/* * Copyright (C) 2006 Evgeniy Stepanov * Copyright (C) 2011 Grigori Goronzy * Copyright (c) 2011-2014, Yu Zhuohuang * * This file is part of libass. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "config.h" #include "ass_compat.h" #include #include #include #include #include #include #include FT_GLYPH_H #include FT_OUTLINE_H #include "ass_utils.h" #include "ass_outline.h" #include "ass_bitmap.h" #include "ass_render.h" #define ALIGN C_ALIGN_ORDER #define DECORATE(func) ass_##func##_c #include "ass_func_template.h" #undef ALIGN #undef DECORATE #if (defined(__i386__) || defined(__x86_64__)) && CONFIG_ASM #define ALIGN 4 #define DECORATE(func) ass_##func##_sse2 #include "ass_func_template.h" #undef ALIGN #undef DECORATE #define ALIGN 5 #define DECORATE(func) ass_##func##_avx2 #include "ass_func_template.h" #undef ALIGN #undef DECORATE #endif void ass_synth_blur(const BitmapEngine *engine, Bitmap *bm, int be, double blur_r2) { if (!bm->buffer) return; // Apply gaussian blur if (blur_r2 > 0.001) ass_gaussian_blur(engine, bm, blur_r2); if (!be) return; // Apply box blur (multiple passes, if requested) size_t size = sizeof(uint16_t) * bm->stride * 2; uint16_t *tmp = ass_aligned_alloc(32, size, false); if (!tmp) return; int32_t w = bm->w; int32_t h = bm->h; ptrdiff_t stride = bm->stride; uint8_t *buf = bm->buffer; if (--be) { be_blur_pre(buf, w, h, stride); do { memset(tmp, 0, stride * 2); engine->be_blur(buf, w, h, stride, tmp); } while (--be); be_blur_post(buf, w, h, stride); } memset(tmp, 0, stride * 2); engine->be_blur(buf, w, h, stride, tmp); ass_aligned_free(tmp); } bool alloc_bitmap(const BitmapEngine *engine, Bitmap *bm, int32_t w, int32_t h, bool zero) { unsigned align = 1 << engine->align_order; size_t s = ass_align(align, w); // Too often we use ints as offset for bitmaps => use INT_MAX. if (s > (INT_MAX - 32) / FFMAX(h, 1)) return false; uint8_t *buf = ass_aligned_alloc(align, s * h + 32, zero); if (!buf) return false; bm->w = w; bm->h = h; bm->stride = s; bm->buffer = buf; return true; } bool realloc_bitmap(const BitmapEngine *engine, Bitmap *bm, int32_t w, int32_t h) { uint8_t *old = bm->buffer; if (!alloc_bitmap(engine, bm, w, h, false)) return false; ass_aligned_free(old); return true; } void ass_free_bitmap(Bitmap *bm) { ass_aligned_free(bm->buffer); } bool copy_bitmap(const BitmapEngine *engine, Bitmap *dst, const Bitmap *src) { if (!src->buffer) { memset(dst, 0, sizeof(*dst)); return true; } if (!alloc_bitmap(engine, dst, src->w, src->h, false)) return false; dst->left = src->left; dst->top = src->top; memcpy(dst->buffer, src->buffer, src->stride * src->h); return true; } bool outline_to_bitmap(ASS_Renderer *render_priv, Bitmap *bm, ASS_Outline *outline1, ASS_Outline *outline2) { RasterizerData *rst = &render_priv->rasterizer; if (outline1 && !rasterizer_set_outline(rst, outline1, false)) { ass_msg(render_priv->library, MSGL_WARN, "Failed to process glyph outline!\n"); return false; } if (outline2 && !rasterizer_set_outline(rst, outline2, !!outline1)) { ass_msg(render_priv->library, MSGL_WARN, "Failed to process glyph outline!\n"); return false; } if (rst->bbox.x_min > rst->bbox.x_max || rst->bbox.y_min > rst->bbox.y_max) return false; // enlarge by 1/64th of pixel to bypass slow rasterizer path, add 1 pixel for shift_bitmap int32_t x_min = (rst->bbox.x_min - 1) >> 6; int32_t y_min = (rst->bbox.y_min - 1) >> 6; int32_t x_max = (rst->bbox.x_max + 127) >> 6; int32_t y_max = (rst->bbox.y_max + 127) >> 6; int32_t w = x_max - x_min; int32_t h = y_max - y_min; int mask = (1 << render_priv->engine->tile_order) - 1; // XXX: is that possible to trigger at all? if (w < 0 || h < 0 || w > INT_MAX - mask || h > INT_MAX - mask) { ass_msg(render_priv->library, MSGL_WARN, "Glyph bounding box too large: %dx%dpx", w, h); return false; } int32_t tile_w = (w + mask) & ~mask; int32_t tile_h = (h + mask) & ~mask; if (!alloc_bitmap(render_priv->engine, bm, tile_w, tile_h, false)) return false; bm->left = x_min; bm->top = y_min; if (!rasterizer_fill(render_priv->engine, rst, bm->buffer, x_min, y_min, bm->stride, tile_h, bm->stride)) { ass_msg(render_priv->library, MSGL_WARN, "Failed to rasterize glyph!\n"); ass_free_bitmap(bm); return false; } return true; } /** * \brief fix outline bitmap * * The glyph bitmap is subtracted from outline bitmap. This way looks much * better in some cases. */ void fix_outline(Bitmap *bm_g, Bitmap *bm_o) { if (!bm_g->buffer || !bm_o->buffer) return; int32_t l = FFMAX(bm_o->left, bm_g->left); int32_t t = FFMAX(bm_o->top, bm_g->top); int32_t r = FFMIN(bm_o->left + bm_o->stride, bm_g->left + bm_g->stride); int32_t b = FFMIN(bm_o->top + bm_o->h, bm_g->top + bm_g->h); uint8_t *g = bm_g->buffer + (t - bm_g->top) * bm_g->stride + (l - bm_g->left); uint8_t *o = bm_o->buffer + (t - bm_o->top) * bm_o->stride + (l - bm_o->left); for (int32_t y = 0; y < b - t; y++) { for (int32_t x = 0; x < r - l; x++) o[x] = (o[x] > g[x]) ? o[x] - (g[x] / 2) : 0; g += bm_g->stride; o += bm_o->stride; } } /** * \brief Shift a bitmap by the fraction of a pixel in x and y direction * expressed in 26.6 fixed point */ void shift_bitmap(Bitmap *bm, int shift_x, int shift_y) { assert((shift_x & ~63) == 0 && (shift_y & ~63) == 0); if (!bm->buffer) return; int32_t w = bm->w, h = bm->h; ptrdiff_t s = bm->stride; uint8_t *buf = bm->buffer; // Shift in x direction if (shift_x) for (int32_t y = 0; y < h; y++) { for (int32_t x = w - 1; x > 0; x--) { uint8_t b = buf[x + y * s - 1] * shift_x >> 6; buf[x + y * s - 1] -= b; buf[x + y * s] += b; } } // Shift in y direction if (shift_y) for (int32_t x = 0; x < w; x++) { for (int32_t y = h - 1; y > 0; y--) { uint8_t b = buf[x + y * s - s] * shift_y >> 6; buf[x + y * s - s] -= b; buf[x + y * s] += b; } } } /** * \brief Blur with [[1,2,1], [2,4,2], [1,2,1]] kernel * This blur is the same as the one employed by vsfilter. * Pure C implementation. */ void ass_be_blur_c(uint8_t *buf, intptr_t w, intptr_t h, intptr_t stride, uint16_t *tmp) { uint16_t *col_pix_buf = tmp; uint16_t *col_sum_buf = tmp + w; unsigned x, y, old_pix, old_sum, temp1, temp2; uint8_t *src, *dst; memset(tmp, 0, sizeof(uint16_t) * w * 2); y = 0; { src=buf+y*stride; x = 1; old_pix = src[x-1]; old_sum = old_pix; for ( ; x < w; x++) { temp1 = src[x]; temp2 = old_pix + temp1; old_pix = temp1; temp1 = old_sum + temp2; old_sum = temp2; col_pix_buf[x-1] = temp1; col_sum_buf[x-1] = temp1; } temp1 = old_sum + old_pix; col_pix_buf[x-1] = temp1; col_sum_buf[x-1] = temp1; } for (y++; y < h; y++) { src=buf+y*stride; dst=buf+(y-1)*stride; x = 1; old_pix = src[x-1]; old_sum = old_pix; for ( ; x < w; x++) { temp1 = src[x]; temp2 = old_pix + temp1; old_pix = temp1; temp1 = old_sum + temp2; old_sum = temp2; temp2 = col_pix_buf[x-1] + temp1; col_pix_buf[x-1] = temp1; dst[x-1] = (col_sum_buf[x-1] + temp2) >> 4; col_sum_buf[x-1] = temp2; } temp1 = old_sum + old_pix; temp2 = col_pix_buf[x-1] + temp1; col_pix_buf[x-1] = temp1; dst[x-1] = (col_sum_buf[x-1] + temp2) >> 4; col_sum_buf[x-1] = temp2; } { dst=buf+(y-1)*stride; for (x = 0; x < w; x++) dst[x] = (col_sum_buf[x] + col_pix_buf[x]) >> 4; } } void be_blur_pre(uint8_t *buf, intptr_t w, intptr_t h, intptr_t stride) { for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { // This is equivalent to (value * 64 + 127) / 255 for all // values from 0 to 256 inclusive. Assist vectorizing // compilers by noting that all temporaries fit in 8 bits. buf[y * stride + x] = (uint8_t) ((buf[y * stride + x] >> 1) + 1) >> 1; } } } void be_blur_post(uint8_t *buf, intptr_t w, intptr_t h, intptr_t stride) { for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { // This is equivalent to (value * 255 + 32) / 64 for all values // from 0 to 96 inclusive, and we only care about 0 to 64. uint8_t value = buf[y * stride + x]; buf[y * stride + x] = (value << 2) - (value > 32); } } } /* * To find these values, simulate blur on the border between two * half-planes, one zero-filled (background) and the other filled * with the maximum supported value (foreground). Keep incrementing * the \be argument. The necessary padding is the distance by which * the blurred foreground image extends beyond the original border * and into the background. Initially it increases along with \be, * but very soon it grinds to a halt. At some point, the blurred * image actually reaches a stationary point and stays unchanged * forever after, simply _shifting_ by one pixel for each \be * step--moving in the direction of the non-zero half-plane and * thus decreasing the necessary padding (although the large * padding is still needed for intermediate results). In practice, * images are finite rather than infinite like half-planes, but * this can only decrease the required padding. Half-planes filled * with extreme values are the theoretical limit of the worst case. * Make sure to use the right pixel value range in the simulation! */ int be_padding(int be) { if (be <= 3) return be; if (be <= 7) return 4; if (be <= 123) return 5; return FFMAX(128 - be, 0); } /** * \brief Add two bitmaps together at a given position * Uses additive blending, clipped to [0,255]. Pure C implementation. */ void ass_add_bitmaps_c(uint8_t *dst, intptr_t dst_stride, uint8_t *src, intptr_t src_stride, intptr_t height, intptr_t width) { unsigned out; uint8_t* end = dst + dst_stride * height; while (dst < end) { for (unsigned j = 0; j < width; ++j) { out = dst[j] + src[j]; dst[j] = FFMIN(out, 255); } dst += dst_stride; src += src_stride; } } void ass_sub_bitmaps_c(uint8_t *dst, intptr_t dst_stride, uint8_t *src, intptr_t src_stride, intptr_t height, intptr_t width) { short out; uint8_t* end = dst + dst_stride * height; while (dst < end) { for (unsigned j = 0; j < width; ++j) { out = dst[j] - src[j]; dst[j] = FFMAX(out, 0); } dst += dst_stride; src += src_stride; } } void ass_mul_bitmaps_c(uint8_t *dst, intptr_t dst_stride, uint8_t *src1, intptr_t src1_stride, uint8_t *src2, intptr_t src2_stride, intptr_t w, intptr_t h) { uint8_t* end = src1 + src1_stride * h; while (src1 < end) { for (unsigned x = 0; x < w; ++x) { dst[x] = (src1[x] * src2[x] + 255) >> 8; } dst += dst_stride; src1 += src1_stride; src2 += src2_stride; } }