/* * Copyright (C) 2006 Evgeniy Stepanov * Copyright (C) 2011 Grigori Goronzy * Copyright (c) 2011-2014, Yu Zhuohuang * * This file is part of libass. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "config.h" #include "ass_compat.h" #include #include #include #include #include #include #include FT_GLYPH_H #include FT_OUTLINE_H #include "ass_utils.h" #include "ass_outline.h" #include "ass_bitmap.h" #include "ass_render.h" #define ALIGN C_ALIGN_ORDER #define DECORATE(func) ass_##func##_c #include "ass_func_template.h" #undef ALIGN #undef DECORATE #if (defined(__i386__) || defined(__x86_64__)) && CONFIG_ASM #define ALIGN 4 #define DECORATE(func) ass_##func##_sse2 #include "ass_func_template.h" #undef ALIGN #undef DECORATE #define ALIGN 5 #define DECORATE(func) ass_##func##_avx2 #include "ass_func_template.h" #undef ALIGN #undef DECORATE #endif void ass_synth_blur(const BitmapEngine *engine, int opaque_box, int be, double blur_radius, Bitmap *bm_g, Bitmap *bm_o) { bool blur_g = !bm_o || opaque_box; if (blur_g && !bm_g) return; // Apply gaussian blur double r2 = blur_radius * blur_radius / log(256); if (r2 > 0.001) { if (bm_o) ass_gaussian_blur(engine, bm_o, r2); if (blur_g) ass_gaussian_blur(engine, bm_g, r2); } // Apply box blur (multiple passes, if requested) if (be) { size_t size_o = 0, size_g = 0; if (bm_o) size_o = sizeof(uint16_t) * bm_o->stride * 2; if (blur_g) size_g = sizeof(uint16_t) * bm_g->stride * 2; size_t size = FFMAX(size_o, size_g); uint16_t *tmp = size ? ass_aligned_alloc(32, size, false) : NULL; if (!tmp) return; if (bm_o) { unsigned passes = be; unsigned w = bm_o->w; unsigned h = bm_o->h; unsigned stride = bm_o->stride; unsigned char *buf = bm_o->buffer; if(w && h){ if(passes > 1){ be_blur_pre(buf, w, h, stride); while(--passes){ memset(tmp, 0, stride * 2); engine->be_blur(buf, w, h, stride, tmp); } be_blur_post(buf, w, h, stride); } memset(tmp, 0, stride * 2); engine->be_blur(buf, w, h, stride, tmp); } } if (blur_g) { unsigned passes = be; unsigned w = bm_g->w; unsigned h = bm_g->h; unsigned stride = bm_g->stride; unsigned char *buf = bm_g->buffer; if(w && h){ if(passes > 1){ be_blur_pre(buf, w, h, stride); while(--passes){ memset(tmp, 0, stride * 2); engine->be_blur(buf, w, h, stride, tmp); } be_blur_post(buf, w, h, stride); } memset(tmp, 0, stride * 2); engine->be_blur(buf, w, h, stride, tmp); } } ass_aligned_free(tmp); } } static bool alloc_bitmap_buffer(const BitmapEngine *engine, Bitmap *bm, int w, int h, bool zero) { unsigned align = 1 << engine->align_order; size_t s = ass_align(align, w); // Too often we use ints as offset for bitmaps => use INT_MAX. if (s > (INT_MAX - 32) / FFMAX(h, 1)) return false; uint8_t *buf = ass_aligned_alloc(align, s * h + 32, zero); if (!buf) return false; bm->w = w; bm->h = h; bm->stride = s; bm->buffer = buf; return true; } Bitmap *alloc_bitmap(const BitmapEngine *engine, int w, int h, bool zero) { Bitmap *bm = malloc(sizeof(Bitmap)); if (!bm) return NULL; if (!alloc_bitmap_buffer(engine, bm, w, h, zero)) { free(bm); return NULL; } bm->left = bm->top = 0; return bm; } bool realloc_bitmap(const BitmapEngine *engine, Bitmap *bm, int w, int h) { uint8_t *old = bm->buffer; if (!alloc_bitmap_buffer(engine, bm, w, h, false)) return false; ass_aligned_free(old); return true; } void ass_free_bitmap(Bitmap *bm) { if (bm) ass_aligned_free(bm->buffer); free(bm); } Bitmap *copy_bitmap(const BitmapEngine *engine, const Bitmap *src) { Bitmap *dst = alloc_bitmap(engine, src->w, src->h, false); if (!dst) return NULL; dst->left = src->left; dst->top = src->top; memcpy(dst->buffer, src->buffer, src->stride * src->h); return dst; } Bitmap *outline_to_bitmap(ASS_Renderer *render_priv, ASS_Outline *outline1, ASS_Outline *outline2, int bord) { RasterizerData *rst = &render_priv->rasterizer; if (outline1 && !rasterizer_set_outline(rst, outline1, false)) { ass_msg(render_priv->library, MSGL_WARN, "Failed to process glyph outline!\n"); return NULL; } if (outline2 && !rasterizer_set_outline(rst, outline2, !!outline1)) { ass_msg(render_priv->library, MSGL_WARN, "Failed to process glyph outline!\n"); return NULL; } if (rst->bbox.x_min > rst->bbox.x_max || rst->bbox.y_min > rst->bbox.y_max) return NULL; if (bord < 0 || bord > INT_MAX / 2) return NULL; if (rst->bbox.x_max > INT_MAX - 63 || rst->bbox.y_max > INT_MAX - 63) return NULL; int x_min = rst->bbox.x_min >> 6; int y_min = rst->bbox.y_min >> 6; int x_max = (rst->bbox.x_max + 63) >> 6; int y_max = (rst->bbox.y_max + 63) >> 6; int w = x_max - x_min; int h = y_max - y_min; int mask = (1 << render_priv->engine->tile_order) - 1; if (w < 0 || h < 0 || w > INT_MAX - (2 * bord + mask) || h > INT_MAX - (2 * bord + mask)) { ass_msg(render_priv->library, MSGL_WARN, "Glyph bounding box too large: %dx%dpx", w, h); return NULL; } int tile_w = (w + 2 * bord + mask) & ~mask; int tile_h = (h + 2 * bord + mask) & ~mask; Bitmap *bm = alloc_bitmap(render_priv->engine, tile_w, tile_h, false); if (!bm) return NULL; bm->left = x_min - bord; bm->top = y_min - bord; if (!rasterizer_fill(render_priv->engine, rst, bm->buffer, x_min - bord, y_min - bord, bm->stride, tile_h, bm->stride)) { ass_msg(render_priv->library, MSGL_WARN, "Failed to rasterize glyph!\n"); ass_free_bitmap(bm); return NULL; } return bm; } /** * \brief fix outline bitmap * * The glyph bitmap is subtracted from outline bitmap. This way looks much * better in some cases. */ void fix_outline(Bitmap *bm_g, Bitmap *bm_o) { int x, y; const int l = bm_o->left > bm_g->left ? bm_o->left : bm_g->left; const int t = bm_o->top > bm_g->top ? bm_o->top : bm_g->top; const int r = bm_o->left + bm_o->stride < bm_g->left + bm_g->stride ? bm_o->left + bm_o->stride : bm_g->left + bm_g->stride; const int b = bm_o->top + bm_o->h < bm_g->top + bm_g->h ? bm_o->top + bm_o->h : bm_g->top + bm_g->h; unsigned char *g = bm_g->buffer + (t - bm_g->top) * bm_g->stride + (l - bm_g->left); unsigned char *o = bm_o->buffer + (t - bm_o->top) * bm_o->stride + (l - bm_o->left); for (y = 0; y < b - t; ++y) { for (x = 0; x < r - l; ++x) { unsigned char c_g, c_o; c_g = g[x]; c_o = o[x]; o[x] = (c_o > c_g) ? c_o - (c_g / 2) : 0; } g += bm_g->stride; o += bm_o->stride; } } /** * \brief Shift a bitmap by the fraction of a pixel in x and y direction * expressed in 26.6 fixed point */ void shift_bitmap(Bitmap *bm, int shift_x, int shift_y) { int x, y, b; int w = bm->w; int h = bm->h; int s = bm->stride; unsigned char *buf = bm->buffer; assert((shift_x & ~63) == 0 && (shift_y & ~63) == 0); // Shift in x direction for (y = 0; y < h; y++) { for (x = w - 1; x > 0; x--) { b = (buf[x + y * s - 1] * shift_x) >> 6; buf[x + y * s - 1] -= b; buf[x + y * s] += b; } } // Shift in y direction for (x = 0; x < w; x++) { for (y = h - 1; y > 0; y--) { b = (buf[x + (y - 1) * s] * shift_y) >> 6; buf[x + (y - 1) * s] -= b; buf[x + y * s] += b; } } } /** * \brief Blur with [[1,2,1], [2,4,2], [1,2,1]] kernel * This blur is the same as the one employed by vsfilter. * Pure C implementation. */ void ass_be_blur_c(uint8_t *buf, intptr_t w, intptr_t h, intptr_t stride, uint16_t *tmp) { uint16_t *col_pix_buf = tmp; uint16_t *col_sum_buf = tmp + w; unsigned x, y, old_pix, old_sum, temp1, temp2; uint8_t *src, *dst; memset(tmp, 0, sizeof(uint16_t) * w * 2); y = 0; { src=buf+y*stride; x = 1; old_pix = src[x-1]; old_sum = old_pix; for ( ; x < w; x++) { temp1 = src[x]; temp2 = old_pix + temp1; old_pix = temp1; temp1 = old_sum + temp2; old_sum = temp2; col_pix_buf[x-1] = temp1; col_sum_buf[x-1] = temp1; } temp1 = old_sum + old_pix; col_pix_buf[x-1] = temp1; col_sum_buf[x-1] = temp1; } for (y++; y < h; y++) { src=buf+y*stride; dst=buf+(y-1)*stride; x = 1; old_pix = src[x-1]; old_sum = old_pix; for ( ; x < w; x++) { temp1 = src[x]; temp2 = old_pix + temp1; old_pix = temp1; temp1 = old_sum + temp2; old_sum = temp2; temp2 = col_pix_buf[x-1] + temp1; col_pix_buf[x-1] = temp1; dst[x-1] = (col_sum_buf[x-1] + temp2) >> 4; col_sum_buf[x-1] = temp2; } temp1 = old_sum + old_pix; temp2 = col_pix_buf[x-1] + temp1; col_pix_buf[x-1] = temp1; dst[x-1] = (col_sum_buf[x-1] + temp2) >> 4; col_sum_buf[x-1] = temp2; } { dst=buf+(y-1)*stride; for (x = 0; x < w; x++) dst[x] = (col_sum_buf[x] + col_pix_buf[x]) >> 4; } } void be_blur_pre(uint8_t *buf, intptr_t w, intptr_t h, intptr_t stride) { for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { // This is equivalent to (value * 64 + 127) / 255 for all // values from 0 to 256 inclusive. Assist vectorizing // compilers by noting that all temporaries fit in 8 bits. buf[y * stride + x] = (uint8_t) ((buf[y * stride + x] >> 1) + 1) >> 1; } } } void be_blur_post(uint8_t *buf, intptr_t w, intptr_t h, intptr_t stride) { for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { // This is equivalent to (value * 255 + 32) / 64 for all values // from 0 to 96 inclusive, and we only care about 0 to 64. uint8_t value = buf[y * stride + x]; buf[y * stride + x] = (value << 2) - (value > 32); } } } /* * To find these values, simulate blur on the border between two * half-planes, one zero-filled (background) and the other filled * with the maximum supported value (foreground). Keep incrementing * the \be argument. The necessary padding is the distance by which * the blurred foreground image extends beyond the original border * and into the background. Initially it increases along with \be, * but very soon it grinds to a halt. At some point, the blurred * image actually reaches a stationary point and stays unchanged * forever after, simply _shifting_ by one pixel for each \be * step--moving in the direction of the non-zero half-plane and * thus decreasing the necessary padding (although the large * padding is still needed for intermediate results). In practice, * images are finite rather than infinite like half-planes, but * this can only decrease the required padding. Half-planes filled * with extreme values are the theoretical limit of the worst case. * Make sure to use the right pixel value range in the simulation! */ int be_padding(int be) { if (be <= 3) return be; if (be <= 7) return 4; if (be <= 123) return 5; return FFMAX(128 - be, 0); } /** * \brief Add two bitmaps together at a given position * Uses additive blending, clipped to [0,255]. Pure C implementation. */ void ass_add_bitmaps_c(uint8_t *dst, intptr_t dst_stride, uint8_t *src, intptr_t src_stride, intptr_t height, intptr_t width) { unsigned out; uint8_t* end = dst + dst_stride * height; while (dst < end) { for (unsigned j = 0; j < width; ++j) { out = dst[j] + src[j]; dst[j] = FFMIN(out, 255); } dst += dst_stride; src += src_stride; } } void ass_sub_bitmaps_c(uint8_t *dst, intptr_t dst_stride, uint8_t *src, intptr_t src_stride, intptr_t height, intptr_t width) { short out; uint8_t* end = dst + dst_stride * height; while (dst < end) { for (unsigned j = 0; j < width; ++j) { out = dst[j] - src[j]; dst[j] = FFMAX(out, 0); } dst += dst_stride; src += src_stride; } } void ass_mul_bitmaps_c(uint8_t *dst, intptr_t dst_stride, uint8_t *src1, intptr_t src1_stride, uint8_t *src2, intptr_t src2_stride, intptr_t w, intptr_t h) { uint8_t* end = src1 + src1_stride * h; while (src1 < end) { for (unsigned x = 0; x < w; ++x) { dst[x] = (src1[x] * src2[x] + 255) >> 8; } dst += dst_stride; src1 += src1_stride; src2 += src2_stride; } }