/* * Copyright (C) 2006 Evgeniy Stepanov * Copyright (C) 2011 Grigori Goronzy * Copyright (c) 2011-2014, Yu Zhuohuang * * This file is part of libass. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "config.h" #include #include #include #include #include #include #include FT_GLYPH_H #include FT_OUTLINE_H #include "ass_utils.h" #include "ass_bitmap.h" #include "ass_render.h" #if (defined(__i386__) || defined(__x86_64__)) && CONFIG_ASM #include "x86/be_blur.h" #endif static const unsigned base = 256; struct ass_synth_priv { size_t tmp_allocated; void *tmp; int g_r; int g_w; double *g0; unsigned *g; unsigned *gt2; double radius; BEBlurFunc be_blur_func; }; static bool generate_tables(ASS_SynthPriv *priv, double radius) { double A = log(1.0 / base) / (radius * radius * 2); int mx, i; double volume_diff, volume_factor = 0; unsigned volume; if (radius < 0) return false; if (radius + 2.0 > INT_MAX / 2) radius = INT_MAX / 2; if (priv->radius == radius) return true; else priv->radius = radius; priv->g_r = ceil(radius); priv->g_w = 2 * priv->g_r + 1; if (priv->g_r) { priv->g0 = ass_realloc_array(priv->g0, priv->g_w, sizeof(double)); priv->g = ass_realloc_array(priv->g, priv->g_w, sizeof(unsigned)); priv->gt2 = ass_realloc_array(priv->gt2, priv->g_w, 256 * sizeof(unsigned)); if (!priv->g || !priv->g0 || !priv->gt2) { free(priv->g0); free(priv->g); free(priv->gt2); return false; } } if (priv->g_r) { // exact gaussian curve for (i = 0; i < priv->g_w; ++i) { priv->g0[i] = exp(A * (i - priv->g_r) * (i - priv->g_r)); } // integer gaussian curve with volume = 65536 for (volume_diff = 10000000; volume_diff > 0.0000001; volume_diff *= 0.5) { volume_factor += volume_diff; volume = 0; for (i = 0; i < priv->g_w; ++i) { priv->g[i] = (unsigned) (priv->g0[i] * volume_factor + .5); volume += priv->g[i]; } if (volume > 65536) volume_factor -= volume_diff; } volume = 0; for (i = 0; i < priv->g_w; ++i) { priv->g[i] = (unsigned) (priv->g0[i] * volume_factor + .5); volume += priv->g[i]; } // gauss table: for (mx = 0; mx < priv->g_w; mx++) { for (i = 0; i < 256; i++) { priv->gt2[mx + i * priv->g_w] = i * priv->g[mx]; } } } return true; } static bool resize_tmp(ASS_SynthPriv *priv, int w, int h) { if (w >= INT_MAX || (w + 1) > SIZE_MAX / 2 / sizeof(unsigned) / h) return false; size_t needed = sizeof(unsigned) * (w + 1) * h; if (priv->tmp && priv->tmp_allocated >= needed) return true; ass_aligned_free(priv->tmp); priv->tmp_allocated = FFMAX(needed, priv->tmp_allocated * 2); priv->tmp = ass_aligned_alloc(32, priv->tmp_allocated); return !!priv->tmp; } void ass_synth_blur(ASS_SynthPriv *priv_blur, int opaque_box, int be, double blur_radius, Bitmap *bm_g, Bitmap *bm_o) { if(blur_radius > 0.0 || be){ if (bm_o && !resize_tmp(priv_blur, bm_o->w, bm_o->h)) return; if ((!bm_o || opaque_box) && !resize_tmp(priv_blur, bm_g->w, bm_g->h)) return; } // Apply box blur (multiple passes, if requested) if (be) { uint16_t* tmp = priv_blur->tmp; if (bm_o) { unsigned passes = be; unsigned w = bm_o->w; unsigned h = bm_o->h; unsigned stride = bm_o->stride; unsigned char *buf = bm_o->buffer; if(w && h){ while(passes--){ memset(tmp, 0, stride * 2); if(w < 16){ be_blur_c(buf, w, h, stride, tmp); }else{ priv_blur->be_blur_func(buf, w, h, stride, tmp); } } } } if (!bm_o || opaque_box) { unsigned passes = be; unsigned w = bm_g->w; unsigned h = bm_g->h; unsigned stride = bm_g->stride; unsigned char *buf = bm_g->buffer; if(w && h){ while(passes--){ memset(tmp, 0, stride * 2); priv_blur->be_blur_func(buf, w, h, stride, tmp); } } } } // Apply gaussian blur if (blur_radius > 0.0 && generate_tables(priv_blur, blur_radius)) { if (bm_o) ass_gauss_blur(bm_o->buffer, priv_blur->tmp, bm_o->w, bm_o->h, bm_o->stride, priv_blur->gt2, priv_blur->g_r, priv_blur->g_w); if (!bm_o || opaque_box) ass_gauss_blur(bm_g->buffer, priv_blur->tmp, bm_g->w, bm_g->h, bm_g->stride, priv_blur->gt2, priv_blur->g_r, priv_blur->g_w); } } ASS_SynthPriv *ass_synth_init(double radius) { ASS_SynthPriv *priv = calloc(1, sizeof(ASS_SynthPriv)); if (!priv || !generate_tables(priv, radius)) { free(priv); return NULL; } #if (defined(__i386__) || defined(__x86_64__)) && CONFIG_ASM int avx2 = has_avx2(); #ifdef __x86_64__ priv->be_blur_func = avx2 ? ass_be_blur_avx2 : ass_be_blur_sse2; #else priv->be_blur_func = be_blur_c; #endif #else priv->be_blur_func = be_blur_c; #endif return priv; } void ass_synth_done(ASS_SynthPriv *priv) { ass_aligned_free(priv->tmp); free(priv->g0); free(priv->g); free(priv->gt2); free(priv); } static Bitmap *alloc_bitmap_raw(int w, int h) { Bitmap *bm; unsigned align = (w >= 32) ? 32 : ((w >= 16) ? 16 : 1); size_t s = ass_align(align, w); // Too often we use ints as offset for bitmaps => use INT_MAX. if (s > (INT_MAX - 32) / FFMAX(h, 1)) return NULL; bm = malloc(sizeof(Bitmap)); if (!bm) return NULL; bm->buffer = ass_aligned_alloc(align, s * h + 32); if (!bm->buffer) { free(bm); return NULL; } bm->w = w; bm->h = h; bm->stride = s; bm->left = bm->top = 0; return bm; } Bitmap *alloc_bitmap(int w, int h) { Bitmap *bm = alloc_bitmap_raw(w, h); if(!bm) return NULL; memset(bm->buffer, 0, bm->stride * bm->h + 32); return bm; } void ass_free_bitmap(Bitmap *bm) { if (bm) ass_aligned_free(bm->buffer); free(bm); } Bitmap *copy_bitmap(const Bitmap *src) { Bitmap *dst = alloc_bitmap_raw(src->w, src->h); if (!dst) return NULL; dst->left = src->left; dst->top = src->top; memcpy(dst->buffer, src->buffer, src->stride * src->h); return dst; } #if CONFIG_RASTERIZER Bitmap *outline_to_bitmap(ASS_Renderer *render_priv, FT_Outline *outline, int bord) { ASS_Rasterizer *rst = &render_priv->rasterizer; if (!rasterizer_set_outline(rst, outline)) { ass_msg(render_priv->library, MSGL_WARN, "Failed to process glyph outline!\n"); return NULL; } if (rst->x_min >= rst->x_max || rst->y_min >= rst->y_max) { Bitmap *bm = alloc_bitmap(2 * bord, 2 * bord); if (!bm) return NULL; bm->left = bm->top = -bord; return bm; } int x_min = rst->x_min >> 6; int y_min = rst->y_min >> 6; int x_max = (rst->x_max + 63) >> 6; int y_max = (rst->y_max + 63) >> 6; int w = x_max - x_min; int h = y_max - y_min; if (w * h > 8000000) { ass_msg(render_priv->library, MSGL_WARN, "Glyph bounding box too large: %dx%dpx", w, h); return NULL; } int mask = (1 << rst->tile_order) - 1; int tile_w = (w + 2 * bord + mask) & ~mask; int tile_h = (h + 2 * bord + mask) & ~mask; Bitmap *bm = alloc_bitmap(tile_w, tile_h); if (!bm) return NULL; bm->left = x_min - bord; bm->top = -y_max - bord; int offs = bord & ~mask; int bord_h = tile_h - h - bord; if (!rasterizer_fill(rst, bm->buffer + offs * (bm->stride + 1), x_min - bord + offs, y_min - bord_h + (bord_h & ~mask), ((w + bord + mask) & ~mask) - offs, ((h + bord + mask) & ~mask) - offs, bm->stride, 1)) { ass_msg(render_priv->library, MSGL_WARN, "Failed to rasterize glyph!\n"); ass_free_bitmap(bm); return NULL; } return bm; } #else Bitmap *outline_to_bitmap(ASS_Renderer *render_priv, FT_Outline *outline, int bord) { Bitmap *bm; int w, h; int error; FT_BBox bbox; FT_Bitmap bitmap; FT_Outline_Get_CBox(outline, &bbox); if (bbox.xMin >= bbox.xMax || bbox.yMin >= bbox.yMax) { bm = alloc_bitmap(2 * bord, 2 * bord); if (!bm) return NULL; bm->left = bm->top = -bord; return bm; } // move glyph to origin (0, 0) bbox.xMin &= ~63; bbox.yMin &= ~63; FT_Outline_Translate(outline, -bbox.xMin, -bbox.yMin); // bitmap size bbox.xMax = (bbox.xMax + 63) & ~63; bbox.yMax = (bbox.yMax + 63) & ~63; w = (bbox.xMax - bbox.xMin) >> 6; h = (bbox.yMax - bbox.yMin) >> 6; // pen offset bbox.xMin >>= 6; bbox.yMax >>= 6; if (w * h > 8000000) { ass_msg(render_priv->library, MSGL_WARN, "Glyph bounding box too large: %dx%dpx", w, h); return NULL; } // allocate and set up bitmap bm = alloc_bitmap(w + 2 * bord, h + 2 * bord); if (!bm) return NULL; bm->left = bbox.xMin - bord; bm->top = -bbox.yMax - bord; bitmap.width = w; bitmap.rows = h; bitmap.pitch = bm->stride; bitmap.buffer = bm->buffer + bord + bm->stride * bord; bitmap.num_grays = 256; bitmap.pixel_mode = FT_PIXEL_MODE_GRAY; // render into target bitmap if ((error = FT_Outline_Get_Bitmap(render_priv->ftlibrary, outline, &bitmap))) { ass_msg(render_priv->library, MSGL_WARN, "Failed to rasterize glyph: %d\n", error); ass_free_bitmap(bm); return NULL; } return bm; } #endif /** * \brief fix outline bitmap * * The glyph bitmap is subtracted from outline bitmap. This way looks much * better in some cases. */ void fix_outline(Bitmap *bm_g, Bitmap *bm_o) { int x, y; const int l = bm_o->left > bm_g->left ? bm_o->left : bm_g->left; const int t = bm_o->top > bm_g->top ? bm_o->top : bm_g->top; const int r = bm_o->left + bm_o->stride < bm_g->left + bm_g->stride ? bm_o->left + bm_o->stride : bm_g->left + bm_g->stride; const int b = bm_o->top + bm_o->h < bm_g->top + bm_g->h ? bm_o->top + bm_o->h : bm_g->top + bm_g->h; unsigned char *g = bm_g->buffer + (t - bm_g->top) * bm_g->stride + (l - bm_g->left); unsigned char *o = bm_o->buffer + (t - bm_o->top) * bm_o->stride + (l - bm_o->left); for (y = 0; y < b - t; ++y) { for (x = 0; x < r - l; ++x) { unsigned char c_g, c_o; c_g = g[x]; c_o = o[x]; o[x] = (c_o > c_g) ? c_o - (c_g / 2) : 0; } g += bm_g->stride; o += bm_o->stride; } } /** * \brief Shift a bitmap by the fraction of a pixel in x and y direction * expressed in 26.6 fixed point */ void shift_bitmap(Bitmap *bm, int shift_x, int shift_y) { int x, y, b; int w = bm->w; int h = bm->h; int s = bm->stride; unsigned char *buf = bm->buffer; assert((shift_x & ~63) == 0 && (shift_y & ~63) == 0); // Shift in x direction for (y = 0; y < h; y++) { for (x = w - 1; x > 0; x--) { b = (buf[x + y * s - 1] * shift_x) >> 6; buf[x + y * s - 1] -= b; buf[x + y * s] += b; } } // Shift in y direction for (x = 0; x < w; x++) { for (y = h - 1; y > 0; y--) { b = (buf[x + (y - 1) * s] * shift_y) >> 6; buf[x + (y - 1) * s] -= b; buf[x + y * s] += b; } } } /* * Gaussian blur. An fast pure C implementation from MPlayer. */ void ass_gauss_blur(unsigned char *buffer, unsigned *tmp2, int width, int height, int stride, unsigned *m2, int r, int mwidth) { int x, y; unsigned char *s = buffer; unsigned *t = tmp2 + 1; for (y = 0; y < height; y++) { memset(t - 1, 0, (width + 1) * sizeof(unsigned)); t[-1] = 32768; for (x = 0; x < r; x++) { const int src = s[x]; if (src) { register unsigned *dstp = t + x - r; int mx; unsigned *m3 = m2 + src * mwidth; for (mx = r - x; mx < mwidth; mx++) { dstp[mx] += m3[mx]; } } } for (; x < width - r; x++) { const int src = s[x]; if (src) { register unsigned *dstp = t + x - r; int mx; unsigned *m3 = m2 + src * mwidth; for (mx = 0; mx < mwidth; mx++) { dstp[mx] += m3[mx]; } } } for (; x < width; x++) { const int src = s[x]; if (src) { register unsigned *dstp = t + x - r; int mx; const int x2 = r + width - x; unsigned *m3 = m2 + src * mwidth; for (mx = 0; mx < x2; mx++) { dstp[mx] += m3[mx]; } } } s += stride; t += width + 1; } t = tmp2; for (x = 0; x < width; x++) { for (y = 0; y < r; y++) { unsigned *srcp = t + y * (width + 1) + 1; int src = *srcp; if (src) { register unsigned *dstp = srcp - 1 - y * (width + 1); const int src2 = (src + 32768) >> 16; unsigned *m3 = m2 + src2 * mwidth; int mx; *srcp = 32768; for (mx = r - y; mx < mwidth; mx++) { *dstp += m3[mx]; dstp += width + 1; } } } for (; y < height - r; y++) { unsigned *srcp = t + y * (width + 1) + 1; int src = *srcp; if (src) { register unsigned *dstp = srcp - 1 - r * (width + 1); const int src2 = (src + 32768) >> 16; unsigned *m3 = m2 + src2 * mwidth; int mx; *srcp = 32768; for (mx = 0; mx < mwidth; mx++) { *dstp += m3[mx]; dstp += width + 1; } } } for (; y < height; y++) { unsigned *srcp = t + y * (width + 1) + 1; int src = *srcp; if (src) { const int y2 = r + height - y; register unsigned *dstp = srcp - 1 - r * (width + 1); const int src2 = (src + 32768) >> 16; unsigned *m3 = m2 + src2 * mwidth; int mx; *srcp = 32768; for (mx = 0; mx < y2; mx++) { *dstp += m3[mx]; dstp += width + 1; } } } t++; } t = tmp2; s = buffer; for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { s[x] = t[x] >> 16; } s += stride; t += width + 1; } } /** * \brief Blur with [[1,2,1]. [2,4,2], [1,2,1]] kernel * This blur is the same as the one employed by vsfilter. * Pure C implementation. */ void be_blur_c(uint8_t *buf, intptr_t w, intptr_t h, intptr_t stride, uint16_t *tmp) { unsigned short *col_pix_buf = tmp; unsigned short *col_sum_buf = tmp + w * sizeof(unsigned short); unsigned x, y, old_pix, old_sum, temp1, temp2; unsigned char *src, *dst; memset(col_pix_buf, 0, w * sizeof(unsigned short)); memset(col_sum_buf, 0, w * sizeof(unsigned short)); { y = 0; src=buf+y*stride; x = 2; old_pix = src[x-1]; old_sum = old_pix + src[x-2]; for ( ; x < w; x++) { temp1 = src[x]; temp2 = old_pix + temp1; old_pix = temp1; temp1 = old_sum + temp2; old_sum = temp2; col_pix_buf[x] = temp1; } } { y = 1; src=buf+y*stride; x = 2; old_pix = src[x-1]; old_sum = old_pix + src[x-2]; for ( ; x < w; x++) { temp1 = src[x]; temp2 = old_pix + temp1; old_pix = temp1; temp1 = old_sum + temp2; old_sum = temp2; temp2 = col_pix_buf[x] + temp1; col_pix_buf[x] = temp1; col_sum_buf[x] = temp2; } } for (y = 2; y < h; y++) { src=buf+y*stride; dst=buf+(y-1)*stride; x = 2; old_pix = src[x-1]; old_sum = old_pix + src[x-2]; for ( ; x < w; x++) { temp1 = src[x]; temp2 = old_pix + temp1; old_pix = temp1; temp1 = old_sum + temp2; old_sum = temp2; temp2 = col_pix_buf[x] + temp1; col_pix_buf[x] = temp1; dst[x-1] = (col_sum_buf[x] + temp2) >> 4; col_sum_buf[x] = temp2; } } } int outline_to_bitmap3(ASS_Renderer *render_priv, FT_Outline *outline, FT_Outline *border, Bitmap **bm_g, Bitmap **bm_o, Bitmap **bm_s, int be, double blur_radius, FT_Vector shadow_offset, int border_style, int border_visible) { blur_radius *= 2; int bbord = be > 0 ? sqrt(2 * be) : 0; int gbord = blur_radius > 0.0 ? blur_radius + 1 : 0; int bord = FFMAX(bbord, gbord); if (bord == 0 && (shadow_offset.x || shadow_offset.y)) bord = 1; assert(bm_g && bm_o && bm_s); *bm_g = *bm_o = *bm_s = 0; if (outline) *bm_g = outline_to_bitmap(render_priv, outline, bord); if (!*bm_g) return 1; if (border) { *bm_o = outline_to_bitmap(render_priv, border, bord); if (!*bm_o) { return 1; } } return 0; } /** * \brief Add two bitmaps together at a given position * Uses additive blending, clipped to [0,255]. Pure C implementation. */ void add_bitmaps_c(uint8_t *dst, intptr_t dst_stride, uint8_t *src, intptr_t src_stride, intptr_t height, intptr_t width) { unsigned out; uint8_t* end = dst + dst_stride * height; while (dst < end) { for (unsigned j = 0; j < width; ++j) { out = dst[j] + src[j]; dst[j] = FFMIN(out, 255); } dst += dst_stride; src += src_stride; } } void sub_bitmaps_c(uint8_t *dst, intptr_t dst_stride, uint8_t *src, intptr_t src_stride, intptr_t height, intptr_t width) { short out; uint8_t* end = dst + dst_stride * height; while (dst < end) { for (unsigned j = 0; j < width; ++j) { out = dst[j] - src[j]; dst[j] = FFMAX(out, 0); } dst += dst_stride; src += src_stride; } } void mul_bitmaps_c(uint8_t *dst, intptr_t dst_stride, uint8_t *src1, intptr_t src1_stride, uint8_t *src2, intptr_t src2_stride, intptr_t w, intptr_t h) { uint8_t* end = src1 + src1_stride * h; while (src1 < end) { for (unsigned x = 0; x < w; ++x) { dst[x] = (src1[x] * src2[x] + 255) >> 8; } dst += dst_stride; src1 += src1_stride; src2 += src2_stride; } }