 64 bit pseudo random numbers to uniform distribution [0,1). It can be combined with wyrand, wyhash64 or wyhash. static inline double wy2u01(uint64_t r){ const double _wynorm=1.0/(1ull<<52); return (r>>12)*_wynorm;} //convert any 64 bit pseudo random numbers to APPROXIMATE Gaussian distribution. It can be combined with wyrand, wyhash64 or wyhash. static inline double wy2gau(uint64_t r){ const double _wynorm=1.0/(1ull<<20); return ((r&0x1fffff)+((r>>21)&0x1fffff)+((r>>42)&0x1fffff))*_wynorm-3.0;} #if(!WYHASH_32BIT_MUM) //fast range integer random number generation on [0,k) credit to Daniel Lemire. May not work when WYHASH_32BIT_MUM=1. It can be combined with wyrand, wyhash64 or wyhash. static inline uint64_t wy2u0k(uint64_t r, uint64_t k){ _wymum(&r,&k); return k; } #endif //make your own secret static inline void make_secret(uint64_t seed, uint64_t *secret){ uint8_t c[] = {15, 23, 27, 29, 30, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60, 71, 75, 77, 78, 83, 85, 86, 89, 90, 92, 99, 101, 102, 105, 106, 108, 113, 114, 116, 120, 135, 139, 141, 142, 147, 149, 150, 153, 154, 156, 163, 165, 166, 169, 170, 172, 177, 178, 180, 184, 195, 197, 198, 201, 202, 204, 209, 210, 212, 216, 225, 226, 228, 232, 240 }; for(size_t i=0;i<4;i++){ uint8_t ok; do{ ok=1; secret[i]=0; for(size_t j=0;j<64;j+=8) secret[i]|=((uint64_t)c[wyrand(&seed)%sizeof(c)])<> 1) & 0x5555555555555555; x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; x = (x * 0x0101010101010101) >> 56; if(x!=32){ ok=0; break; } #endif } }while(!ok); } } /* This is world's fastest hash map: 2x faster than bytell_hash_map. It does not store the keys, but only the hash/signature of keys. First we use pos=hash1(key) to approximately locate the bucket. Then we search signature=hash2(key) from pos linearly. If we find a bucket with matched signature we report the bucket Or if we meet a bucket whose signature=0, we report a new position to insert The signature collision probability is very low as we usually searched N~10 buckets. By combining hash1 and hash2, we acturally have 128 bit anti-collision strength. hash1 and hash2 can be the same function, resulting lower collision resistance but faster. The signature is 64 bit, but can be modified to 32 bit if necessary for save space. The above two can be activated by define WYHASHMAP_WEAK_SMALL_FAST simple examples: const size_t size=213432; vector idx(size); // allocate the index of fixed size. idx MUST be zeroed. vector value(size); // we only care about the index, user should maintain his own value vectors. string key="dhskfhdsj" // the object to be inserted into idx size_t pos=wyhashmap(idx.data(), idx.size(), key.c_str(), key.size(), 1); // get the position and insert if(pos */